JPH0212559B2 - - Google Patents

Info

Publication number
JPH0212559B2
JPH0212559B2 JP8776281A JP8776281A JPH0212559B2 JP H0212559 B2 JPH0212559 B2 JP H0212559B2 JP 8776281 A JP8776281 A JP 8776281A JP 8776281 A JP8776281 A JP 8776281A JP H0212559 B2 JPH0212559 B2 JP H0212559B2
Authority
JP
Japan
Prior art keywords
histidine
resistant
fluorotryptophan
strain
thiazolealanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8776281A
Other languages
Japanese (ja)
Other versions
JPS57202297A (en
Inventor
Osamu Kurahashi
Masahiro Kamata
Hitoshi Ei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP8776281A priority Critical patent/JPS57202297A/en
Publication of JPS57202297A publication Critical patent/JPS57202297A/en
Publication of JPH0212559B2 publication Critical patent/JPH0212559B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は発酵法よるL−ヒスチジンの製造法に
関する。 従来、発酵法によるL−ヒスチジン(以下単に
ヒスチジンと略す。)の製造法としては、ブレビ
バクテリウム属に属しL−アルギニン、L−メチ
オニン等のアミノ酸を要求しかつ2−チアゾール
アラニンに耐性を有する変異株を使用する方法
(特公昭51−23593)、あるいはブレビバクテリウ
ム属に属する2−チアゾールアラニン及びサルフ
ア剤耐性変異株を使用する法(特公昭51−23594)
等が知られている。一方、パチルス属の微生物に
ついては2−チアゾールアラニン耐性変異株がヒ
スチジンを生産することが知られているが(特公
昭50−13358)、ヒスチジンの生成・蓄積量は0.1
g/dl程度に止まりブレビバクテリウム属変異株
に比べ著しく劣つていた。 本発明者等はバチルス属に属しヒスチジンを著
量蓄積する能力を有する変異株を得ることを目的
として種々研究を重ねた結果、バチルス属に属す
るヒスチジンアナログ耐性のヒスチジン生産菌に
サルフア剤耐性及び/又はトリプトフアンアナロ
グ耐性を付与した変異株の中にヒスチジンを著量
蓄積する能力を有する変異株があることを見出し
た。本発明は、この知見に基づて完成されたもの
である。 以下、本発明について説明する。 本発明で使用するヒスチジンアナログとは、バ
チルス属の微生物の生育を阻止するが、この生育
阻害が、ヒスチジンの存在で回復されるような化
学物質を言い、例えば、2−チアゾールアラニ
ン、α−メチルヒスチジン、1,2,4−トリア
ゾールアラニン、3−アミノ−1,2,4−トリ
アゾールなどがある。 又、トリプトフアンアナログは、バチルス属の
微生物の生育を阻止するが、この生育阻害がL−
トリプトフアンの存在で回復されるような化学物
質を言い、例えば、DL−5−メチルトリプトフ
アン、DL−5−フルオロトリプトフアン、DL−
4−フルオロトリプトフアン、DL−6−フルオ
ロトリプトフアン、DL−7−アザトリプトフア
ンなどがあり、更に本発明でいうサルフア剤と
は、 (1) p−アミノ安息香酸に化学構造が類似し、 (2) 微生物の生育を阻害するが、p−アミノ安息
香酸の添加により解除されるような物質とい
い、例えば、スルフアダイアジン、スルフイソ
キサゾール、スルフアメラジン、スルフアグア
ニジン、スルフアフエナゾール、スルフアメト
キシビリダジン、スルフアチアゾールなどが挙
げられる。 本発明で使用する微生物はバチルス属に属し、
ヒスチジンアナログ及びサルフア剤若しくはトリ
プトフアンアナログに耐性を有し、かつヒスチジ
ン生産能を有する微生物が使用され、例えば、バ
チルス・ズブチリス AJ 11680 FERM−
P5967、AJ11684 FERM−P 6005及び
AJ11681FERM−P5968が挙げられる。 このAJ11680はヒスチジンアナログに耐性を有
するバチルス・ズブチリス T−100FERM−
P3800(特公昭50−13358)を親株として変異誘導
操作により得られた変異株であり、2−チアゾー
ルアラニン及びサルフアグアニジンに耐性を有す
る変異株であり、AJ11684は2−チアゾールアラ
ニン耐性及び5−フルオロトリプトフアンに耐性
を有する変異株である。更にAJ11681は、
AJ11680を親株として得られた変異株で2−チア
ゾールアラニン耐性、サルフアグアニジン耐性の
他に5−フルオロトリプトフアンに耐性を有する
変異株である。 本発明の変異株は、上記のようにヒスチジンア
ナログ耐性のヒスチジン生産性の変異株を親株と
して得られる他、バチルス属の野生味にこれら薬
剤耐性を順次付与する方法によつても得ることが
できる。 変異誘導法としては、例えば、紫外線照射法あ
るいはN−メチル−N′−ニトロソ−N−ニトロ
ソグアニジン(以下NGと略す)、亜硝酸などの
化学薬剤処理による通常の方法に従えばよく、例
としてAJ11680、AJ11681の具体的な変異誘導法
を以下の実施例に示す。 実験例 ブイヨン寒天上斜面培地上に生育させたバチル
ス・ズブチリス T−100FERM−P3800の菌体
を250γ/mlのNGを含む1/30Mリン酸緩衝液
(pH7.0)に懸濁し(菌体数109/ml)、30℃に30
分間保持して変異処理を施した。次いで遠心分離
して菌体を集め、同緩衝液で洗つた後サルフアグ
アニジン又は5−フルオロトリプトフアンを
500μg/ml含有する第1表に示す最少寒天平板
培地に塗布し、30℃で3〜10日間平板培養を行つ
た。
The present invention relates to a method for producing L-histidine by fermentation. Conventionally, L-histidine (hereinafter simply referred to as histidine) has been produced by fermentation, which belongs to the genus Brevibacterium and requires amino acids such as L-arginine and L-methionine, and is resistant to 2-thiazolealanine. A method using a mutant strain (Japanese Patent Publication No. 51-23593) or a method using a 2-thiazolealanine and sulfur drug-resistant mutant strain belonging to the genus Brevibacterium (Japanese Patent Publication No. 51-23594)
etc. are known. On the other hand, it is known that 2-thiazolealanine-resistant mutant strains of microorganisms of the genus Pacillus produce histidine (Japanese Patent Publication No. 50-13358), but the amount of histidine produced and accumulated is 0.1
