JPH02170099A - Controller for nuclear reactor - Google Patents

Controller for nuclear reactor

Info

Publication number
JPH02170099A
JPH02170099A JP63323363A JP32336388A JPH02170099A JP H02170099 A JPH02170099 A JP H02170099A JP 63323363 A JP63323363 A JP 63323363A JP 32336388 A JP32336388 A JP 32336388A JP H02170099 A JPH02170099 A JP H02170099A
Authority
JP
Japan
Prior art keywords
feed water
flow rate
control rod
reactor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63323363A
Other languages
Japanese (ja)
Inventor
Akira Kojima
小島 景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63323363A priority Critical patent/JPH02170099A/en
Publication of JPH02170099A publication Critical patent/JPH02170099A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To maintain the safety of a core throughout operation by varying the rate of control rod insertion by a control rod driving controller and adjusting the output of a nuclear reactor when a feed water heating loss and a feed water temperature drop are caused. CONSTITUTION:For example, the feed water loss is generated during operation at a point X1 in a nuclear reactor recirculation flow rate %-to-output % characteristic diagram. The temperature of feed water drops gradually. The width DELTATFW of this temperature drop is monitored by a feed water temperature detector 14 and inputted to the control rod driving device 19 as a signal 18. When a signal 20 indicating the feed water drop is inputted, on the other hand, the program of a recirculation flow rate control curve calculating device 17 is started and the recirculation flow rate control curve at the operation point X1 is calculated with signals from a neutron instrumentation system 10 and a reactor flow rate instrumentation system 3 and the signal of a control rod pattern from a control rod driving mechanism to vary the insertion rate of the control rod according to the degree of the current output of the segment at this time.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子炉の制御装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a control device for a nuclear reactor.

(従来の技術) 一般に沸騰水型原子炉においては、原子炉格納容器に原
子炉圧力容器が収納されており、この原子炉圧力容器内
に多数の核燃料を収容した燃料集合体が装荷されて炉心
部が構成されている。通常原子炉の出力制御は中性子吸
収材である制御棒と減速材である冷却水の流量を変化さ
せることにより行っている。制御棒による出力制御は、
以下に示す最小限界出力比という概念に基づいて行われ
ている。
(Prior Art) Generally, in a boiling water reactor, a reactor pressure vessel is housed in the reactor containment vessel, and fuel assemblies containing a large number of nuclear fuels are loaded into the reactor pressure vessel and the reactor core is The department is made up of: Normally, the output of a nuclear reactor is controlled by changing the flow rate of control rods, which are neutron absorbers, and cooling water, which is a moderator. Output control using control rods is
This is done based on the concept of minimum output ratio as shown below.

一般に沸騰水型原子炉において、通常の運転状態では炉
心内の沸騰は核沸騰の状態にある。沸騰が核沸騰の状態
にある場合には、熱伝達率がよいので、被覆管と冷却材
との温度差は小さく、被覆管温度は充分抑えられて燃料
棒の健全性は保たれる。
Generally, in a boiling water reactor, under normal operating conditions, boiling within the reactor core is in a state of nucleate boiling. When the boiling is nucleate boiling, the heat transfer coefficient is good, so the temperature difference between the cladding tube and the coolant is small, the cladding tube temperature is sufficiently suppressed, and the integrity of the fuel rod is maintained.

ところが原子炉出力が上昇し熱流束が高くなると、核沸
騰から遷移沸騰の状態へと移って被覆管温度が上昇し始
め、熱流束がさらに高くなると膜沸騰へと移行し、被覆
管の破損に到る可能性が出てくる。この核沸騰から遷移
沸騰へ移行する状態が沸騰遷移である。
However, as the reactor power increases and the heat flux increases, the state shifts from nucleate boiling to transition boiling, and the cladding temperature begins to rise.As the heat flux increases further, the state shifts to film boiling, which can lead to cladding failure. There is a possibility that it will come. This state of transition from nucleate boiling to transition boiling is boiling transition.

原子炉の熱的余裕が表わす指標として、最小限界出力比
(以下MCPRと称す)が用いられる。これは、沸騰遷
移が起こり始めると予想される燃料集合体出力と、実際
の出力との比である。すなわち、 最小限界出力比(MCPR) である。
The minimum critical power ratio (hereinafter referred to as MCPR) is used as an index representing the thermal margin of a nuclear reactor. This is the ratio of the expected fuel assembly power at which a boiling transition begins to occur and the actual power. That is, the minimum critical power ratio (MCPR).

