JPH0212586Y2 - - Google Patents
Info
- Publication number
- JPH0212586Y2 JPH0212586Y2 JP15804384U JP15804384U JPH0212586Y2 JP H0212586 Y2 JPH0212586 Y2 JP H0212586Y2 JP 15804384 U JP15804384 U JP 15804384U JP 15804384 U JP15804384 U JP 15804384U JP H0212586 Y2 JPH0212586 Y2 JP H0212586Y2
- Authority
- JP
- Japan
- Prior art keywords
- cavitation
- ultrasonic probe
- propeller
- ultrasonic
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000523 sample Substances 0.000 claims description 22
- 238000002592 echocardiography Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 238000005070 sampling Methods 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 3
- 241000195493 Cryptophyta Species 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Description
【考案の詳細な説明】
(イ) 産業上の利用分野
本考案は、船舶のプロペラに発生するキヤビテ
ーシヨンの程度を測定する装置に関する。[Detailed Description of the Invention] (a) Field of Industrial Application The present invention relates to a device for measuring the degree of cavitation occurring in a propeller of a ship.
(ロ) 従来技術とその問題点
近海を航行するフエリー等の船舶は、加速、減
速を繰り返すことが多く、このためキヤビテーシ
ヨンが発生し易い。キヤビテーシヨンの発生要因
としては、プロペラシヤフトの回転速度、プロペ
ラのピツチ、船舶の対水速度等が影響する。そし
て、キヤビテーシヨンの発生は推力の損失を招
き、機関の効率が低下するばかりでなく、エロー
ジヨンが生じてプロペラが損傷する場合がある。
従つて、キヤビテーシヨンの発生程度が把握でき
れば上記発生要因を変更するなどしてその対策を
たてることが可能となる。(b) Prior art and its problems Vessels such as ferries that navigate near seas often accelerate and decelerate repeatedly, and cavitation is therefore likely to occur. The factors that cause cavitation are the rotational speed of the propeller shaft, the pitch of the propeller, and the speed of the ship relative to the water. The occurrence of cavitation not only causes a loss of thrust and reduces the efficiency of the engine, but also may cause erosion and damage to the propeller.
Therefore, if the degree of occurrence of cavitation can be ascertained, countermeasures can be taken by changing the causes of cavitation.
キヤビテーシヨンの発生度合を検出するには、
たとえばキヤビテーシヨンの音波を受信してその
周波数を分析することも可能であるが、この場合
にはプロペラの羽根相互の干渉や船体の振動の影
響を受け易く、さらには、音波を受波するセンサ
部分に貝殻や藻などが付着してその検出性能が低
下するなどの難点がある。 To detect the degree of cavitation,
For example, it is possible to receive cavitation sound waves and analyze their frequencies, but in this case, the sensor part that receives the sound waves is susceptible to interference between propeller blades and vibrations of the ship's hull. There are drawbacks such as shells, algae, etc. adhering to the surface of the sensor, reducing its detection performance.
(ハ) 目的
本考案は従来のかかる問題点を解消し、船舶の
プロペラに発生するキヤビテーシヨンの程度を有
効に測定できるようにすることを目的とする。(C) Purpose The purpose of the present invention is to solve such conventional problems and to make it possible to effectively measure the degree of cavitation occurring in a ship's propeller.
(ニ) 構成
本考案は上述の目的を達成するため、船尾のプ
ロペラの対向位置に配置される超音波探触子を備
え、この超音波探触子は圧電振動子が収容される
ケーシングの前面がレンズ効果のある凹面状に形
成され、前記プロペラの羽根に超音波を放射して
該羽根から反射される超音波エコーの減衰量を検
出してキヤビテーシヨンの程度を測定するように
している。(d) Configuration In order to achieve the above-mentioned purpose, the present invention is equipped with an ultrasonic probe placed opposite the propeller at the stern of the ship, and this ultrasonic probe is placed on the front side of the casing in which the piezoelectric vibrator is housed. is formed in a concave shape with a lens effect, and the degree of cavitation is measured by emitting ultrasonic waves to the blades of the propeller and detecting the amount of attenuation of the ultrasonic echoes reflected from the blades.
(ホ) 実施例
以下、本考案を図面に示す本考案に基づいて詳
細に説明する。(E) Examples The present invention will be described in detail below based on the present invention shown in the drawings.
