JPH02125853A - Formation of coating layer of refractory metal, tungsten fiber coated with coating layer of refractory metal, and tungsten fiber-reinforced super alloy body - Google Patents

Formation of coating layer of refractory metal, tungsten fiber coated with coating layer of refractory metal, and tungsten fiber-reinforced super alloy body

Info

Publication number
JPH02125853A
JPH02125853A JP27892988A JP27892988A JPH02125853A JP H02125853 A JPH02125853 A JP H02125853A JP 27892988 A JP27892988 A JP 27892988A JP 27892988 A JP27892988 A JP 27892988A JP H02125853 A JPH02125853 A JP H02125853A
Authority
JP
Japan
Prior art keywords
refractory metal
coating layer
fibers
tungsten fiber
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27892988A
Other languages
Japanese (ja)
Inventor
Masako Nakabashi
中橋 昌子
Takao Suzuki
隆夫 鈴木
Masayuki Ito
伊藤 昌行
Hiromitsu Takeda
博光 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27892988A priority Critical patent/JPH02125853A/en
Publication of JPH02125853A publication Critical patent/JPH02125853A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To easily and uniformly form a coating layer of refractory metal on the surfaces of W fibers by exposing W fibers to a molten Cu alloy containing retractory metal to deposit the refractory metal on the surfaces of the W fibers and then removing the Cu alloy and the undeposited refractory metal. CONSTITUTION:W fibers are exposed to a molten Cu alloy containing refractory metal, such as Nb and Ta, to coagulate and deposit the refractory metal on the surfaces of the W fibers. After cooling, the Cu alloy and the undeposited refractory metal are removed from the W fibers by using nitric acid, etc., by which the W fibers whose surfaces are covered with the coating layer of the refractory metal, respectively, are obtained. By embedding the above W fibers into a base material composed of super alloy, a W fiber-reinforced supper alloy body can be formed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は耐火金属被覆層の形成方法並びに耐火金属被覆
層で被覆されたタングステン繊維およびタングステン繊
維強化超合金体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for forming a refractory metal coating layer and to tungsten fibers and tungsten fiber reinforced superalloy bodies coated with a refractory metal coating layer.

(従来の技術) 熱機関の高出力化に際しては、高温化が不可欠の要素で
あり、そのためジェットエンジンのタービン翼等高温部
材に用いる材料の開発が精力的に進められている。
(Prior Art) In order to increase the output of a heat engine, increasing the temperature is an essential element, and for this reason, the development of materials for use in high-temperature components such as the turbine blades of jet engines is being actively pursued.

従来の最強材料は、NiにCr、Aρ、Mo等の強化元
素を添加したNi基超超合金あった。次世代材料として
、超高温まで高強度が期待できるW繊維やセラミック繊
維と、耐熱、耐蝕性に優れるNi基、Fe基合金と組み
合わせた複合材料、即ち、繊維強化超合金が注目されて
いる。
The strongest conventional material was a Ni-based superalloy made by adding reinforcing elements such as Cr, Aρ, and Mo to Ni. As next-generation materials, composite materials that combine W fibers and ceramic fibers, which are expected to have high strength up to extremely high temperatures, with Ni-based and Fe-based alloys, which have excellent heat resistance and corrosion resistance, ie, fiber-reinforced superalloys, are attracting attention.

強化繊維としては、信頼性が高くセラミックスより加工
性の良いWおよびW合金が最も有力である。
The most effective reinforcing fibers are W and W alloys, which are highly reliable and have better workability than ceramics.

しかしながら、タングステン繊維(以下W繊維という)
の高温強度は、(イ)非酸化性雰囲気中であることおよ
び(ロ)冷間加工による繊維状組織が保持されているこ
と、の条件下で発揮され、いずれの条件が欠けても強度
が低下する問題がある。
However, tungsten fiber (hereinafter referred to as W fiber)
The high-temperature strength of is exhibited under the following conditions: (a) being in a non-oxidizing atmosphere and (b) retaining the fibrous structure due to cold working, and even if either of these conditions are absent, the strength will be maintained. There is a problem of deterioration.