そこで原子炉を安全に運転するためにMCPHに運転制
限値を設け、たえず一定の余裕をもって運転するように
している。このMCPHの運転制限値(以下OLMCP
Rと称す)は、第7図に示すようにMCPHの安全限界
値(以下SLMCPRと称す)に運転中予想される種々
の過渡変化でΔMCPR(MCPRの低化量)が最大と
なるものを加え求めている。
Therefore, in order to operate the nuclear reactor safely, an operating limit value is set for MCPH, and the reactor is always operated with a certain margin. This MCPH operation limit value (hereinafter OLMCP
As shown in Figure 7, MCPH (hereinafter referred to as SLMCPR) is calculated by adding the maximum value of ΔMCPR (decreasing amount of MCPR) due to various transient changes expected during operation. I'm looking for it.

ところで、現在BWRプラントには従来スクラム及び高
速スクラム採用のプラントがある。従来スクラムのプラ
ントではサイクル初期よりも末期の方が△MCPRが大
きくなる傾向にある。それは、サイクル末期では炉心の
反応度を上げるため制御棒を引き抜いて運転しているた
め過渡事象が起った場合、スクラム信号が入っても制御
棒の挿入遅れがあるためである。従って従来スクラムの
プラントでは種々の過渡変化の中で最も急激に反応度が
印加される発電機負荷遮断にバイパス弁不作動のときが
△MCPR最大となる。この事象は電力系統事故等によ
り発電機負荷が喪失することによって起り、タービンを
保護するためタービン蒸気加減弁が急激に閉鎖され、原
子炉はスクラムされる。
By the way, BWR plants currently include conventional scram and high-speed scram plants. In conventional scram plants, ΔMCPR tends to be larger at the end of the cycle than at the beginning. This is because at the end of the cycle, the control rods are withdrawn to increase the reactivity of the reactor core, so if a transient event occurs, there is a delay in inserting the control rods even if a scram signal is received. Therefore, in a conventional scram plant, the ΔMCPR is at its maximum when the bypass valve is inoperative during generator load shedding, where the reactivity is most rapidly applied among various transient changes. This event occurs due to a loss of generator load due to a power system accident, etc. To protect the turbine, the turbine steam control valve is abruptly closed and the reactor is scrammed.

主蒸気の遮断により原子炉圧力が上昇し、ボイドがつぶ
れることによる正の反応度印加により中性子束は増加す
るが、タービン蒸気加減弁急速閉鎖の信号で原子炉スク
ラムすると同時に再循環ポンプが停止するので炉心流量
は急減しボイドが急増する。その結果、スクラムによる
負の反応度印加とともにボイドの負の反応度により中性
子束の過渡の増加は抑えられる。(第8図参照)。一方
高速スクラム採用のプラントではスクラム挿入時間が早
いため、サイクル早期、末期で八MCPRが変わること
はなく給水加熱喪失のとき最大となっている。
Reactor pressure increases due to main steam shutoff, and neutron flux increases due to positive reactivity applied by collapsing voids, but the recirculation pump stops at the same time as the reactor scrams due to the signal of the turbine steam control valve rapid closure. Therefore, the core flow rate decreases rapidly and the number of voids increases rapidly. As a result, the transient increase in neutron flux is suppressed due to the negative reactivity applied by the scram and the negative reactivity of the void. (See Figure 8). On the other hand, in plants that employ high-speed scrams, the scram insertion time is early, so the 8MCPR does not change at the early or late stages of the cycle, and reaches its maximum when the feedwater heating is lost.

この事象は給水温度の制御系に異常が発生し給水温度が
減少することによって起り、炉心入口部の冷却材の温度
が低下し炉心中の気泡の体積割合が下がるため冷却材密
度が上昇し、原子炉出力が異常に高くなり最終的に中性
子高によりスクラムに至る(第9図参照)。従って0I
JCPRは従来スクラム、高速スクラムで異なっており
、高速スクラム; 01、MCPR= SLMCPR+(給水加熱喪失時の
△MCPR)となり、運転中OLMCPRを越えること
のない様運転を行っている。
This event occurs when an abnormality occurs in the feed water temperature control system and the feed water temperature decreases.The temperature of the coolant at the core inlet decreases and the volume ratio of bubbles in the core decreases, causing the coolant density to increase. The reactor power becomes abnormally high, eventually leading to a scram due to the high neutrons (see Figure 9). Therefore 0I
JCPR is different for conventional scram and high-speed scram; high-speed scram: 01, MCPR = SLMCPR+ (△MCPR at the time of loss of feed water heating), and operation is performed so as not to exceed OLMCPR during operation.