第1図は船尾に超音波探触子を取り付けた状態
を示す側面図、第2図は超音波探触子の断面図で
ある。この実施例のキヤビテーシヨン測定装置1
は、船尾2のプロペラ4の対向位置に配置される
超音波探触子6を備える。この超音波探触子6
は、圧電振動子8、この圧電振動子8の背面に設
けられたバツギツグ層10および圧電振動子8と
バツギツグ層10とを収容するケーシング12を
備える。上記ケーシング12は、耐食性と音響イ
ンピーダンス整合のために合成樹脂でできてお
り、かつ、プロペラ4に向かうその前面が所定の
曲率Rをもつて凹面状に形成されている。 FIG. 1 is a side view showing an ultrasonic probe attached to the stern, and FIG. 2 is a sectional view of the ultrasonic probe. Cavitation measuring device 1 of this embodiment
is equipped with an ultrasonic probe 6 disposed at a position facing the propeller 4 at the stern 2. This ultrasonic probe 6
The piezoelectric vibrator 8 includes a piezoelectric vibrator 8, a buckling layer 10 provided on the back surface of the piezoelectric vibrator 8, and a casing 12 that houses the piezoelectric vibrator 8 and the buckling layer 10. The casing 12 is made of synthetic resin for corrosion resistance and acoustic impedance matching, and the front surface facing the propeller 4 is formed into a concave shape with a predetermined curvature R.
第3図はキヤビテーシヨン測定装置のブロツク
図である。同図において、6は上記の超音波探触
子、12はこの超音波探触子6を励振させる駆動
パルスを発生するパルス発生回路、14は超音波
探触子6から出力される受波信号をプロペラ4の
回転に同期してサンプリングするサンプリング回
路、16はサンプリング回路14でサンプリング
された受波信号を増幅する増幅器、18は増幅さ
れた受波信号を波形整形する波形整形回路、20
は波形整形後の受波信号をレベル表示する表示器
である。 FIG. 3 is a block diagram of the cavitation measuring device. In the figure, 6 is the above-mentioned ultrasonic probe, 12 is a pulse generation circuit that generates a driving pulse to excite this ultrasonic probe 6, and 14 is a received signal output from the ultrasonic probe 6. 16 is an amplifier that amplifies the received signal sampled by the sampling circuit 14; 18 is a waveform shaping circuit that shapes the waveform of the amplified received signal; 20
is an indicator that displays the level of the received signal after waveform shaping.
このキヤビテーシヨン測定装置1では、パルス
発生回路12から周期的な駆動パルスが発生さ
れ、この駆動パルスが超音波探触子6に加わる。
これにより、超音波探触子6からはプロペラ4に
対して超音波が放射される。その場合、超音波探
触子6のケーシング12前面が凹面状に形成され
ているので、放射される超音波はプロペラ4にフ
オーカスを結ぶ。プロペラ4に発生するキヤビテ
ーシヨンの程度が大きければ、これに比例して超
音波は大きく減衰される。そして、キヤビテーシ
ヨンの程度によつて減衰された超音波のその反射
波は再び超音波探触子6で受波される。超音波探
触子6からは、受波した超音波の反射波に対応し
た受波信号が次段のサンプリング回路14に送出
される。サンプリング回路14はプロペラ4の回
転に同期して受波信号をサンプリングする。この
ため、副次的なキヤビテーシヨンによるノイズの
影響が除去される。そして、サンプリング回路1
4でサンプリングされた受波信号は増幅器16で
増幅され、波形整形回路18で波形整形された
後、表示器20にその受波信号のレベルが表示さ
れる。従つて、表示器20に表示されたレベルを
複数回測定して、キヤビテーシヨンの発生程度を
デーテ集積すれば、プロペラシヤフトの回転速
度、プロペラのピツチ、船舶の対水速度等キヤビ
テーシヨンの発生要因を変更するなどしてその対
策を立てることができる。 In this cavitation measuring device 1, periodic drive pulses are generated from a pulse generation circuit 12, and these drive pulses are applied to the ultrasonic probe 6.
As a result, ultrasonic waves are emitted from the ultrasonic probe 6 to the propeller 4. In this case, since the front surface of the casing 12 of the ultrasonic probe 6 is formed in a concave shape, the emitted ultrasonic waves are focused on the propeller 4. If the degree of cavitation generated in the propeller 4 is large, the ultrasonic waves are attenuated to a large extent in proportion to this. The reflected waves of the ultrasonic waves attenuated by the degree of cavitation are received by the ultrasonic probe 6 again. The ultrasonic probe 6 sends a received signal corresponding to the reflected wave of the received ultrasonic wave to the sampling circuit 14 at the next stage. The sampling circuit 14 samples the received signal in synchronization with the rotation of the propeller 4. Therefore, the influence of noise due to secondary cavitation is removed. And sampling circuit 1
The received signal sampled at step 4 is amplified by an amplifier 16, and after its waveform is shaped by a waveform shaping circuit 18, the level of the received signal is displayed on a display 20. Therefore, by measuring the level displayed on the display 20 multiple times and collecting data on the degree of cavitation, it is possible to change the factors that cause cavitation, such as the rotational speed of the propeller shaft, the pitch of the propeller, and the speed of the ship relative to the water. You can take countermeasures by doing this.
