JPH02125410A - Electrolyte for electrolytic capacitor - Google Patents

Electrolyte for electrolytic capacitor

Info

Publication number
JPH02125410A
JPH02125410A JP27739288A JP27739288A JPH02125410A JP H02125410 A JPH02125410 A JP H02125410A JP 27739288 A JP27739288 A JP 27739288A JP 27739288 A JP27739288 A JP 27739288A JP H02125410 A JPH02125410 A JP H02125410A
Authority
JP
Japan
Prior art keywords
solvent
electrolytic
electrolyte
group
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27739288A
Other languages
Japanese (ja)
Inventor
Makoto Shimizu
誠 清水
Tetsuya Koseki
小関 哲哉
Yutaka Yokoyama
豊 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP27739288A priority Critical patent/JPH02125410A/en
Publication of JPH02125410A publication Critical patent/JPH02125410A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase an available temperature range by employing 1,6- or 2,5-decanedicarboxylic acid in anionic part as nonproton solvent containing no water in electrolyte for driving an aluminum electrolytic capacitor, and dissolving salt made of cationic part selected from a specific group. CONSTITUTION:A cationic part is selected from a group consisting of spirobycyclic ammonium such as 1,1'-spirobipyrrolizinium (1=m=4); N-N- dialkyltetrahydroxazinium such as N-N-ethylmethylmorphonium; 1-azabicyclo[r,l, g]alkanium such as N-methylpyrrolizinium (q=0,l=r=3), and an anionic part is desirably dissolved with salt formed as 1,6-or 2,5-decanedicarboxylic acid in such a manner that its concentration is 0.5-30wt.%. When nonproton solvent such as N,N-dimethylformamide, gamma-butylolactone, etc., is employed as main solvent, and ethyleneglycol, ethyl cellosolve, etc., is employed as sub solvent, excellent electrolyte for an electrolytic capacitor is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電解コンデンサ用電解液の改良に関し、更に
詳しくは、独特の構造の化合物を電解液に溶解させるこ
とにより、使用温度範囲の拡大を図ることができる電解
コンデンサの改良に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to improvement of an electrolytic solution for electrolytic capacitors, and more specifically, to expanding the operating temperature range by dissolving a compound with a unique structure in the electrolytic solution. The present invention relates to an improvement of an electrolytic capacitor that can achieve the following.

[従来の技術] 電解コンデンサは、小形、大容量、安価で、整流出力の
平滑化等に優れた特性を示し各種電気・電子機器の重要
な構成要素の一つであり、一般に表面を電解酸化によっ
て酸化被膜に変えたアルミニウムフィルムを陽極とし、
この酸化被膜を誘電体とし集電陰極との間に電解液を介
在させて作成される。
[Prior art] Electrolytic capacitors are small, large-capacity, inexpensive, and have excellent properties such as smoothing rectified output, and are one of the important components of various electrical and electronic devices. The aluminum film, which has been changed into an oxide film, is used as an anode.
This oxide film is used as a dielectric and an electrolytic solution is interposed between it and the current collecting cathode.

電解コンデンサは、使用中に化学反応を行わせながら常
に誘電体酸化被膜を再生しつつ使用するものであるため
、表面を酸化被膜としたアルミニウム電極と電解液との
間で起こる化学反応の定常状態を維持し、誘を体とする
アルミニウム酸化被膜を良好に保持することが性能の安
定化に重要である。
Electrolytic capacitors are used while constantly regenerating the dielectric oxide film while undergoing chemical reactions during use, so the steady state of the chemical reaction that occurs between the aluminum electrode with an oxide film on the surface and the electrolyte. It is important to maintain the aluminum oxide film that serves as a dielectric in order to stabilize the performance.

電解コンデンサの使用中に進行する化学反応において、
電解液はイオンの移動の媒体たるイオン伝導体を形成す
る。電解液とtiとの界面では電極反応の進行によって
電荷が移動し、陽極面では酸化反応が、陰極面では還元
反応が進行し、それと共にイオン伝導体たる電解液の中
をイオンが移動して電流が流れる。したがって、電解液
の電気伝導度の逆数である比抵抗は、電解コンデンサの
使用中に進行する化学反応におけるイオン伝導体たる電
解液の特性を反映する。
In the chemical reactions that occur during the use of electrolytic capacitors,
The electrolyte forms an ionic conductor that is a medium for the movement of ions. Charges move at the interface between the electrolyte and Ti as the electrode reaction progresses, an oxidation reaction progresses at the anode surface, and a reduction reaction progresses at the cathode surface, and at the same time, ions move through the electrolyte, which is an ionic conductor. Current flows. Therefore, the specific resistance, which is the reciprocal of the electrical conductivity of the electrolyte, reflects the properties of the electrolyte as an ionic conductor in the chemical reactions that occur during use of the electrolytic capacitor.

コンデンサの負荷電圧が上昇し高電圧負荷による誘電体
の物性変化が進行し時間的な誘電率の変化が生じる結果
電気化学的状態が動揺する現象をシンチレーションとい
うが、このような現象が認められる電圧をシンチレーシ
ョン電圧(火花電圧)としてコンデンサの耐電圧性の尺
度とすることができ、シンチレーション電圧(火花電圧
)が高い程コンデンサの耐電圧性が大きいことを示す、
火花電圧は、簡便には、適当な大きさの未化成アルミニ
ウム箔を測定しようとする電解液に浸した状態で、最終
コンデンサ製品まで組み上げることなく測定することが
できる。
Scintillation is a phenomenon in which the electrochemical state fluctuates as a result of a change in the physical properties of the dielectric due to the high voltage load that occurs when the load voltage of the capacitor increases, resulting in a temporal change in dielectric constant.The voltage at which this phenomenon is observed is The scintillation voltage (spark voltage) can be used as a measure of the voltage resistance of the capacitor, and the higher the scintillation voltage (spark voltage), the greater the voltage resistance of the capacitor.
The spark voltage can be conveniently measured without assembling a final capacitor product by immersing an unformed aluminum foil of an appropriate size in the electrolyte to be measured.

