JPH02125685A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH02125685A
JPH02125685A JP63279753A JP27975388A JPH02125685A JP H02125685 A JPH02125685 A JP H02125685A JP 63279753 A JP63279753 A JP 63279753A JP 27975388 A JP27975388 A JP 27975388A JP H02125685 A JPH02125685 A JP H02125685A
Authority
JP
Japan
Prior art keywords
semiconductor laser
optical output
main beam
face
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63279753A
Other languages
Japanese (ja)
Inventor
Shoji Katayama
片山 昌二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63279753A priority Critical patent/JPH02125685A/en
Publication of JPH02125685A publication Critical patent/JPH02125685A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To provide a semiconductor laser capable of outputting photoelectric current for monitoring optical output and capable of providing great optical output by forming a reflecting film on the end face of a main chip from which a main beam is not led out and arranging a photosensor in front of the end face radiating the main beam while deviating the photosensor from the main axis. CONSTITUTION:A semiconductor laser chip 10 used herein has a reflecting film 7 provided on the opposite end face to a main beam 202 so that optical output is taken out only from the direction of the main beam. A PIN photodiode as a monitoring photosensor 120 is arranged in front of the end face of the semiconductor laser chip 10 from which the main beam is led out, while deviated from the main axis. A part 206 of the optical output is applied to the photosensor 120 and photoelectric current corresponding to the optical output of the semiconductor laser is taken out of the semiconductor laser through an external lead terminal 104. Drive circuit of the semiconductor laser is controlled according to the photoelectric current so that the optical output is held constant. In this manner, it is possible to provide a semiconductor laser capable of providing great optical output and of monitoring the optical output.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor laser.

〔従来の技術〕[Conventional technology]

半導体レーザは光フアイバ通信装置の初光源として使わ
れている。光フアイバ通信の利点の一つは中継間隔が長
いということであり、この点においては無線通信や同軸
を用いた通信にくらべ優れている。光フアイバ通信か長
距離の幹線通信に主に使われるようになってくると、光
通信システl、の信顆性を上げまたおり低コストにする
要望が強くなり、ますます中継間隔を長くすることが必
要になってきた。
Semiconductor lasers are used as the primary light source for fiber optic communication devices. One of the advantages of optical fiber communication is that the relay interval is long, and in this respect it is superior to wireless communication and coaxial communication. As optical fiber communication came to be mainly used for long-distance trunk communication, there was a strong desire to improve the reliability of optical communication systems and reduce costs, and the repeating interval became increasingly longer. It has become necessary.

このためには、まず半導体レーザの光出力を大きくする
ことが必要である。
For this purpose, it is first necessary to increase the optical output of the semiconductor laser.

第3図(a>は従来の半導体レーザの構造を示す縦断面
図、第3(3(b)はこの従来の半導体レーザの半導体
レーザチップ搭載部分の拡大図である。従来の半導体レ
ーザでは第3I71(b)で示すようにヒートシンク5
を介してシステム1のマウント部4に固着された半導体
レーザチッフ゛6の両端面よりレーザ光が放射されてい
る。第3図(a>で示すように、一方は容器のガラス窓
3より放射される主ビーム202であり、主ビーノ、と
反対方向の端面より放射されるビームの光出力は内蔵の
受光素子120で検知され定出力駆動の光出力のモニタ
ーに使用されている。従ってこのビ−ムはモニタービー
ム203と呼ばれている。
Figure 3 (a) is a vertical cross-sectional view showing the structure of a conventional semiconductor laser, and Figure 3 (b) is an enlarged view of the semiconductor laser chip mounting portion of this conventional semiconductor laser. Heat sink 5 as shown in 3I71(b)
Laser light is emitted from both end faces of the semiconductor laser chip 6 which is fixed to the mount section 4 of the system 1 via the mount section 4 of the system 1. As shown in FIG. 3 (a), one side is the main beam 202 emitted from the glass window 3 of the container, and the light output of the beam emitted from the end face in the opposite direction to the main beam is the built-in light receiving element 120. This beam is detected and used to monitor the optical output of the constant output drive.Therefore, this beam is called the monitor beam 203.

つまり、従来の半導体レーザでは、半導体レーザチップ
の両端面より光出力をとり出し、主ビームを信号源とし
て用い、他方を光出力のモニタービームとして利用して
いる。
That is, in a conventional semiconductor laser, optical output is extracted from both end faces of the semiconductor laser chip, the main beam is used as a signal source, and the other beam is used as a monitor beam for the optical output.