繊維強化超合金においては、W繊維を超合金中に埋め込
むことにより酸化が防止され、上記の(イ)の条件を満
足することができる。しかしながら、(ロ)の条件に関
しては、Ni基、Fe基超超合金wei維との界面で、
高温時に成分元素の拡散や反応層生成等の相互作用のた
めに、W繊維が脆化する問題があった。
In a fiber-reinforced superalloy, oxidation is prevented by embedding W fibers in the superalloy, and the above condition (a) can be satisfied. However, regarding the condition (b), at the interface with the Ni-based and Fe-based superalloy wei fibers,
There is a problem in that W fibers become brittle due to interactions such as diffusion of component elements and formation of reaction layers at high temperatures.

この様な界面反応を防止するために、Wlli維の表面
にNb等の耐火金属からなる耐火金属被覆層を設けるこ
とが知られている(特開昭6.3−153234号)。
In order to prevent such an interfacial reaction, it is known to provide a refractory metal coating layer made of a refractory metal such as Nb on the surface of the Wlli fiber (Japanese Patent Laid-Open No. 153234/1983).

ところで、細いW繊維の表面に耐火金属被覆層を均一に
形成することは著しく困難である。この耐火金属被覆層
をW繊維の表面に形成する方法としては、従来、スパッ
タリングあるいは非酸化性雰囲気中での溶射等が知られ
ている。しかしながら、これらの方法は、いずれも大が
かりな装置を必要とする上に、W繊維の全表面に均一に
被覆するためには、W繊維を供給源に対して均等に対面
する様に常に移動する必要がある等、多大の労力を必要
とする問題があった。
However, it is extremely difficult to uniformly form a refractory metal coating layer on the surface of thin W fibers. Conventionally known methods for forming this refractory metal coating layer on the surface of W fibers include sputtering and thermal spraying in a non-oxidizing atmosphere. However, all of these methods require large-scale equipment, and in order to uniformly coat the entire surface of the W fibers, the W fibers must be constantly moved so that they face the supply source evenly. There was a problem in that it required a great deal of effort.

(発明が解決しようとする課題) 前述した様に、これまでの超合金を強化するタングステ
ン繊維の表面を耐火金属被覆層で被覆することは、大掛
かりな装置を必要とするのみならず、多大の労力を必要
とする問題がある。
(Problems to be Solved by the Invention) As mentioned above, coating the surface of the tungsten fibers that strengthen conventional superalloys with a refractory metal coating layer not only requires large-scale equipment but also requires a large amount of work. There are problems that require effort.

本発明の目的は、タングステン繊維の表面に容易に均一
な耐火金属被覆層を形成できる耐火金属被覆層の形成方
法並びに耐火金属被覆層で被覆されたタングステン繊維
およびこのタングステン繊維で強化されたタングステン
繊維強化超合金体を提供することにある。
The objects of the present invention are a method for forming a refractory metal coating layer that can easily form a uniform refractory metal coating layer on the surface of a tungsten fiber, a tungsten fiber coated with a refractory metal coating layer, and a tungsten fiber reinforced with the tungsten fiber. The object of the present invention is to provide a reinforced superalloy body.

[発明の構成] (課題を解決するための6手段および作用)本発明は、
耐火金属を含む溶融したCU系合金中にwi維を曝して
耐火金属をW繊維表面に凝集、析出させる工程と、Cu
系合金と未析出の耐火金属を除去する工程とを有するこ
とを特徴とする耐火金属被覆層の形成方法である。また
、本発明は、この耐火金属被覆層の形成方法により形成
された耐火金属被覆層で表面を被覆されたタングステン
繊維である。さらに、本発明は、このタングステン繊維
で強化されたタングステン繊維強化超合金体である。
[Structure of the invention] (Six means and effects for solving the problem) The present invention has the following features:
A process of exposing Wi fibers to a molten CU-based alloy containing refractory metals to agglomerate and precipitate the refractory metals on the surfaces of W fibers, and Cu
A method for forming a refractory metal coating layer, comprising a step of removing a base alloy and unprecipitated refractory metal. The present invention also provides a tungsten fiber whose surface is coated with a refractory metal coating layer formed by this method for forming a refractory metal coating layer. Further, the present invention is a tungsten fiber reinforced superalloy body reinforced with this tungsten fiber.