g/dl, which was significantly inferior to Brevibacterium mutant strains. The present inventors have conducted various studies with the aim of obtaining mutant strains belonging to the genus Bacillus that have the ability to accumulate significant amounts of histidine. We also found that among the mutant strains conferred tryptophan analog resistance, there are mutant strains that have the ability to accumulate a significant amount of histidine. The present invention was completed based on this knowledge. The present invention will be explained below. The histidine analog used in the present invention refers to a chemical substance that inhibits the growth of microorganisms belonging to the genus Bacillus, but this growth inhibition is reversed by the presence of histidine, such as 2-thiazolealanine, α-methyl Examples include histidine, 1,2,4-triazolealanine, and 3-amino-1,2,4-triazole. In addition, tryptophan analogs inhibit the growth of microorganisms of the genus Bacillus, but this growth inhibition
Refers to chemicals that are recovered in the presence of tryptophan, such as DL-5-methyltryptophan, DL-5-fluorotryptophan, DL-5-
There are 4-fluorotryptophan, DL-6-fluorotryptophan, DL-7-azatryptophan, etc., and the sulfur drugs referred to in the present invention include (1) chemical structures similar to p-aminobenzoic acid; (2) Substances that inhibit the growth of microorganisms, but are inhibited by the addition of p-aminobenzoic acid, such as sulfadiazine, sulfisoxazole, sulfamerazine, sulfaguanidine, and sulfaguanidine. Examples include fuenazole, sulfamethoxyviridazine, and sulfathiazole. The microorganism used in the present invention belongs to the genus Bacillus,
Microorganisms that are resistant to histidine analogs and sulfur drugs or tryptophan analogs and have the ability to produce histidine are used, such as Bacillus subtilis AJ 11680 FERM-
P5967, AJ11684 FERM-P 6005 and
AJ11681FERM-P5968 is mentioned. This AJ11680 is Bacillus subtilis T-100FERM- which is resistant to histidine analogs.
It is a mutant strain obtained by mutagenesis using P3800 (Special Publication No. 50-13358) as the parent strain, and is resistant to 2-thiazolealanine and sulfaguanidine, and AJ11684 is resistant to 2-thiazolealanine and 5-thiazolelanine. This is a mutant strain that is resistant to fluorotryptophan. Furthermore, AJ11681 is
This mutant strain was obtained using AJ11680 as the parent strain, and is resistant to 2-thiazolealanine, sulfaguanidine, and 5-fluorotryptophan. The mutant strain of the present invention can be obtained by using a histidine-producing mutant strain resistant to histidine analogs as a parent strain as described above, or can also be obtained by a method of sequentially imparting resistance to these drugs to wild strains of the genus Bacillus. . As a mutation induction method, for example, a conventional method using ultraviolet irradiation or treatment with a chemical agent such as N-methyl-N'-nitroso-N-nitrosoguanidine (hereinafter abbreviated as NG) or nitrous acid may be used. A specific method for inducing mutations in AJ11680 and AJ11681 is shown in the following example. Experimental example Bacillus subtilis T-100FERM-P3800 cells grown on a bouillon agar topslant medium were suspended in 1/30M phosphate buffer (pH 7.0) containing 250γ/ml NG (number of cells). 10 9 /ml), 30 at 30℃
The cells were held for a minute and subjected to mutation processing. Next, the bacterial cells were collected by centrifugation, washed with the same buffer, and then treated with sulfaguanidine or 5-fluorotryptophan.
The mixture was plated on a minimal agar plate medium containing 500 μg/ml shown in Table 1, and plated at 30° C. for 3 to 10 days.