通常半導体レーザは温度依存性が大きいので、光出力を
モニターして定出力駆動をすることが、実用上不可欠で
ある。
Since semiconductor lasers usually have a large temperature dependence, it is practically essential to monitor the optical output and drive the laser at a constant output.

]発明が解決しようとする課題〕 上述した従来の半導体レーザは半導体レーザチップの両
方の端面より光出力を取り出しているので、主ビームの
光出力を大きくできないという欠点がある。
[Problems to be Solved by the Invention] The conventional semiconductor laser described above has the drawback that the optical output of the main beam cannot be increased because the optical output is extracted from both end faces of the semiconductor laser chip.

ところで、主ビームの光出力を最大にするには、第3図
(1:+ )の半導体レーザチップのモニタビーム側の
端面に反射膜を施こし、モニタビーム1i11の端面よ
り光出力を全く収り出さず、主ビーム側端面よりのみ光
出力をとり出すことが必要である。しかし、従来の第3
図(a)で示す構造では光出力をモニタすることがて゛
きない。
By the way, in order to maximize the optical output of the main beam, a reflective film is applied to the end face of the semiconductor laser chip on the monitor beam side shown in FIG. It is necessary to take out the optical output only from the end face on the main beam side without taking it out. However, the conventional third
With the structure shown in Figure (a), it is impossible to monitor the optical output.

本発明は大きな光出力が得られ、がっ、光出力のモニタ
も可能な半導体レーザを得ることを目的としている。
The object of the present invention is to obtain a semiconductor laser that can provide a large optical output and also allow monitoring of the optical output.

[課題を解決するための手段〕 本発明は、主ビーム側と反対の端面に反射膜を施し、主
ビーム側の端面よりのみ光出力を取り出す二とができる
半導体レーザチップを用い、且つ半導体レーザチップの
主ビーム側出力端面斜め前方に受光素子を配置した構成
となっている9本発明によれば、光出力を主ビーム側の
みにより収り出すので、従来の半導体レーザより飛Y&
的に光出力を増大さぜることができる。また受光素−t
を光出力端面斜め前方に配置しであるので、光出力端面
がら出射した主ビームのうち、外方に広がった成分を受
光でき、モニタも可能となる。
[Means for Solving the Problems] The present invention uses a semiconductor laser chip which has a reflective film on the end face opposite to the main beam side and can extract optical output only from the end face on the main beam side. According to the present invention, which has a configuration in which a light receiving element is arranged obliquely in front of the output end face on the main beam side of the chip, the optical output is collected only from the main beam side, so the flight
can increase the light output. Also, the photodetector -t
is disposed obliquely in front of the light output end face, so it is possible to receive and monitor components of the main beam emitted from the light output end face that spread outward.