一方炉心流量による制御は、炉心流量が出力に対してほ
ぼ比例して変化する特性を利用して行っている(第10
図の流量制御曲線A)。
On the other hand, control using the core flow rate is performed by utilizing the characteristic that the core flow rate changes almost in proportion to the output (No. 10).
Flow control curve A) in the figure.

この流量制御曲線は、安全性への制約及び出力を流量で
制御する場合の下限となる最低ポンプスピード曲線Eに
より運転中宮に炉心が安全に保たれるように設定される
This flow rate control curve is set so that the core can be maintained safely during operation due to safety constraints and the minimum pump speed curve E, which is the lower limit when controlling output by flow rate.

ところで、沸騰水型原子炉の安全性には、局所的なチャ
ンネル安定性と全体的な炉心安定性とが煙。
By the way, the safety of boiling water reactors depends on local channel stability and overall core stability.

ある。チャンネル安定性は、搬料チャンネルボックス内
に流れるチャンネル流量の振動により減速材への熱の移
動が妨げられ、局所的に炉出力が振動する燃料チャンネ
ルボックス内の熱水力学的安定性を意味し、チャンネル
入口流量、チャンネル内圧力損失との間の輸送遅れおよ
び帰還効果により定まるチャンネルボックス内の気液二
相流の安定性である。これに対し、炉心安定性は、炉心
平均の中性子束安定性を意味し、炉心全体の中性子束と
炉心内のボイド量との間の輸送遅れおよび原子炉全体の
反応度帰還効果により定まる炉心全体的安定性である。
be. Channel stability refers to the thermal-hydraulic stability within the fuel channel box where oscillations in the channel flow rate flowing within the feed channel box impede heat transfer to the moderator and locally oscillate the reactor power. , the stability of the gas-liquid two-phase flow in the channel box determined by the channel inlet flow rate, the transport delay between the channel pressure drop and the feedback effect. On the other hand, core stability refers to the core average neutron flux stability, which is determined by the transport delay between the neutron flux of the entire core and the amount of voids in the core, and the reactivity feedback effect of the entire reactor. stability.

炉心安定性及びチャンネル安定性を示す指標として第1
1図に示す安定性減幅比x2/Xoが用いられる。安定
性減幅比はステップ状外乱に対する応容量関係を示すも
ので、オーバーシュート量の比で表わされる。安定性減
幅比が1.0より大きければ応答は発散振動となり不安
定になる。最低ポンプスピードは出力を流量で制御する
場合の下限であり、この点では安定性は最も厳しいもの
となる。
The first indicator of core stability and channel stability.
The stability reduction ratio x2/Xo shown in FIG. 1 is used. The stability reduction ratio indicates a response capacity relationship to a step-like disturbance, and is expressed as a ratio of overshoot amounts. If the stability attenuation ratio is greater than 1.0, the response becomes a divergent oscillation and becomes unstable. The minimum pump speed is the lower limit when output is controlled by flow rate, and stability is at its strictest at this point.

従って、この最低ポンプスピードは、第呑図に示す通り
、最低ポンプスピードの最大出力時Hに安定性が一定余
裕Yをもつように設計されている。
Therefore, this minimum pump speed is designed so that the stability has a certain margin Y at the maximum output H at the minimum pump speed, as shown in FIG.

ところが、現在運転領域を拡大するため第12図に示す
様な高出力−低流量での運転(破線D)を行おうとする
試みがなされている。この場合には最低ポンプスピード
最大出力点H′での余裕は少なくなり、 また自然循環
最大出力点(■′)は不安定領域に入る可能性もある。
However, attempts are currently being made to operate at high output and low flow rate (broken line D) as shown in FIG. 12 in order to expand the operating range. In this case, there is less margin at the minimum pump speed maximum output point H', and the natural circulation maximum output point (■') may enter the unstable region.

