JPH02125482A - Laser frequency stabilizer - Google Patents

Laser frequency stabilizer

Info

Publication number
JPH02125482A
JPH02125482A JP27861788A JP27861788A JPH02125482A JP H02125482 A JPH02125482 A JP H02125482A JP 27861788 A JP27861788 A JP 27861788A JP 27861788 A JP27861788 A JP 27861788A JP H02125482 A JPH02125482 A JP H02125482A
Authority
JP
Japan
Prior art keywords
frequency
laser
light
output
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27861788A
Other languages
Japanese (ja)
Inventor
Kenji Kudome
賢治 久留
Masami Kihara
雅巳 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP27861788A priority Critical patent/JPH02125482A/en
Publication of JPH02125482A publication Critical patent/JPH02125482A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Abstract

PURPOSE:To provide high frequency stability by injecting all or part of harmonics to an injection synchronous oscillator to generate a light synchronized in phase, inputting it to a light frequency reference, and stabilizing the frequency of a laser. CONSTITUTION:Part of a light radiated from a long wavelength band semiconductor laser 1 (1.56mum of wavelength) is converted to harmonic (0.78mum of wavelength) by a second harmonic wave generator 7 using a nonlinear optical crystal such as KDP, etc. This harmonic wave is injected to a short wavelength band semiconductor laser 9. Part of the output is incident to rubidium cell 8 to saturate the absorption of the other of the output of the laser 9. When the injected current of the laser 1 is modulated by an optical modulation oscillator 5, the absorbed light of the cell 8 is modulated. The frequency of the laser 1 is controlled by an injecting current controller 6 on the basis of the output synchronously detected by a synchronous detector 4, the frequency of the laser 1 can be stabilized to double of the resonance frequency of the rubidium atom.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高い周波数安定度を有するレーザ光源を実現す
るための、レーザ周波数安定化装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser frequency stabilizing device for realizing a laser light source with high frequency stability.

〔従来の技術・発明が解決しようとする課題〕近年、半
導体レーザのスペクトル純度や周波数回変度の向上に伴
い、光波通信システムや各種のコヒーレント光ファイバ
計測装置の研究開発が盛んに行われている。これらを構
築する際には、長波長帯(1,3〜1.6ui)におい
て高い周波数安定度を有する周波数基準となるレーザ光
源が必要である。
[Problems to be solved by conventional technology/inventions] In recent years, as the spectral purity and frequency variation of semiconductor lasers have improved, research and development of light wave communication systems and various coherent optical fiber measurement devices have been actively conducted. There is. When constructing these, a laser light source serving as a frequency reference having high frequency stability in a long wavelength band (1.3 to 1.6 ui) is required.

第2図に従来の長波長帯半導体レーザを用いたレーザ周
波数安定化装置の構成を示す。長波長帯半導体レーザl
から放射された光の一部を分子セル2に入射する。・長
波長帯半導体レーザlの周波数が分子セル2に封入され
ている分子の共鳴周波数に一致しているならば、分子セ
ル2に入射された光は吸収される。ここで、長波長帯半
導体レーザ1の注入電流を光変調用発振器5を用いて変
調すると、長波長帯半導体レーザlの周波数は変調され
るので、分子セル2における吸収光量も変調を受ける。
FIG. 2 shows the configuration of a laser frequency stabilizing device using a conventional long wavelength band semiconductor laser. Long wavelength semiconductor laser
A part of the light emitted from the cell enters the molecular cell 2. - If the frequency of the long wavelength band semiconductor laser l matches the resonance frequency of the molecules sealed in the molecular cell 2, the light incident on the molecular cell 2 will be absorbed. Here, when the injection current of the long wavelength band semiconductor laser 1 is modulated using the optical modulation oscillator 5, the frequency of the long wavelength band semiconductor laser 1 is modulated, and therefore the amount of light absorbed by the molecular cell 2 is also modulated.