【表】 サルフアグアニジンを含む平板上に出現したコ
ロニーの内生育の良いものを選びヒスチジン生産
能を調べたところ、いずれもヒスチジンを0.4〜
0.5g/dl蓄積し親株に比べて明らかに高い蓄積
能を示した。この内ヒスチジン生産能の最も高い
変異株AJ11680を選んだ。同様に5−フルオロト
リプトフアンを含有する平板上に出現したコロニ
ーの内からヒスチジン生産能の高い菌株AJ11684
を選んだ。次に、AJ11680を親株とて同様のNG
処理による変異操作を施し、5−フルオロトリプ
トフアンを500μg/ml含有する第1表に示す組
成の最少寒天培地に出現するコロニーを分離し
た。この内、生育の良好なものについてヒスチジ
ン生産能を調べ、特にヒスチジン生産能の高い菌
株AJ11681を分離した。 このようして得られた耐性変異株の各種薬剤に
対する耐性度を第2表に示す。
[Table] Colonies with good internal growth that appeared on a plate containing sulfaguanidine were examined for their ability to produce histidine.
It accumulated 0.5 g/dl, showing clearly higher accumulation ability than the parent strain. Among these, the mutant strain AJ11680 with the highest histidine-producing ability was selected. Similarly, among the colonies that appeared on the plate containing 5-fluorotryptophan, AJ11684, a strain with high histidine production ability, was selected.
I chose. Next, do the same NG using AJ11680 as the parent strain.
A mutation operation was performed by treatment, and colonies appearing on a minimal agar medium containing 500 μg/ml of 5-fluorotryptophan and having the composition shown in Table 1 were isolated. Among these, the histidine-producing ability of those with good growth was investigated, and strain AJ11681, which had a particularly high histidine-producing ability, was isolated. Table 2 shows the degree of resistance of the thus obtained resistant mutant strains to various drugs.