(ヘ) 効果
以のように本考案によれば、超音波探触子から
プロペラの羽根に超音波を放射して該羽根から反
射される超音波エコーを再び超音波探触子で受波
し、これから超音波の減衰量を検出してキヤビテ
ーシヨンの程度を測定するようにしたので、測定
領域を限定することができ、プロペラの干渉や船
体の振動の影響を受けることなく有効にキヤビテ
ーシヨンの発生程度を測定することが可能とな
る。また、超音波探触子は振動しているので、貝
殻や藻の付着することもなく、従つて、検出性能
の低下も防止できる。(F) Effects As described above, according to the present invention, ultrasonic waves are emitted from the ultrasonic probe to the blades of the propeller, and the ultrasonic echoes reflected from the blades are received again by the ultrasonic probe. Since we now measure the degree of cavitation by detecting the amount of attenuation of the ultrasonic waves, we can limit the measurement area and effectively measure the degree of cavitation without being affected by propeller interference or hull vibration. It becomes possible to measure. Furthermore, since the ultrasonic probe vibrates, shells and algae do not adhere to it, and therefore detection performance can be prevented from deteriorating.
図面は本考案の実施例を示し、第1図は船尾に
超音波探触子を取り付けた状態を示す側面図、第
2図は超音波探触子の断面図、第3図はキヤビテ
ーシヨン測定装置のブロツク図である。
1……キヤビテーシヨン測定装置、4……プロ
ペラ、6……超音波探触子、8……圧電振動子、
12……ケーシング。
The drawings show an embodiment of the present invention; Fig. 1 is a side view showing an ultrasonic probe attached to the stern, Fig. 2 is a sectional view of the ultrasonic probe, and Fig. 3 is a cavitation measuring device. FIG. 1... Cavitation measuring device, 4... Propeller, 6... Ultrasonic probe, 8... Piezoelectric vibrator,
12...Casing.
Claims (1)
探触子を備え、この超音波探触子は圧電振動子が
収容されるケーシングの前面がレンズ効果のある
凹面状に形成され、前記プロペラの羽根に超音波
を放射して該羽根から反射される超音波エコーの
減衰量を検出してキヤビテーシヨンの程度を測定
することを特徴とするキヤビテーシヨン測定装
置。 The ultrasonic probe is equipped with an ultrasonic probe placed opposite the propeller at the stern, and the front surface of the casing in which the piezoelectric vibrator is housed is formed into a concave shape with a lens effect. 1. A cavitation measuring device characterized in that the degree of cavitation is measured by emitting ultrasonic waves to a blade and detecting the amount of attenuation of ultrasonic echoes reflected from the blades.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15804384U JPH0212586Y2 (en) | 1984-10-18 | 1984-10-18 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15804384U JPH0212586Y2 (en) | 1984-10-18 | 1984-10-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6172661U JPS6172661U (en) | 1986-05-17 |
JPH0212586Y2 true JPH0212586Y2 (en) | 1990-04-09 |
Family
ID=30716027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15804384U Expired JPH0212586Y2 (en) | 1984-10-18 | 1984-10-18 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0212586Y2 (en) |
-
1984
- 1984-10-18 JP JP15804384U patent/JPH0212586Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS6172661U (en) | 1986-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070118330A1 (en) | Dual wall turbine blade ultrasonic wall thickness measurement technique | |
TWI408699B (en) | Nuclear reactor vibration surveillance system and its method | |
SE8602533D0 (en) | ULTRASONIC METHOD AND DEVICE FOR DETECTING AND MEASURING DEFECTS IN METAL MEDIA | |
EP0364168A2 (en) | System and method for ultrasonic determination of density | |
JP5009523B2 (en) | Ultrasonic probe and inspection method and system | |
US4476549A (en) | Calibration method for acoustic scattering measurements using a spherical target | |
JPH0212586Y2 (en) | ||
Panetta et al. | Ultrasonic attenuation measurements in jet-engine titanium alloys | |
EP0555871A2 (en) | Combined speed and depth sensor transducer | |
US4038629A (en) | Propagation delay meter | |
CN111024818B (en) | Submerged plant identification method of ultrasonic sensor based on longitudinal wave sound velocity | |
JPH08178740A (en) | Method and apparatus for measuring acoustic conversion efficiency | |
RU2042283C1 (en) | Process of calibration of sonar antenna under conditions of natural water basin | |
JPH02150766A (en) | Ultrasonic flaw detecting device | |
Djelouah et al. | Pulsed calibration technique of miniature ultrasonic receivers using a wideband laser interferometer | |
SU1029006A1 (en) | Device for measuring fluid film thickness | |
Kouzoubov et al. | Acoustic imaging of surface ship wakes | |
JPH09304041A (en) | Apparatus and method for measuring scale thickness of internal surface of pipe | |
JP3930674B2 (en) | Method for measuring film thickness in piping and other structures | |
SU1670808A1 (en) | Method of calibration of reversible transducers | |
JPH08201352A (en) | Ultrasonic probe for oblique flaw detection | |
SU1610307A1 (en) | Device for measuring speed of ultrasound | |
SU1460621A1 (en) | Ultrasound velocity meter | |
JP2981493B2 (en) | Fluid noise measurement sensor | |
SU1733999A1 (en) | Ultrasound converter |