r実施例〕 次に本発明の実施例を図面を参照して説明する。第1 
V (a )は本発明の一実施例を示す縦断面図である
。第1図(b)はこの実施例の半導体レーザチップ搭載
部分の拡大図である。第1図(1,11)に示すように
半導体レーザチップの主ビーム放射端面と反対側の端面
には例えばλ/ 4 nの厚さの5i02のような反射
膜7が施こされている。ここで、λは波長、nは反射膜
の屈折率である。本発明の一実施例では、主ビーム20
2と反対側の端面に反射膜7が施こされ、光出力は主ビ
ーム方向よりのみ取り出される半導体レーザチップ10
が使用され、モニタ用の受光素子120として例えばl
〕I Nホトダイオードを半導体レーザチップ10の主
ビーム取り出し端面斜め前方に配置している。この受光
素子120は金属ステム1に絶縁体111および112
を介して固着させた外部リード端子]03および104
に機械的に固定された例えばアルミナのような電気絶縁
板]、 17上のメタライズ面119上にマウントされ
ており、その主軸123は半導体レーザチップ10の主
ビームの主軸201と位置をずらせて配置しである。受
光面は半導体レーザチップ側に向いている。主ビーム2
02の光出力の大半は前記絶縁板]17の中央部に設け
られた穴およびキャップ2の中央部に設けられたカラス
窓3を通して外部に放射される。一方、光出力の一部2
06は受光素子120を照射し、半導体レーザの光出力
に対応した光電電流が外部リード端子104がら外部に
取り出される。この光電電流により光出力を一定にする
ため半導体レーザの駆動回路(図示省略)を制御しレー
ザ光を一定出カにしている。半導体レーザの指向性は良
いが、−最に活性層と框直な方向では矢印204,20
5のように広がり、その広がり角θは40’ ぐらいで
ある。従って半導体レーザチップの主軸201と受光素
子の主軸123の位置がずれていても、受光素子120
で充分半導体レーザの光を検知することができる。
Embodiment] Next, an embodiment of the present invention will be described with reference to the drawings. 1st
V (a) is a longitudinal cross-sectional view showing one embodiment of the present invention. FIG. 1(b) is an enlarged view of the semiconductor laser chip mounting portion of this embodiment. As shown in FIG. 1 (1, 11), a reflective film 7 such as 5i02 having a thickness of λ/4n is formed on the end face of the semiconductor laser chip opposite to the main beam emitting end face. Here, λ is the wavelength and n is the refractive index of the reflective film. In one embodiment of the invention, the main beam 20
A semiconductor laser chip 10 is provided with a reflective film 7 on the end face opposite to 2, and the optical output is extracted only from the main beam direction.
For example, l is used as the light receiving element 120 for monitoring.
] An I N photodiode is arranged obliquely in front of the main beam extraction end face of the semiconductor laser chip 10. This light receiving element 120 has a metal stem 1 and insulators 111 and 112.
External lead terminals fixed via] 03 and 104
[electrical insulating plate, such as alumina, mechanically fixed to], is mounted on the metallized surface 119 on the semiconductor laser chip 17, and its main axis 123 is disposed offset from the main axis 201 of the main beam of the semiconductor laser chip 10. It is. The light receiving surface faces the semiconductor laser chip side. Main beam 2
Most of the light output of 02 is radiated to the outside through a hole provided in the center of the insulating plate 17 and a crow window 3 provided in the center of the cap 2. On the other hand, part 2 of the optical output
06 irradiates the light receiving element 120, and a photoelectric current corresponding to the optical output of the semiconductor laser is extracted to the outside through the external lead terminal 104. In order to keep the optical output constant using this photoelectric current, a semiconductor laser drive circuit (not shown) is controlled to keep the laser beam at a constant output. The directivity of the semiconductor laser is good, but - in the direction perpendicular to the active layer, the arrows 204 and 20
5, and its spread angle θ is about 40'. Therefore, even if the main axis 201 of the semiconductor laser chip and the main axis 123 of the light receiving element are misaligned, the light receiving element 123
can sufficiently detect the light from the semiconductor laser.

第2図は本発明のもう一つの実施例を示す縦断面図であ
る。この実施例では絶縁体117にメタライズ302を
介して、もう一つの受光素子Y30が設置されている。
FIG. 2 is a longitudinal sectional view showing another embodiment of the present invention. In this embodiment, another light receiving element Y30 is installed on the insulator 117 via the metallization 302.

ここで、メタライス302はメタライズ11つと、メタ
ライス303はメタライズ118と接続されている。従
って、半導体レーザからの光を2個の受光素子120゜
130で検知することになり、光電電流が大きくとれ、
定出力駆動の回路が簡単となり、低コストになるという
利点がある。
Here, the metallization 302 is connected to 11 metallizations, and the metallization 303 is connected to 118 metallizations. Therefore, the light from the semiconductor laser is detected by two light receiving elements 120° and 130, and a large photoelectric current can be obtained.
This has the advantage of simplifying the constant output drive circuit and reducing cost.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、半導体レーザチップの主チップの
主ビームを取り出さない側の端面に反射膜を形成し、ま
た半導体レーザチップの主ビームと放射する端i?ii
斜め前方に受光素子を配置することにより、定出力駆動
用の光出力モニター用光電電流を収り出すことができ、
且つ、半導体レーザメ尤出力を飛躍的に大きくすること
ができる効果かある。
As explained above, a reflective film is formed on the end face of the main chip of the semiconductor laser chip on the side from which the main beam is not extracted, and the end face i? ii
By arranging the light receiving element diagonally in front, it is possible to collect the photoelectric current for optical output monitoring for constant output driving.
Moreover, there is an effect that the output power of the semiconductor laser beam can be dramatically increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a )は本発明の半導体レーザの一実施例を示
す縦断面図、第1図(b)はその半導体レーザチップ搭
載部分の拡大図、第2図は本発明の別の実施例である半
導体レーザの構造を示す縦断面図、第3図(a)、(b
)は従来の半導体レーザを示す縦断面図である。 ここで、1・・・金属ステム、2・・・キャップ、3・
・・はガラス窓、4・・・ステムのマウント部、5・・
・ヒートシンク、6,10・・・半導体レーザチップ、
7・・・反射膜、120,130は受光素子、202・
・・主ビーム、203・・・モニタービーム、204゜
205・・・ビームの広がりを示す矢印、206・・・
光出力の一部である。 第 図 第 図
FIG. 1(a) is a longitudinal cross-sectional view showing one embodiment of the semiconductor laser of the present invention, FIG. 1(b) is an enlarged view of the semiconductor laser chip mounting part, and FIG. 2 is another embodiment of the present invention. FIGS. 3(a) and 3(b) are vertical cross-sectional views showing the structure of a semiconductor laser.
) is a vertical cross-sectional view showing a conventional semiconductor laser. Here, 1...metal stem, 2...cap, 3...
... is the glass window, 4... the mount of the stem, 5...
・Heat sink, 6, 10... semiconductor laser chip,
7... Reflective film, 120, 130 are light receiving elements, 202...
...Main beam, 203...Monitor beam, 204°205...Arrow indicating beam spread, 206...
It is part of the light output. Figure Figure