本発明の耐火金属被覆層の形成方法によれば、耐火金属
を含む溶融したCu系合金中にW繊維を曝すと、W繊維
表面には、Cu系合金の溶融に伴に い含有していた耐火金属成分が凝集、析出して、W繊維
表面の全面が耐火金属の層で一様に覆われる。この時、
W繊維はCu系合金により脆化されることはない。冷却
後、W繊維の周囲にあるCu系合金および未析出の耐火
金属成分を硝酸等で除去すれば、耐火金属被覆層で表面
が覆われたタングステン繊維が得られる。
According to the method for forming a refractory metal coating layer of the present invention, when W fibers are exposed to a molten Cu-based alloy containing a refractory metal, the surface of the W fibers contains molten metal as the Cu-based alloy melts. The refractory metal component aggregates and precipitates, and the entire surface of the W fiber is uniformly covered with a layer of refractory metal. At this time,
W fibers are not embrittled by Cu-based alloys. After cooling, the Cu-based alloy and unprecipitated refractory metal components around the W fibers are removed with nitric acid or the like to obtain tungsten fibers whose surfaces are covered with a refractory metal coating layer.

本発明において、用いられる耐火金属としては、特に限
定されないが、NbおよびTaが超合金との反応を防止
するものとして望ましい。
In the present invention, the refractory metal used is not particularly limited, but Nb and Ta are preferred as they prevent reaction with the superalloy.

また、これらの耐火金属を含有する合金としては、Cu
系合金が好適である。即ち、この合金としては、まず、
工程上、なるべく融点の低いことが望ましいが、特に重
要なことは、加熱時にwi維を脆化させないことが必須
で必る。これらの条件を満たす合金としては、Cu、A
CI、ALI、Zn等が挙げられるが、ACI、Auは
高価である上、後処理工程が繁雑となる。CuはZnに
比較してW繊維への耐火金属層の被覆状態が良好であり
最も好ましい。ここで、Cu系合金とは、NやFe等の
W繊維を脆化させる元素を含まないCuを主体とする合
金である。
In addition, alloys containing these refractory metals include Cu
alloys are preferred. That is, for this alloy, first,
From the viewpoint of the process, it is desirable that the melting point be as low as possible, but what is particularly important is that it is essential that the Wi fibers do not become brittle during heating. Alloys that meet these conditions include Cu, A
Examples include CI, ALI, Zn, etc., but ACI and Au are expensive and require complicated post-processing steps. Compared to Zn, Cu provides a better coverage of the refractory metal layer onto the W fibers, and is therefore most preferable. Here, the Cu-based alloy is an alloy mainly composed of Cu and does not contain elements that cause embrittlement of W fibers, such as N and Fe.

本発明において、耐火金属を含む溶融したCu系合金中
にW繊維を曝すには、耐火金属を含有するCu系合金粉
末中にW繊維を埋置して全体を加熱してCu系合金を溶
融したり、Cu系合金粉末と耐火金属粉末との混合粉末
中にW繊維を埋置して全体を加熱してこの混合粉末を溶
融しても良い。
In the present invention, in order to expose the W fibers to a molten Cu-based alloy containing a refractory metal, the W fibers are embedded in a Cu-based alloy powder containing a refractory metal, and the whole is heated to melt the Cu-based alloy. Alternatively, W fibers may be embedded in a mixed powder of a Cu-based alloy powder and a refractory metal powder, and the mixed powder may be melted by heating the whole.