分子セル2の透過光は光検出器3で電気信号に変換され
た後、光変調用発振器5の出力を参照信号として同期検
波器4で同期検波される。
The transmitted light of the molecular cell 2 is converted into an electrical signal by a photodetector 3, and then synchronously detected by a synchronous detector 4 using the output of an optical modulation oscillator 5 as a reference signal.

この時、同期検波器4の出力は長波長帯半導体レーザ1
の周波数と分子セル2に封入されている分子の共鳴周波
数の差に比例する。この同期検波器4の出力に基づいて
、注入電流制御器6が長波長帯半導体レーザlの周波数
を制御することにより、長波長帯半導体レーザlの周波
数を分子セル2に封入されている分子の共鳴周波数に安
定化することができる。
At this time, the output of the synchronous detector 4 is the output of the long wavelength band semiconductor laser 1.
It is proportional to the difference between the frequency of and the resonance frequency of the molecules sealed in the molecular cell 2. Based on the output of the synchronous detector 4, the injection current controller 6 controls the frequency of the long-wavelength semiconductor laser l, thereby changing the frequency of the long-wavelength semiconductor laser l to the frequency of the molecules sealed in the molecular cell 2. It can be stabilized to a resonant frequency.

一般に、光周波数基準として用いる分子若しくは原子の
吸収スペクトルの線幅が狭いほど、その光周波数基準の
周波数弁別感度が大きくなり、周波数安定度は向上する
。また、分子若しくは原子の遷移確率の値はその分子若
しくは原子の振動子強度と入射光子束の積に比例するの
で、移動子強度の大きい分子若しくは原子を用いれば、
吸収光量が増大して、共鳴信号のSN比が大きくなり周
波数安定度が向上する。
Generally, the narrower the linewidth of the absorption spectrum of a molecule or atom used as an optical frequency standard, the greater the frequency discrimination sensitivity of the optical frequency standard and the better the frequency stability. Furthermore, since the value of the transition probability of a molecule or atom is proportional to the product of the oscillator strength of that molecule or atom and the incident photon flux, if a molecule or atom with a large oscillator strength is used,
The amount of absorbed light increases, the SN ratio of the resonance signal increases, and the frequency stability improves.

長波長帯における吸収媒質としては通常アンモニア分子
等が用いられる。しかし、アンモニア分子等は振動子強
度があまり大きくなく、吸収スペクトルはドプラ広がり
を有しているので、あまり高い周波数安定度は得られな
い。
Ammonia molecules or the like are usually used as the absorption medium in the long wavelength band. However, since the oscillator strength of ammonia molecules and the like is not very large and the absorption spectrum has a Doppler spread, very high frequency stability cannot be obtained.

これに対し、ルビジウムやセシウム等のアルカリ金属原
子は振動子強度が大きく、また飽和吸収や原子ビーム等
の方法を使えば、ドプラ広がりのない吸収スペクトルが
得られる。しかし、ルビジウムは0.78μ肩、セシウ
ムは0.85itx付近に吸収線を有しているので、そ
のままでは長波長帯におけるレーザ周波数安定化装置に
は使えない。
On the other hand, alkali metal atoms such as rubidium and cesium have high oscillator strength, and if methods such as saturated absorption and atomic beams are used, an absorption spectrum without Doppler broadening can be obtained. However, since rubidium has an absorption line near 0.78μ and cesium has an absorption line near 0.85itx, they cannot be used as they are for a laser frequency stabilization device in a long wavelength band.