そこで高山カー低流量の運転を行なう場合には運転ガイ
ドラインEを設は安定性減幅比0.8 (0,2の余裕
をもつ)の等高線りを引き、これ以上での運転を行なわ
ない様にしている。また仮に運転中再循環ポンプ2台ト
リップの様な過渡事象が発生し自然循環状態に移行した
としても不安定状態にならぬよう5RI(選択制御棒)
を挿入し、出力を下げる設計となっている。
Therefore, when driving an alpine car at a low flow rate, Driving Guideline E is set to draw a contour line with a stability reduction ratio of 0.8 (with a margin of 0.2), and to avoid driving at a stability reduction ratio of 0.8 (with a margin of 0.2). I have to. In addition, even if a transient event such as tripping of two recirculation pumps occurs during operation and the state shifts to a natural circulation state, the 5RI (selective control rod) is used to prevent an unstable state.
The design is such that the output is lowered by inserting the

(発明が解決しようとする課題) 通常運転中、特に高出力−低流量運転中に、例えば給水
温度低下幅のそれ程大きくない(10〜30℃)給水加
熱喪失が発生したと仮定する。この場合出力は叙々に増
加して行くが、その変化は非常にゆっくりであり、また
中性子束高スクラムに至るまで出力が上昇せず整定する
様な可能性も出てくる。(第13図J−)J’)この時
、多重事故となり、また発生頻度も極めて少ないと思わ
れるが、仮に再循環ポンプトリップが生じたとすると、
 J′点は出力−流量特性に従って工“、H#等の不安
定領域に入る。また、J’、に’点で発電機負荷遮断が
発生すると、OL M CP RがSLMCPRを上回
る可能性も出てくる。
(Problem to be Solved by the Invention) It is assumed that during normal operation, particularly during high-output/low-flow operation, a loss of feed water heating occurs, for example, the feed water temperature drop is not so large (10 to 30° C.). In this case, the output increases gradually, but the change is very slow, and there is a possibility that the output does not increase and stabilizes until the neutron flux reaches a high scram. (Fig. 13 J-)J') At this time, multiple accidents occur, and although it seems to occur very rarely, if a recirculation pump trip were to occur,
According to the output-flow characteristics, point J' enters the unstable region such as H#, H#, etc. Also, if generator load shedding occurs at points J' and N, there is a possibility that OL MCP R will exceed SLMCPR. come out.

本発明は以上の点を考慮してなされたものであり、給水
加熱喪失開始時の流量制御曲線(aWD+b)を運転点
及び制御棒パターン等より見つもり切片すの出力の高低
及び給水温度の低下幅によってSRIの挿入割合を変え
、出力上昇を調節することによって、運転中、常に炉心
を安定に保ちまたSLMCPRを越えることのない運転
を続けることを可能とする原子炉の制御装置を提供する
ことを目的とする。
The present invention has been made in consideration of the above points, and the flow rate control curve (aWD + b) at the start of feedwater heating loss is observed from the operating point and control rod pattern, etc. The output level of the intercept and the drop in the feedwater temperature are determined. To provide a control device for a nuclear reactor that can keep the core stable at all times during operation and continue operation without exceeding SLMCPR by changing the insertion ratio of SRI depending on the width and adjusting the output increase. With the goal.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明による制御棒駆動制御装置は、給水温度低下幅を
検出する給水温度検出器を用い、給水加熱喪失発生時に
この給水温度検出器から伝わる信号によってその時の再
循環流量制御曲線を運転点及び制御棒パターン等によっ
て算出する再循環流量制御曲線計算プログラムにより求
め再循環流量制御曲線の切片における出力が高い方が低
流量付近で不安定領域に近づくこと、また給水温度低下
幅が大きい程出力上昇の割合が高くなること等、これら
2点の関係からSRIの挿入割合を変化させることによ
って出力上昇を調整する装置を具備することを特徴とす
る。
(Means for Solving the Problems) The control rod drive control device according to the present invention uses a feed water temperature detector that detects the range of decrease in feed water temperature, and when a loss of feed water heating occurs, a signal transmitted from the feed water temperature detector is used to regenerate the current time. The recirculation flow control curve is calculated using a recirculation flow control curve calculation program that calculates the operating point and control rod pattern. The present invention is characterized by being equipped with a device that adjusts the output increase by changing the SRI insertion rate based on the relationship between these two points, such as the fact that the larger the temperature decrease, the higher the output increase rate.