また、これらの耐火金属粉末およびCu系合金粉末を加
熱、溶融する場合、真空中等の非酸化性雰囲気中でCu
系合金の融点以上に加熱する。加熱時間は、被覆層の厚
さに依存するが、目的に応じて、数十分間から数時間程
度を適宜選択できる。
In addition, when heating and melting these refractory metal powders and Cu-based alloy powders, Cu
Heat above the melting point of the alloy. The heating time depends on the thickness of the coating layer, but can be appropriately selected from several tens of minutes to several hours depending on the purpose.

さらに、冷却後、W繊維からCu系合金および未析出の
耐火金属を除去する場合、その方法は限定されないが、
硝酸等の薬品を使用すると容易に行える。
Furthermore, when removing Cu-based alloys and unprecipitated refractory metals from the W fibers after cooling, the method is not limited, but
This can be easily done using chemicals such as nitric acid.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例1 直径0.5#、長さ100.のW繊維を100本用意し
た。Cu粉末とNb粉末とを90wt%と1Ow士%の
割合で混合した混合粉末が充填されたアルミナ容器内に
、このWS維を埋置した。全体を5×1O−5T o 
r rの真空炉中に配置して、1200’Cにて30分
間加熱した。
Example 1 Diameter 0.5#, length 100. 100 W fibers were prepared. This WS fiber was buried in an alumina container filled with a mixed powder of Cu powder and Nb powder mixed at a ratio of 90 wt % and 1 Ow %. The whole is 5×1O-5T o
It was placed in a vacuum oven at r r and heated at 1200'C for 30 minutes.

冷却後、W繊維全体を硝酸溶液中に浸漬し、Cuと未析
出のNbを溶解除去した。W繊維を水洗後、乾燥してN
b層で表面を覆われたW繊維を得た。このNb層はW1
11i維の表面全体を被覆しており、その厚さは平均5
μmであった。
After cooling, the entire W fiber was immersed in a nitric acid solution to dissolve and remove Cu and unprecipitated Nb. After washing the W fiber with water, dry it and apply N.
A W fiber whose surface was covered with layer b was obtained. This Nb layer is W1
It covers the entire surface of the 11i fiber, and its thickness is on average 5
It was μm.

実施例2 直径0.3#、長さ100.のW繊維を100本用意し
た。Cu粉末とTa粉末とを95wt%と5wt%の割
合で混合した混合粉末が充填されたアルミナ容器内に、
このW繊維を埋置した。全体を5×1O−5T o r
 rの真空炉中に配置して、1200’Cにて60分間
加熱した。
Example 2 Diameter 0.3#, length 100. 100 W fibers were prepared. In an alumina container filled with a mixed powder of Cu powder and Ta powder mixed at a ratio of 95 wt% and 5 wt%,
This W fiber was buried. The whole is 5×1O-5T or
The sample was placed in a vacuum oven at 1200°C and heated at 1200'C for 60 minutes.

冷却後、w、m維仝体を硝酸溶液中に浸漬し、Cuと未
析出の丁aを溶解除去した。W繊維を水洗後、乾燥して
Ta層で表面を覆われたW繊維を得た。このTa層はW
繊維の表面全体を被覆してあり、その厚さは平均3μm
であった。
After cooling, the w and m fibers were immersed in a nitric acid solution to dissolve and remove Cu and unprecipitated coal. After washing the W fibers with water, they were dried to obtain W fibers whose surfaces were covered with a Ta layer. This Ta layer is W
The entire surface of the fiber is coated, and the average thickness is 3 μm.
Met.

実施例3 実施例1で得られたNbを被覆したWS維の周囲にFe
−24Cr −a A、Il −0,5Y合金を低圧プ
ラズマ溶剣法を用いて、厚さ50μmに被覆した繊維強
化超合金単線を作製した。
Example 3 Fe was added around the Nb-coated WS fiber obtained in Example 1.
A fiber-reinforced superalloy single wire coated with -24Cr-a A, Il -0,5Y alloy to a thickness of 50 μm was produced using a low-pressure plasma melting method.