そこで、第3図に示すようなレーザ周波数安定化装置が
考えられる。長波長帯半導体レーザ1 (波長1.56
μm)から放射された光の一部をKDP等の非線形光学
結晶を用いた第2高調波発生器7で高調波(波長0.7
8μ、w)に変換する。この高調波はルビジウムセル8
に入射される。高調波の周波数がルビジウム原子の共鳴
周波数に一致しているならば、ルビジウムセル8に入射
された高調波は吸収される。ここで、長波長帯半導体レ
ーザIの注入電流を光変調用発振器5を用いて変調する
と、長波長帯半導体レーザ1の周波数は変調されるので
、ルビジウムセル8における吸収光量も変調を受ける。
Therefore, a laser frequency stabilizing device as shown in FIG. 3 can be considered. Long wavelength band semiconductor laser 1 (wavelength 1.56
A part of the light emitted from the wavelength of
8μ, w). This harmonic is the rubidium cell 8
is incident on the If the frequency of the harmonics matches the resonance frequency of rubidium atoms, the harmonics incident on the rubidium cell 8 will be absorbed. Here, when the injection current of the long wavelength band semiconductor laser I is modulated using the optical modulation oscillator 5, the frequency of the long wavelength band semiconductor laser 1 is modulated, so the amount of light absorbed by the rubidium cell 8 is also modulated.

ルビジウムセル8の透過光は光検出器3で電気信号に変
換された後、光変調用発振器5の出力を参照信号として
同期検波器4で同期検波される。この時、同期検波器4
の出力は長波長帯半導体レーザlの周波数とルビジウム
原子の共鳴周波数÷2の差に比例する。この同期検波器
4の出力に基づいて、注入電流制御器6が長波長帯半導
体レーザlの周波数を制御することにより、長波長帯半
導体レーザlの周波数をルビジウム原子の共鳴周波数の
2倍に安定化することができる。
The transmitted light of the rubidium cell 8 is converted into an electric signal by the photodetector 3, and then synchronously detected by the synchronous detector 4 using the output of the optical modulation oscillator 5 as a reference signal. At this time, the synchronous detector 4
The output of is proportional to the difference between the frequency of the long wavelength band semiconductor laser l and the resonance frequency of rubidium atoms divided by 2. Based on the output of the synchronous detector 4, the injection current controller 6 controls the frequency of the long wavelength semiconductor laser l, thereby stabilizing the frequency of the long wavelength semiconductor laser l to twice the resonance frequency of rubidium atoms. can be converted into

しかしながら、現在の非線形光学結晶は非線形感受率が
小さいので、高調波への変換効率も非常に低い。従って
、ルビジウム原子の振動子強度は大きいのにもかかわら
ず、入射光子束が小さいので共鳴信号のSN比も小さく
、あまり高い周波数安定度は得られない。
However, since current nonlinear optical crystals have low nonlinear susceptibility, their conversion efficiency to harmonics is also very low. Therefore, although the oscillator strength of rubidium atoms is large, the incident photon flux is small, so the S/N ratio of the resonance signal is also small, and very high frequency stability cannot be obtained.

本発明は従来の非線形光学結晶とアルカリ金属原子を用
いたレーザ周波数安定化装置における上記の問題を解決
し、1.5ux帯において高い周波数安定度を有するレ
ーザ周波数安定化装置を実現することを目的とする。
The present invention aims to solve the above-mentioned problems in conventional laser frequency stabilization devices using nonlinear optical crystals and alkali metal atoms, and to realize a laser frequency stabilization device that has high frequency stability in the 1.5 ux band. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、レーザと、前記レーザの出力光から高調波を
発生させる光高調波発生手段と、前記光高調波発生手段
の出力に位相同期した光を発生させる注入同期発振器と
、光周波数基準と、レーザ周波数制御手段とを有し、前
記レーザの出力光の一部を、前記光高調波発生手段に入
射して高調波を発生させ、前記高調波の全部若しくは一
部を前記注入同期発振器に注入して前記高調波に位相同
期した光を発生させ、前記高調波に位相同期した光の全
部若しくは一部を前記光周波数基準に入力し、前記光周
波数基準の出力に基づいて前記レーザ周波数制御手段に
より前記レーザの周波数を安定化することを特徴とする
ものである。
The present invention provides a laser, an optical harmonic generation means for generating harmonics from the output light of the laser, an injection-locked oscillator for generating light phase-locked with the output of the optical harmonic generation means, and an optical frequency standard. , a laser frequency control means, a part of the output light of the laser is incident on the optical harmonic generation means to generate harmonics, and all or a part of the harmonics are sent to the injection-locked oscillator. generating light that is phase-locked to the harmonic, inputting all or part of the light that is phase-locked to the harmonic to the optical frequency reference, and controlling the laser frequency based on the output of the optical frequency reference. The invention is characterized in that the frequency of the laser is stabilized by means.