【表】 尚、第2表の生育度は、夫々の変異株の菌体を
最少培地でよく洗滌した後、2−チアゾールアラ
ニンン、サルフアアニジン又はDL−5−フルオ
ロトリプトフアンを含む最少培地に5×106/ml
宛接種し、30℃で40時間振盪培養し、得られた培
養液の562nmの吸光度を測定し得られた値で、相
対値で示されている。 これらの変異株を用いてヒスチジンを生産する
には炭素源、窒素源、無機塩類、更に必要ならば
有機微量栄養素を含有する通常の栄養培地を用い
て培養すればよく、特に困難な点はない。 炭素源としては、グルコース、糖蜜、デンプン
加水分解物などの糖類、安息香酸、酢酸、プロピ
オン酸などの有機酸、エタノール、プロパノール
などのアルコール類、更に菌を選べば、炭化水素
なども使用できる。 窒素源としては、硫安、硝安、塩安、リン安、
尿素、アンモニア水、アンモニアガスその他の通
常の窒素源を使用できる。 本発酵の条件は通気培養がよく、発酵温度は24
ないし37℃、発酵日数は通常2ないし7日であ
る。発酵開始時及び培養中のpHは5.0及至9.0がよ
く、pHの調整には、無機あるいは有機の酸性あ
るいはアルカリ性物質、更には尿素、炭酸カルシ
ウム、アンモニアガスなどを使用することができ
る。 発酵液からのヒスチジンの採取は、通常イオン
交換樹脂法、その他の公知の方を組合せることに
より行われる。 このようにして培養するとヒスチジンが培養援
中に0.5〜0.8g/dl蓄積される。この蓄積量はバ
チルス属変異株について知られている従来の蓄積
量が0.1g/dl程度であるのに比べて著しく増大
されており、本発明の方法は、バチルス属微生物
を使用するヒスチジンの工業的生産を可能ならし
めるものとして重要なものである。 尚、L−ヒスチジンの定量は、Kapeiler−
Alder反応〔Biochem Z.,264 131(1933)〕を用
いる比色法によつた。 以下実施例により本発明を具体的に説明する。 実施例 1 グルコース 10g/dl、KH2PO4 0.1g/、 NH4Cl 2.0g/dl、MgSO4・7H2O 0.04g/
dl、 KCl 0.2g/dl、Fe及びMnイオン 各2ppm CaCO3 4.0g/dl(別殺菌)を含み、pH7.0に
調節した培地を調製し、その20ml宛を500ml振盪
フラスコに分注した。殺菌後、予めブイヨンスラ
ント上で生育させた第3表中に示した各菌株をそ
れぞれ1白金耳接種し、31℃にて96時間振盪培養
した。得られた培養液中のヒスチジンの蓄積量は
第3表に示す通りであつた。
[Table] The growth rates in Table 2 are determined by washing the cells of each mutant strain thoroughly in a minimal medium, and then placing them in a minimal medium containing 2-thiazolealanine, sulfuranidine, or DL-5-fluorotryptophan. 5×10 6 /ml
The value was obtained by inoculating the culture solution with shaking at 30°C for 40 hours and measuring the absorbance at 562 nm of the resulting culture solution, and is shown as a relative value. There are no particular difficulties in producing histidine using these mutant strains, as they can be cultured using a normal nutrient medium containing carbon sources, nitrogen sources, inorganic salts, and, if necessary, organic micronutrients. . As carbon sources, sugars such as glucose, molasses, and starch hydrolysates, organic acids such as benzoic acid, acetic acid, and propionic acid, alcohols such as ethanol and propanol, and even hydrocarbons can be used if the bacteria are selected. Nitrogen sources include ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphorus,
Urea, aqueous ammonia, ammonia gas and other common sources of nitrogen can be used. The main fermentation conditions are aeration culture, and the fermentation temperature is 24℃.
to 37°C, and the number of fermentation days is usually 2 to 7 days. The pH at the start of fermentation and during cultivation is preferably 5.0 to 9.0, and inorganic or organic acidic or alkaline substances, such as urea, calcium carbonate, ammonia gas, etc., can be used to adjust the pH. Collection of histidine from the fermentation liquor is usually carried out by a combination of the ion exchange resin method and other known methods. When cultured in this manner, histidine is accumulated in the culture medium at 0.5 to 0.8 g/dl. This accumulation amount is significantly increased compared to the conventional accumulation amount of about 0.1 g/dl for mutant strains of the genus Bacillus, and the method of the present invention is suitable for the industrial production of histidine using microorganisms of the genus Bacillus. It is important as it makes possible production. In addition, the quantitative determination of L-histidine was performed using Kapeiler-
A colorimetric method using Alder reaction [Biochem Z., 264 131 (1933)] was used. The present invention will be specifically explained below using Examples. Example 1 Glucose 10g/dl, KH 2 PO 4 0.1g/, NH 4 Cl 2.0g/dl, MgSO 4・7H 2 O 0.04g/
A medium containing 0.2 g/dl of KCl, 2 ppm each of Fe and Mn ions, 4.0 g/dl of CaCO 3 (separately sterilized) and adjusted to pH 7.0 was prepared, and 20 ml of the medium was dispensed into 500 ml shaking flasks. After sterilization, one platinum loop of each of the strains shown in Table 3, which had been grown in advance on a bouillon slant, was inoculated and cultured with shaking at 31° C. for 96 hours. The amount of histidine accumulated in the obtained culture solution was as shown in Table 3.