比較例として、Nbあるいは丁aを被覆しない同種のW
繊維に同様にF e−24Cr −8A、l1O35Y
合金を低圧プラズマ溶剣法を用いて、厚さ50μmに被
覆した繊維強化超合金単線を作製した。
As a comparative example, the same type of W that does not cover Nb or D
F e-24Cr -8A, l1O35Y in the same way as the fiber
A fiber-reinforced superalloy single wire coated with the alloy to a thickness of 50 μm was produced using a low-pressure plasma melting method.

これら2種類の繊維強化超合金単線を真空中で1200
’Cにて5時間加熱した。その結果、Nb層で被覆され
たW繊維は全く脆化しなかったが、上記のFe−Cr 
−A、11−’1/合金を直接溶射したW繊維は著しい
脆化と強度低下を示した。
These two types of fiber-reinforced superalloy single wires were
'C for 5 hours. As a result, the W fibers coated with the Nb layer did not become brittle at all, but the Fe-Cr layer described above did not become brittle.
-A, 11-'1/W fibers directly sprayed with alloy showed significant embrittlement and strength reduction.

[発明の効果] 以上の様に、本発明によれば、タングステン繊維の表面
に容易に均一な耐火金属被覆層を形成てΦ きる耐火金属被覆層の形成方法並びにこの形成方法で形
成された耐火金属被覆層を有するタングステン繊維およ
びこのタングステン繊維で強化されたタングステン繊維
強化超合金体を提供することができる。
[Effects of the Invention] As described above, according to the present invention, there is a method for forming a refractory metal coating layer that can easily form a uniform refractory metal coating layer on the surface of a tungsten fiber, and a refractory metal coating layer formed by this formation method. Tungsten fibers having a metallization layer and tungsten fiber reinforced superalloy bodies reinforced with the tungsten fibers can be provided.

代理人 弁理士 大 胡 典 夫Agent: Patent Attorney Norio Oo Hu

Claims (3)

【特許請求の範囲】[Claims] (1)耐火金属を含む溶融したCu系合金中にタングス
テン繊維を曝して耐火金属をタングステン繊維表面に凝
集、析出させる工程と、Cu系合金と未析出の耐火金属
を除去する工程とを有することを特徴とする耐火金属被
覆層の形成方法。
(1) It has a step of exposing a tungsten fiber to a molten Cu-based alloy containing a refractory metal to agglomerate and precipitate the refractory metal on the surface of the tungsten fiber, and a step of removing the Cu-based alloy and unprecipitated refractory metal. A method for forming a refractory metal coating layer characterized by:
(2)タングステン繊維が耐火金属からなる耐火金属被
覆層で被覆されたタングステン繊維において、前記耐火
金属被覆層は耐火金属を含む溶融したCu系合金中にタ
ングステン繊維を曝して耐火金属をタングステン繊維表
面に凝集、析出させた後にCu系合金と未析出の耐火金
属を除去することにより形成されたことを特徴とする耐
火金属被覆層で被覆されたタングステン繊維。
(2) In a tungsten fiber in which the tungsten fiber is coated with a refractory metal coating layer made of a refractory metal, the refractory metal coating layer is formed by exposing the tungsten fiber to a molten Cu-based alloy containing a refractory metal to coat the surface of the tungsten fiber with a refractory metal. A tungsten fiber coated with a refractory metal coating layer, characterized in that it is formed by agglomerating and precipitating Cu-based alloy and removing unprecipitated refractory metal.
(3)表面を耐火金属被覆層で被覆されタングステン繊
維を超合金基体中に埋設したタングステン繊維強化超合
金体において、前記耐火金属被覆層は耐火金属を含む溶
融したCu系合金中にタングステン繊維を曝して耐火金
属をタングステン繊維表面に凝集、析出させた後にCu
系合金と未析出の耐火金属を除去することにより形成さ
れたことを特徴とするタングステン繊維強化超合金体。
(3) In a tungsten fiber-reinforced superalloy body whose surface is covered with a refractory metal coating layer and tungsten fibers are embedded in a superalloy base, the refractory metal coating layer consists of tungsten fibers embedded in a molten Cu-based alloy containing a refractory metal. After exposing the refractory metal to the surface of the tungsten fiber, Cu
A tungsten fiber-reinforced superalloy body formed by removing a base alloy and unprecipitated refractory metal.
JP27892988A 1988-11-04 1988-11-04 Formation of coating layer of refractory metal, tungsten fiber coated with coating layer of refractory metal, and tungsten fiber-reinforced super alloy body Pending JPH02125853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27892988A JPH02125853A (en) 1988-11-04 1988-11-04 Formation of coating layer of refractory metal, tungsten fiber coated with coating layer of refractory metal, and tungsten fiber-reinforced super alloy body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27892988A JPH02125853A (en) 1988-11-04 1988-11-04 Formation of coating layer of refractory metal, tungsten fiber coated with coating layer of refractory metal, and tungsten fiber-reinforced super alloy body