(作 用) 本発明に係る原子炉の制御装置は、以上示す通り、常に
運転状態を観察しながら、給水温度を検出しているので
、どの運転点で給水加熱喪失が起きても、無駄な出力抑
制をすることなく、常に炉心を安定にまたSLMCPR
を起えることなく運転することが可能となる。
(Function) As shown above, the nuclear reactor control device according to the present invention detects the feed water temperature while constantly observing the operating state, so no matter at which operating point loss of feed water heating occurs, it is not necessary to waste water. Always maintain core stability and SLMCPR without suppressing output.
It becomes possible to drive without getting up.

(実施例) 本発明における制御棒駆動制御装置の実施例について、
第1図から第6図を用いて説明する。
(Example) Regarding the example of the control rod drive control device in the present invention,
This will be explained using FIGS. 1 to 6.

第1図に示すように、沸騰水型原子炉の原子炉圧力容器
/内には多数の燃料集合体が装荷された炉心部2が形成
される。炉心部2は冷却材(減速材W)により浸漬され
る一方この炉心部2に原子炉の炉出力を計装する中性子
計装系10を構成する炉内中性子検出器11が複数個配
設される。また原子炉圧力容器1は主蒸気管4を介して
タービン5に接続され、原子炉圧力容器1内の炉心2に
て炉水が沸騰して発生した蒸気を主蒸気管4を介してタ
ービン5に導入し、ここで仕事をした蒸気をタービン復
水器6にて復水に凝縮し、この復水は給水加熱器8で加
熱されて給水として給水ポンプ7により昇圧し給水配管
9を介して原子炉圧力容器内に環流する。一方原子炉の
出力制御は制御棒駆動機構12と冷却水の流量を変化さ
せる再循環ポンプ13によって行っている。本発明にか
かる制御棒駆動制御装置19は、給水温度を計装する給
水温度検出器14及び、中性子計装系からの信号10と
炉心流量計装系3からの信号15そして制御棒パターン
の信号16から運転点における再循環流量制御曲線を求
める再循環流量制御曲線計算装置17を有しており、第
2図に示す様なロジックに従って制御棒の挿入割合を変
化させるものである。例として第3図に示す様なX、、
、X2で以上の過程を例示する。まず第10図に示す様
なX□点で運転中に給水加熱喪失が発生したとする。こ
れに伴い、給水温度は徐々に低下する。この温度低下幅
△TFwは第1図に示す給水温度検出器14で監視され
信号18として制御棒駆動制御装置19に入力される。
As shown in FIG. 1, a reactor core 2 loaded with a large number of fuel assemblies is formed inside a reactor pressure vessel of a boiling water reactor. The reactor core 2 is immersed in a coolant (moderator W), and a plurality of in-core neutron detectors 11 are disposed in the reactor core 2, which constitute a neutron instrumentation system 10 that measures the reactor power. Ru. The reactor pressure vessel 1 is also connected to a turbine 5 via a main steam pipe 4, and the steam generated by boiling reactor water in the reactor core 2 in the reactor pressure vessel 1 is transferred to the turbine 5 via the main steam pipe 4. The steam that has worked here is condensed into condensate in the turbine condenser 6, and this condensate is heated in the feed water heater 8, and the pressure is raised by the feed water pump 7 as feed water, and the steam is sent through the water feed pipe 9. Circulate into the reactor pressure vessel. On the other hand, the output of the reactor is controlled by a control rod drive mechanism 12 and a recirculation pump 13 that changes the flow rate of cooling water. The control rod drive control device 19 according to the present invention includes a feed water temperature detector 14 that measures the feed water temperature, a signal 10 from the neutron instrumentation system, a signal 15 from the core flow rate instrumentation system 3, and a control rod pattern signal. It has a recirculation flow rate control curve calculation device 17 which calculates a recirculation flow rate control curve at an operating point from 16, and changes the insertion ratio of control rods according to the logic shown in FIG. For example, as shown in Figure 3,
, X2 exemplify the above process. First, it is assumed that a loss of heating of the feed water occurs during operation at point X□ as shown in FIG. Along with this, the water supply temperature gradually decreases. This temperature decrease range ΔTFw is monitored by the feed water temperature detector 14 shown in FIG. 1 and inputted as a signal 18 to the control rod drive controller 19.