Claims (1)

【特許請求の範囲】[Claims] 主ビームを取り出す端面とは反対側の端面に反射膜を施
した半導体レーザチップと、この半導体レーザチップの
主ビームの取り出し端面側に受光面を向けて前記端面の
斜め前方に配置した受光素子とを少くとも具備すること
を特徴とする半導体レーザ。
A semiconductor laser chip having a reflective film on the end face opposite to the end face from which the main beam is taken out, and a light receiving element disposed diagonally in front of the end face with its light receiving surface facing the end face from which the main beam is taken out. A semiconductor laser comprising at least the following.
JP63279753A 1988-11-04 1988-11-04 Semiconductor laser Pending JPH02125685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63279753A JPH02125685A (en) 1988-11-04 1988-11-04 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63279753A JPH02125685A (en) 1988-11-04 1988-11-04 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH02125685A true JPH02125685A (en) 1990-05-14

Family

ID=17615427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63279753A Pending JPH02125685A (en) 1988-11-04 1988-11-04 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH02125685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258374A (en) * 2002-03-05 2003-09-12 Nec Compound Semiconductor Devices Ltd Wavelength-stabilized semiconductor laser module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258374A (en) * 2002-03-05 2003-09-12 Nec Compound Semiconductor Devices Ltd Wavelength-stabilized semiconductor laser module

Similar Documents

Publication Publication Date Title
US5907151A (en) Surface mountable optoelectronic transducer and method for its production
US6422766B1 (en) Housing configuration for a laser module
CA1325827C (en) Light transmitting device utilizing indirect reflection
JPH10111439A (en) Optoelectronic module
KR20220060549A (en) A laser package and a system with laser packages
US5022035A (en) Semiconductor laser device
USRE38280E1 (en) Optoelectronic module for bidirectional optical data transmission
US20210080320A1 (en) Optocoupler with Side-Emitting Electromagnetic Radiation Source
US6927477B2 (en) Coplanar line, and a module using the coplanar line
JP3979396B2 (en) Optical module and manufacturing method thereof
US6990262B2 (en) Optical module
JPH02125685A (en) Semiconductor laser
US20090080897A1 (en) Bi-directional optical module communicating with single fiber
US20040141699A1 (en) Optical module
JP2000156510A (en) Optical semiconductor device, manufacture thereof, and optical electronic device
JPS63234585A (en) Semiconductor laser array device
JP2008010710A (en) Semiconductor laser device
JP4906545B2 (en) Light emitting device and optical transmission module
JPH0412483Y2 (en)
JPH11504442A (en) Optoelectronic device having coupling between semiconductor diode laser modulator or amplifier and optical glass fiber
JPH04252082A (en) Optically coupled device
JP2616469B2 (en) Semiconductor laser module
JPH1154785A (en) Wavelength separating photodetector and optical communication module provided therewith
JPH04249382A (en) Semiconductor photodetector
GB2349740A (en) Vertical cavity surface emitting laser with monitoring diode