Publications (1)

Publication Number Publication Date
JPH02125853A true JPH02125853A (en) 1990-05-14

Family

ID=17604044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27892988A Pending JPH02125853A (en) 1988-11-04 1988-11-04 Formation of coating layer of refractory metal, tungsten fiber coated with coating layer of refractory metal, and tungsten fiber-reinforced super alloy body

Country Status (1)

Country Link
JP (1) JPH02125853A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413851A (en) * 1990-03-02 1995-05-09 Minnesota Mining And Manufacturing Company Coated fibers
CN105039876A (en) * 2015-07-06 2015-11-11 西安理工大学 Preparation method for W-Cu composite materials of fiber and particle hybrid structure
CN107740006A (en) * 2017-09-19 2018-02-27 上海工程技术大学 A kind of Cu/W composites of property anisotropy and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413851A (en) * 1990-03-02 1995-05-09 Minnesota Mining And Manufacturing Company Coated fibers
CN105039876A (en) * 2015-07-06 2015-11-11 西安理工大学 Preparation method for W-Cu composite materials of fiber and particle hybrid structure
CN107740006A (en) * 2017-09-19 2018-02-27 上海工程技术大学 A kind of Cu/W composites of property anisotropy and preparation method thereof

Similar Documents

Publication Publication Date Title
US5238752A (en) Thermal barrier coating system with intermetallic overlay bond coat
US3961098A (en) Coated article and method and material of coating
Cooper et al. Seawater corrosion behavior of laser surface modified Inconel 625 alloy
CA1222719A (en) Methods of forming a protective diffusion layer on nickel, cobalt and iron base alloys
CA1044643A (en) Ductile corrosion resistant coating on a superalloy substrate
GB1566179A (en) Superalloys and coatings
US5712050A (en) Superalloy component with dispersion-containing protective coating
JPH07507839A (en) Composite aluminide-silicide coating
JP2007154314A (en) Processing method for bond coat having low deposited aluminum level and gas turbine engine component part
EP0370838B1 (en) Process for the surface protection of metallic articles against high-temperature corrosion, and article treated by this process
CN109355652A (en) Laser melting coating Co-based alloy powder and preparation method thereof
JPH0223203A (en) Turbine blade having abrasive nose and manufacture thereof
KR20010078361A (en) A method of providing a protective coating on a metal substrate, and related articles
JPH0641625B2 (en) Method for providing thermal spray composite powder and toughness and corrosion resistant coating
US4055706A (en) Processes for protecting refractory metallic components against corrosion
Chen et al. Intermetallic phases formed during hot dipping of Low Carbon Steel in a Zn-5 Pct AI Melt at 450° C
JPH02125853A (en) Formation of coating layer of refractory metal, tungsten fiber coated with coating layer of refractory metal, and tungsten fiber-reinforced super alloy body
JP2005504179A (en) Method for removing at least one layer range of a member made of metal or metal compound
US3953193A (en) Coating powder mixture
JPH0525934B2 (en)
EP0048083A1 (en) Surface treatment method of heat-resistant alloy
JPH10263793A (en) Manufacture of al-based composite body
EP0532252A1 (en) Superalloy component with dispersion-containing protective coating, and method of preparation
JP2001342553A (en) Method for forming alloy protection coating
JPH083718A (en) Production of thermal spraying-coated metallic member