一方給水温度低下の信号20が入力されると、再循環流
量制御曲線計算装置17のプログラムが始動し、中性子
計装系10及び炉心流量計装系3からの信号と、制御棒
駆動機構からの制御棒パターンの信号により運転点X、
における再循環流量制御曲線(alID+b、)が計算
され、 この時の切辺における出力す、が制御棒駆動制
御装置19に入力される。本発明における制御棒駆動制
御装置19は、この2つの信号、給水温度低下幅ΔTF
W及び切辺における出力 b、の大小によって制御棒の
挿入割合を変化させるものであり、X、点の様に切辺で
の出力す、が高い場合には、給水温度低下幅が小さくて
も、仮に多重故障となり発生頻度も極めて低いとは思わ
れるが、再循環ポンプトリップが出しると、第3図中の
破線に従って不安定領域に侵入する恐れが生じる。この
ため、SRIを挿入する必要が出てくる。すなわち、第
9図のロジックで示すと切辺b1が大きいため、 △T
FWがそれ程大きくなくてもSRIは中程度の挿入が必
要となる。一方、第3図のX2で運転中に給水加熱喪失
が発生しても、 その再循環流量制御曲線a Wd +
 b 2は通常運転の100%制御棒パターンFの再循
環流量側口 溝曲線Aより十分余裕があるため今度は多少給水温度低
下幅△TFυ2が大きくても不安定領域に入る可能性が
少なくない。従ってこの温度低下幅△TFW2 の段階
に従って挿入割合を変化させれば良く、低下幅が大きく
なれば厳しくなるのでSR工挿入割合を大きくすればよ
い。以上の概念を第4図、第5図、第6図に簡単に示す
。図中縦軸(左側)は制御棒の反応度の割合であり、縦
軸(右側)は各運転点での切辺すの出力の大きさであり
、横軸は給水温度低下幅△TFすを示す。たとえば運転
領域を拡大した場合、通常100%制御棒パターン上の
流量制御曲線D(第3図参照)上で運転中には、(切辺
すが最大の時)第4図斜線部で示す割合で給水温度の低
下幅に従って制御棒の反応度が入る。
On the other hand, when the feed water temperature drop signal 20 is input, the program of the recirculation flow control curve calculation device 17 is started, and the signal from the neutron instrumentation system 10 and the core flow instrumentation system 3 and the control rod drive mechanism are input. The operating point X is determined by the control rod pattern signal.
The recirculation flow rate control curve (alID+b,) at is calculated, and the output at the cutting edge at this time is input to the control rod drive controller 19. The control rod drive control device 19 in the present invention uses these two signals, feed water temperature decrease width ΔTF
The insertion ratio of the control rod is changed depending on the magnitude of W and the output b at the cutting edge, and when the output b at the cutting edge is high as at point X, even if the feed water temperature decrease width is small. Even if multiple failures occur and the occurrence frequency is considered to be extremely low, if a recirculation pump trip occurs, there is a risk that the system will enter an unstable region according to the broken line in FIG. 3. Therefore, it becomes necessary to insert SRI. In other words, according to the logic in Figure 9, since the cutting edge b1 is large, △T
Even if the FW is not very large, SRI requires moderate insertion. On the other hand, even if feed water heating loss occurs during operation at X2 in Figure 3, the recirculation flow rate control curve a Wd +
Since b2 has sufficient margin compared to the recirculation flow rate side mouth groove curve A of the 100% control rod pattern F in normal operation, there is a possibility that it will fall into the unstable region even if the feed water temperature drop width △TFυ2 is somewhat large. . Therefore, it is only necessary to change the insertion ratio according to the stage of this temperature reduction width ΔTFW2, and since the larger the reduction width becomes, the more severe the SR process insertion ratio is. The above concept is briefly shown in FIGS. 4, 5, and 6. In the figure, the vertical axis (left side) is the rate of reactivity of the control rod, the vertical axis (right side) is the magnitude of the output of the cutting edge at each operating point, and the horizontal axis is the feed water temperature decrease width △TF. shows. For example, when the operating range is expanded, during operation on the flow control curve D (see Figure 3) on the 100% control rod pattern, the ratio shown in the shaded area in Figure 4 (when the cutting edge is at its maximum) is The reactivity of the control rod is determined according to the range of decrease in the feed water temperature.