本発明では、短波長帯半導体レーザを注入同期発振器と
して長波長帯半導体レーザの第2高調波をその周波数・
位相に忠実に増幅した後、例えばアルカリ金属蒸気のセ
ルを使って周波数安定化を行う。セルに入射される光強
度は十分大きいので、共鳴信号検出の際のSN比が非常
に大きくなる。
In the present invention, a short wavelength semiconductor laser is used as an injection-locked oscillator, and the second harmonic of a long wavelength semiconductor laser is
After faithfully amplifying the phase, frequency stabilization is performed using, for example, an alkali metal vapor cell. Since the intensity of the light incident on the cell is sufficiently high, the S/N ratio when detecting the resonance signal becomes very large.

また、飽和吸収法を用いることも可能であるので、非常
に高い周波数安定度が得られる。
Furthermore, since it is also possible to use the saturation absorption method, very high frequency stability can be obtained.

〔実施例〕〔Example〕

第1図に請求範囲で述べたレーザ周波数安定化装置の構
成例を示す。長波長帯半導体レーザ1 (波長1.56
μ肩、請求範囲におけるレーザ)から放射された光の一
部をKDP等の非線形光学結晶を用いた第2高調波発生
器7(請求範囲における光高調波発生手段)で高調波(
波長0.78μR)に変換する。この高調波を短波長帯
半導体レーザ9(波長0.78μ肩、請求範囲における
注入同期発振器)に注入する。高調波の周波数と短波長
帯半導体レーザ9の自走周波数が十分近いならば、短波
長帯半導体レーザ9は高調波に位相同期して発振する。
FIG. 1 shows an example of the configuration of the laser frequency stabilizing device described in the claims. Long wavelength band semiconductor laser 1 (wavelength 1.56
A part of the light emitted from the μ shoulder (laser in the claims) is converted into harmonics (
wavelength 0.78 μR). This harmonic is injected into a short wavelength band semiconductor laser 9 (wavelength: 0.78 μm shoulder, injection-locked oscillator in the claims). If the frequency of the harmonic and the free-running frequency of the short wavelength semiconductor laser 9 are sufficiently close, the short wavelength semiconductor laser 9 oscillates in phase synchronization with the harmonic.

この短波長帯半導体レーザ9の周波数は高調波の周波数
と同一で、かつその強度は高調波よりはるかに大きい。
The frequency of this short wavelength band semiconductor laser 9 is the same as the frequency of the harmonic, and its intensity is much greater than that of the harmonic.