【表】 AJ11681の培養液から遠心分離によつて菌体及
びカルシウム塩を除いて得た上清液1強酸性イ
オン交換樹脂「アンバーライト」IR−120(H+
型)に通過させヒスチジンを吸着させた。その後
3%アンモニア水で吸着したヒスチジンを溶出
し、溶出液を減圧濃縮した。濃縮液を冷却し、放
置したところヒスチジンの結晶が析出した。結晶
を乾燥し5.7gを得た。
[Table] Supernatant liquid obtained by removing bacterial cells and calcium salts from the culture solution of AJ11681 by centrifugation 1 Strongly acidic ion exchange resin "Amberlite" IR-120 (H +
type) to adsorb histidine. Thereafter, the adsorbed histidine was eluted with 3% aqueous ammonia, and the eluate was concentrated under reduced pressure. When the concentrated solution was cooled and left to stand, histidine crystals precipitated. The crystals were dried to obtain 5.7 g.

Claims (1)

【特許請求の範囲】[Claims] 1 バチルス属に属し、(1)ヒスチジンアナログ及
び(2)サルフア剤若しくはトリプトフアンアナログ
に耐性を有し、かつL−ヒスチジン生産能を有す
る微生物を液体培地中で培養してL−ヒスチジン
を生成・蓄積せしめ、これを採取することを特徴
とするL−ヒスチジンの製造法。
1 A microorganism belonging to the genus Bacillus, resistant to (1) histidine analogs and (2) sulfur drugs or tryptophan analogs, and capable of producing L-histidine is cultivated in a liquid medium to produce L-histidine. - A method for producing L-histidine, which is characterized by accumulating it and collecting it.
JP8776281A 1981-06-08 1981-06-08 Preparation of l-histidine by fermentation Granted JPS57202297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8776281A JPS57202297A (en) 1981-06-08 1981-06-08 Preparation of l-histidine by fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8776281A JPS57202297A (en) 1981-06-08 1981-06-08 Preparation of l-histidine by fermentation

Publications (2)

Publication Number Publication Date
JPS57202297A JPS57202297A (en) 1982-12-11
JPH0212559B2 true JPH0212559B2 (en) 1990-03-20

Family

ID=13923955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8776281A Granted JPS57202297A (en) 1981-06-08 1981-06-08 Preparation of l-histidine by fermentation

Country Status (1)

Country Link
JP (1) JPS57202297A (en)

Also Published As

Publication number Publication date
JPS57202297A (en) 1982-12-11

Similar Documents

Publication Publication Date Title
HU214909B (en) Process for producing l-triptophane
JPH0693839B2 (en) Method for producing L-2-amino-4- (hydroxymethylphosphinyl) butyric acid
JPH02219582A (en) Preparation of l-threonine by fermentation method
EP0128637B1 (en) Process for the production of l-tryptophan by a fermentation process
JPH0212559B2 (en)
EP0076516B1 (en) Method for fermentative production of l-proline
JP2943312B2 (en) Production method of L-lysine by fermentation method
JPH0212560B2 (en)
JPH0314436B2 (en)
JP2626993B2 (en) New method for producing L-threonine
JPS6244193A (en) Production of l-threonine by fermentation
JPH0347840B2 (en)
JPS6244192A (en) Production of l-threonine by fermentation
JPH029795B2 (en)
JPS5928398B2 (en) Method for producing L-isoleucine
JPH02295491A (en) Preparation of l-isoleucine
JPH04248988A (en) Production of l-proline by fermentation method
JPS5860995A (en) Preparation of l-proline by fermentation
JPS61199794A (en) Production of l-truptophane through fermentation process
JPH01108993A (en) Production of l-homoserine by fermentation method
JPS61128896A (en) Production of l-tyrosine by fermentation method
JPS63254990A (en) Production of l-threonine by fermentation method
JPS5971698A (en) Preparation of l-phenylalanine by fermentation
JPH0211237B2 (en)
JPS6251998A (en) Production of l-isoleucine