すなわち、流量制御曲線り上で運転中は給水温度低下が
IO’lqたらずでも反応度Δに□を入れ、その後20
℃で八に2.30℃で△に3・・、そして50℃低下で
スクラムに至る。X1点で運転中の場合、b。
In other words, during operation on the flow rate control curve, even if the feed water temperature does not drop below IO'lq, □ is put in the reactivity Δ, and then 20
8 at ℃, 2, 3 at 30℃, and a 50℃ drop leads to a scrum. If driving at point X1, b.

はやや大きいため第5図に示す様に、温度10℃低下で
Δに、a制御棒を入れ以降図中斜視で示す様に反応度を
入れる。一方X2点では先に示した通り b2がそれ程
大きくないため第6図に示す様に30°C低下するまで
は通常運転を行い、30℃低下したところでSRIを挿
入開始しΔに3bの反応度を入れる。この様に切辺すの
大きさにより平行移動することによって、SRI挿入開
始の温度及び反応度割合を変化させ、不要な出力制御す
ることなく運転中学に原子炉の安全性を保つことが可能
となる。
is rather large, so as shown in Figure 5, when the temperature is lowered by 10°C, the a control rod is inserted into Δ, and the reactivity is then added as shown in perspective in the figure. On the other hand, at point X2, as shown earlier, b2 is not so large, so normal operation is performed until the temperature drops by 30°C as shown in Figure 6. When the temperature drops by 30°C, SRI is started to be inserted, and the reactivity of 3b is shown in Δ. Put in. By moving parallel to the size of the cut edge in this way, it is possible to change the temperature and reactivity ratio at the start of SRI insertion, and maintain the safety of the reactor during operation without unnecessary output control. Become.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に本発明の原子炉の制御装置は給水温度低
下幅がそれ程大きくなく、スクラムに至る出力も上昇せ
ず、一定の出力に整定する様な給水加熱喪失が生じた場
合、その運転点における流量制御曲線及び給水温度低下
幅の関係よりSRI挿入割合を変化させることによって
出力上昇を調整することで、運転中学に炉心の安定性を
保つとともに、SLMCPRを越えることのない運転を
続けることが可能となる。
As described above, the reactor control system of the present invention is capable of operating when a loss of feedwater heating occurs such that the feedwater temperature drop is not so large, the output leading to scram does not increase, and the output stabilizes at a constant level. By adjusting the power increase by changing the SRI insertion rate based on the relationship between the flow rate control curve at the point and the width of the feed water temperature decrease, it is possible to maintain core stability during operation and continue operation without exceeding the SLMCPR. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原子炉の制御装置の概略図、第2図は
本発明に係るフローチャート、第3図は本発明に係る出
力−炉心流量特性図、第4図は本発明に係る給水温度低
下幅−制御棒の反応度割合特性図、第5図は本発明に係
るX工運転点での制御棒の反応度割合特性図、第6図は
本発明に係るX2運転点での制御棒の反応度割合特性図
、第7図は従来のMCPR特性図、第8図は従来の出力
変化特性図、第9図は従来のスクラム時の特性図、第1
0図は従来の出力−炉心流量特性図、第11図は減幅比
の定義図、第12図は従来の出力−炉心流量特性図、第
13図は従来の出力−炉心流量特性図である。 1 ・原子炉圧力容器 3 炉心流量バ1装剖 5 タービン 7・・給水ポンプ 9 給水配管 11・炉内中性子検出器 2・・・炉心部 4・主蒸気管 6−・復水器 8 給水加熱器 10・・中性子計装系 12・・制御棒駆動機構 13・・再循環ポンプ   14・・給水温度検出器1
7・・・再循環流量制御曲線計算装置19・・・制御棒
駆動制御装置
FIG. 1 is a schematic diagram of a nuclear reactor control device according to the present invention, FIG. 2 is a flowchart according to the present invention, FIG. 3 is an output-core flow rate characteristic diagram according to the present invention, and FIG. 4 is a water supply according to the present invention. Figure 5 is a diagram showing the temperature decrease range vs. control rod reactivity ratio characteristic. Figure 5 is a control rod reactivity ratio characteristic diagram at the X operation point according to the present invention. Figure 6 is a control rod reactivity ratio characteristic diagram at the X2 operation point according to the present invention. Fig. 7 is a conventional MCPR characteristic diagram, Fig. 8 is a conventional output change characteristic diagram, Fig. 9 is a conventional scram characteristic diagram,
Figure 0 is a conventional power-core flow rate characteristic diagram, Figure 11 is a definition diagram of the width reduction ratio, Figure 12 is a conventional power-core flow rate characteristic diagram, and Figure 13 is a conventional power-core flow rate characteristic diagram. . 1 - Reactor pressure vessel 3 Core flow bar 1 system 5 Turbine 7... Water supply pump 9 Water supply piping 11 - In-reactor neutron detector 2... Reactor core 4 - Main steam pipe 6 - Condenser 8 Feed water heating Equipment 10...Neutron instrumentation system 12...Control rod drive mechanism 13...Recirculation pump 14...Feed water temperature detector 1
7... Recirculation flow control curve calculation device 19... Control rod drive control device