この短波長帯半導体レーザ9の出力の一部(飽和光)を
ルビジウムセル8(請求範囲における光周波数基準)に
入射して、短波長帯半導体レーザ9の出力の他方(プロ
ーブ光)に対する吸収を飽和させる。即ち、短波長帯半
導体レーザの周波数がルビジウム原子の共鳴周波数に十
分近い(自然幅程度)ならば、プローブ光に対する吸収
光量が減少する。ここで、長波長帯半導体レーザ1の注
入電流を光変調用発振器5を用いて変調すると、長波長
帯半導体レーザ1の周波数は変調されるので、ルビジウ
ムセル8における吸収光量も変調を受ける。ルビジウム
セルを透過したプローブ光は光検出器3で電気信号に変
換された後、光変調用発振器5の出力を参照信号として
同期検波器4で同期検波される。この時、同期検波器4
の出力は長波長帯半導体レーザlの周波数とルビジウム
原子の共鳴周波数÷2の差に比例する。この同期検波器
4の出力に基づいて、注入電流制御器6(請求範囲にお
けるレーザ周波数制御手段)が長波長帯半導体レーザl
の周波数を制御することにより、長波長帯半導体レーザ
lの周波数をルビジウム原子の共鳴周波数の2倍に安定
化することができる。
A part of the output of the short wavelength semiconductor laser 9 (saturated light) is incident on the rubidium cell 8 (optical frequency reference in the claims) to absorb the other output of the short wavelength semiconductor laser 9 (probe light). saturate. That is, if the frequency of the short wavelength band semiconductor laser is sufficiently close to the resonance frequency of rubidium atoms (about the natural width), the amount of light absorbed by the probe light is reduced. Here, when the injection current of the long wavelength band semiconductor laser 1 is modulated using the optical modulation oscillator 5, the frequency of the long wavelength band semiconductor laser 1 is modulated, so the amount of light absorbed by the rubidium cell 8 is also modulated. The probe light transmitted through the rubidium cell is converted into an electric signal by a photodetector 3, and then synchronously detected by a synchronous detector 4 using the output of an optical modulation oscillator 5 as a reference signal. At this time, the synchronous detector 4
The output of is proportional to the difference between the frequency of the long wavelength band semiconductor laser l and the resonance frequency of rubidium atoms divided by 2. Based on the output of the synchronous detector 4, the injection current controller 6 (laser frequency control means in the claims) controls the long wavelength band semiconductor laser l.
By controlling the frequency of the long-wavelength semiconductor laser l, it is possible to stabilize the frequency of the long-wavelength semiconductor laser l to twice the resonance frequency of the rubidium atom.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光周波数基準に入射させる光強度が十
分大きいので、共鳴信号検出の際のSN比か大きく、高
い周波数安定度が得られる。したがって、本発明は、光
波通信システムやコヒーレント光ファイバ計測装置を構
築する際の、光周波数標準器として利用することができ
る。
According to the present invention, since the intensity of the light incident on the optical frequency reference is sufficiently large, the S/N ratio during resonance signal detection is large and high frequency stability can be obtained. Therefore, the present invention can be used as an optical frequency standard when constructing a light wave communication system or a coherent optical fiber measurement device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例として示したレーザ周波数安
定化装置のブロック図、第2図は分子セルを用いた従来
のレーザ周波数安定化装置のブロック図、第3図は非線
形光学結晶とルビジウムセルを用いた従来のレーザ周波
数安定化装置のブロック図である。 ■・・・・・・レーザ(長波長帯半導体レーザ)、3・
・・・・・光検出器、 4・・・・・・同期検波器、 5・・・・・・光変調用発振器、 6・・・・・・レーザ周波数制御手段(注入電流制御器
)7・・・・・・光高調波発生手段(第2高調波発生器
)、8・・・・・・光周波数基準(ルビジウムセル)、
9・・・・・・注入同期発振器(短波長帯半導体レーザ
)出願人  日本電信電話株式会社 代理人  弁理士 志 賀 正武
Fig. 1 is a block diagram of a laser frequency stabilizing device shown as an embodiment of the present invention, Fig. 2 is a block diagram of a conventional laser frequency stabilizing device using molecular cells, and Fig. 3 is a block diagram of a conventional laser frequency stabilizing device using a molecular cell. FIG. 1 is a block diagram of a conventional laser frequency stabilization device using rubidium cells. ■・・・Laser (long wavelength band semiconductor laser), 3.
. . . Photodetector, 4 . . . Synchronous detector, 5 . . . Optical modulation oscillator, 6 . . . Laser frequency control means (injection current controller) 7 ...... Optical harmonic generation means (second harmonic generator), 8... Optical frequency reference (ruvidium cell),
9... Injection-locked oscillator (short wavelength semiconductor laser) Applicant Nippon Telegraph and Telephone Corporation Agent Patent attorney Masatake Shiga

Claims (1)