Claims (1)

【特許請求の範囲】[Claims] 原子炉の給水温度を監視し通常運転における温度からの
低下幅を検出する給水温度検出器と、給水温度検出器か
らの信号によりその時の運転点及び制御棒パターンから
再循環流量制御曲線を算出する再循環流量制御曲線計算
装置と、この再循環流量制御曲線計算装置からの信号に
より給水加熱喪失発生時にその流量制御曲線と給水温度
低下幅との関係から選択制御棒の挿入割合を変化させる
ことによって出力上昇を防ぐ制御棒駆動制御装置とを具
備してなる原子炉の制御装置。
A feedwater temperature detector monitors the reactor feedwater temperature and detects the range of decrease from the temperature in normal operation, and a recirculation flow control curve is calculated from the operating point and control rod pattern at that time based on the signal from the feedwater temperature detector. By using a recirculation flow rate control curve calculation device and a signal from this recirculation flow rate control curve calculation device, the insertion ratio of selected control rods is changed based on the relationship between the flow rate control curve and the width of the feed water temperature decrease when feedwater heating loss occurs. A nuclear reactor control device comprising a control rod drive control device that prevents a rise in output.
JP63323363A 1988-12-23 1988-12-23 Controller for nuclear reactor Pending JPH02170099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63323363A JPH02170099A (en) 1988-12-23 1988-12-23 Controller for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63323363A JPH02170099A (en) 1988-12-23 1988-12-23 Controller for nuclear reactor

Publications (1)

Publication Number Publication Date
JPH02170099A true JPH02170099A (en) 1990-06-29

Family

ID=18153939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63323363A Pending JPH02170099A (en) 1988-12-23 1988-12-23 Controller for nuclear reactor

Country Status (1)

Country Link
JP (1) JPH02170099A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181984A (en) * 2000-12-11 2002-06-26 Global Nuclear Fuel-Japan Co Ltd Monitoring controller for boiling water reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181984A (en) * 2000-12-11 2002-06-26 Global Nuclear Fuel-Japan Co Ltd Monitoring controller for boiling water reactor

Similar Documents

Publication Publication Date Title
US5091139A (en) Automated thermal limit monitor
US4399095A (en) Protection and control system for a nuclear reactor
US4129475A (en) Method of operating a nuclear reactor
JPH0348476B2 (en)
JPH047477B2 (en)
EP0318323A2 (en) Variable delay reactor protection system
JPH0640143B2 (en) Nuclear power plant control method and apparatus
JPH02170099A (en) Controller for nuclear reactor
Ishiwatari et al. Improvements of feedwater controller for the super fast reactor
Ishiwatari et al. ATWS characteristics of super LWR with/without alternative action
Ishiwatari et al. LOCA analysis of super LWR
JPH01244393A (en) Control rod driving/controlling device
JPS6140591A (en) Controller for recirculation flow rate of nuclear reactor
JP4707826B2 (en) Boiling water reactor monitoring and control system
JP2507357B2 (en) Reactor power controller
JP2522500B2 (en) Reactor operation control method
JPH0511092A (en) Method of protecting nuclear reactor
Oka et al. Reactor design and safety
JPH04208899A (en) Reactor scram device
JPS5896283A (en) Reactor stability control device
JP2020187061A (en) Control apparatus of nuclear power plant, nuclear power plant, and control method for nuclear power plant
JPH01105197A (en) Operation planning apparatus for nuclear reactor
JPH0631777B2 (en) Output control device for natural circulation furnace
JPS61117486A (en) Nuclear-reactor nuclear thermal hydrualic power stability controller
Dunn Consequences of pipe ruptures in metal fueled, liquid metal cooled reactors