【特許請求の範囲】 レーザと、 前記レーザの出力光から高調波を発生させる光高調波発
生手段と、 前記光高調波発生手段の出力に位相同期した光を発生さ
せる注入同期発振器と、 光周波数基準と、 レーザ周波数制御手段とを有し、 前記レーザの出力光の一部を、前記光高調波発生手段に
入射して高調波を発生させ、 前記高調波の全部若しくは一部を前記注入同期発振器に
注入して前記高調波に位相同期した光を発生させ、 前記高調波に位相同期した光の全部若しくは一部を前記
光周波数基準に入力し、 前記光周波数基準の出力に基づいて前記レーザ周波数制
御手段により前記レーザの周波数を安定化すること を特徴とするレーザ周波数安定化装置。
[Scope of Claims] A laser, an optical harmonic generation means for generating harmonics from the output light of the laser, an injection-locked oscillator for generating light phase-locked with the output of the optical harmonic generation means, and an optical frequency. a reference, and a laser frequency control means, a part of the output light of the laser is incident on the optical harmonic generation means to generate harmonics, and all or a part of the harmonics are transferred to the injection locking means. injecting it into an oscillator to generate light that is phase-locked to the harmonic, inputting all or part of the light that is phase-locked to the harmonic to the optical frequency reference, and controlling the laser based on the output of the optical frequency reference. A laser frequency stabilizing device, characterized in that the frequency of the laser is stabilized by a frequency control means.
JP27861788A 1988-11-04 1988-11-04 Laser frequency stabilizer Pending JPH02125482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27861788A JPH02125482A (en) 1988-11-04 1988-11-04 Laser frequency stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27861788A JPH02125482A (en) 1988-11-04 1988-11-04 Laser frequency stabilizer

Publications (1)

Publication Number Publication Date
JPH02125482A true JPH02125482A (en) 1990-05-14

Family

ID=17599776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27861788A Pending JPH02125482A (en) 1988-11-04 1988-11-04 Laser frequency stabilizer

Country Status (1)

Country Link
JP (1) JPH02125482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238885A (en) * 1990-02-15 1991-10-24 Nec Corp Laser apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238885A (en) * 1990-02-15 1991-10-24 Nec Corp Laser apparatus

Similar Documents

Publication Publication Date Title
US10340658B1 (en) Laser system for atomic clocks and sensors
US6333942B1 (en) Atomic frequency standard laser pulse oscillator
US5027360A (en) High power continuous wave injection-locked solid state laser
EP0411131B1 (en) Wavelength stabilized source of light
JP3772650B2 (en) Method and apparatus for driving mode-locked semiconductor laser
Helkey et al. Millimeter‐wave signal generation using semiconductor diode lasers
JPH11317567A (en) Laser beam generating method and device
JPH02125482A (en) Laser frequency stabilizer
JP3092757B2 (en) Optical pulse laser frequency division synchronization signal generator
JPH0216784A (en) Photofrequency standard device
JP2018101877A (en) Atomic oscillator and electronic device
Kobayashi et al. Laser pulse timing synchronization to an electron bunch for Compton scattering
JP2995854B2 (en) Semiconductor laser oscillator
JP3055735B2 (en) Passive mode-locked semiconductor laser device
JP2567897B2 (en) Semiconductor laser device
Abrams et al. Stark-induced three-wave mixing in molecular gases-Part II: Experiment
JP2997557B2 (en) Frequency stabilized light source with narrow linewidth oscillation frequency spectrum
Huang et al. All-optical high performance microwave oscillator with enhanced modulation efficiency based on SOAs
JP2555660B2 (en) Frequency standard
Kwon et al. All-Fiber Photonic, Ultralow-Noise, Robust Optical and Microwave Signal Generators for FELs and UED
JPS6377180A (en) Semiconductor laser wavelength stabilizer
JPH0756516Y2 (en) Frequency standard
Hedekvist et al. Harmonic generation of photonic microwave frequencies utilizing the properties of a phase modulator
JP2876498B2 (en) High-precision near-infrared reference light frequency generation method
JPH05275788A (en) Frequency-stabilized semiconductor laser