コンデンサの静電容量は誘電体の誘電率に比例するため
、高い誘電率の誘電体を用い使用中は誘電体の物理化学
的変化を避は誘電率を高く維持すべきである。充電電流
の位相と外部電界の位相との差である損失角の正接すな
わち誘電正接はコンデンサの消費電力の目安として用い
られ、その値が小さければ消費電力が少ないこを示すが
、一般に、温度および周波数の変化に高く依存し、一定
周波数の場合、高温側では常温の値と比較して例えば1
00℃前後でもそれほど変化しないにも拘らず、低温側
では温度低下と共に幾何級数的に増大し、例えば、−2
0℃前後では常温の4〜5倍、−50℃前後では常温の
約100倍になる。コンデンサのインピーダンスと抵抗
との差は静電容量に反比例するため静電容量が減少する
とインピーダンスは増加する。充電開始後一定値に達し
た時に流れる電流である漏れ電流は誘電体の荷電担体の
定常的な移動によるもので、・誘電体中の不純物の解離
等によって生じたイオンが荷電担体の主体をなすと考え
られており、漏れ電流の変化の大小は誘電体の電気化学
的状態の安定性を反映する。
Since the capacitance of a capacitor is proportional to the dielectric constant of the dielectric material, it is necessary to use a dielectric material with a high dielectric constant and maintain the dielectric constant high while avoiding physical and chemical changes in the dielectric material during use. The loss angle tangent, or dielectric loss tangent, which is the difference between the phase of the charging current and the phase of the external electric field, is used as a guideline for the power consumption of a capacitor, and a small value indicates low power consumption. It is highly dependent on changes in frequency, and for a constant frequency, for example, 1 on the high temperature side compared to the value at room temperature.
Although it does not change much even around 00℃, it increases geometrically as the temperature decreases on the low temperature side, for example, -2
At around 0°C, it becomes 4 to 5 times the normal temperature, and at around -50°C, it becomes about 100 times the normal temperature. The difference between the impedance and resistance of a capacitor is inversely proportional to capacitance, so as capacitance decreases, impedance increases. Leakage current, which is the current that flows when a certain value is reached after the start of charging, is due to the steady movement of charge carriers in the dielectric, and the charge carriers are mainly ions generated by dissociation of impurities in the dielectric. It is believed that the magnitude of change in leakage current reflects the stability of the electrochemical state of the dielectric.

電解コンデンサの外観不良は所定の化学反応以外の不都
合な化学反応の進行によるガス発生が主たる原因であり
、化学反応速度は温度に依存するため低温側ではそれほ
ど問題にならないことが多いが高温側では急速に進行し
爆発の危険を伴うこともあるためコンデンサの総合性能
を評価する重要な指標の1つである。
The main cause of poor appearance of electrolytic capacitors is the generation of gas due to the progress of unfavorable chemical reactions other than the specified chemical reactions.Since the rate of chemical reactions depends on temperature, it is often not a problem at low temperatures, but at high temperatures. This is one of the important indicators for evaluating the overall performance of a capacitor, as it progresses rapidly and may involve the risk of explosion.

従来の電解コンデンサには、エチレングリコールに五ホ
ウ酸アンモニウムを溶解したものが広く使用されていた
が、この種の電解コンデンサは、静電容量、誘電正接、
インピーダンス等に反映されるコンデンサの特性が特に
低温側で著しく低下するという欠点があった0、tな、
例えば、米国特許節3,546,119号に開示された
電解コンデンサ用電解液は、非プロトン溶媒であるγ−
ブチロラクトンを主溶媒としこれに副溶媒としてエチレ
ングリコールを添加した溶媒に、ホウ酸とトリーn−ブ
チルアミンとを溶解させたものであるが、これを用いる
電解コンデンサでは低温特性はかなり良好なものの、1
30℃でのライフ特性が悪く高温安定性に大きく欠け、
コンデンサの特性を広い温度範囲で一定に維持できずこ
れらの解決が望まれていた。
Conventional electrolytic capacitors have widely used ammonium pentaborate dissolved in ethylene glycol.
0, t, etc., which had the disadvantage that the characteristics of the capacitor reflected in impedance etc. deteriorate significantly especially at low temperatures.
For example, the electrolyte for electrolytic capacitors disclosed in U.S. Pat. No. 3,546,119 uses γ-
Boric acid and tri-n-butylamine are dissolved in a solvent in which butyrolactone is the main solvent and ethylene glycol is added as a subsolvent.Although electrolytic capacitors using this have fairly good low-temperature characteristics,
Poor life characteristics at 30°C, greatly lacking in high temperature stability,
The characteristics of capacitors cannot be maintained constant over a wide temperature range, and a solution to these problems has been desired.

[発明が解決しようとする課題] 本発明は、広い使用温度範囲で安定した特性を示す電解
コンデンサの中高圧用電解液を提供することを目自勺と
する。
[Problems to be Solved by the Invention] The aim of the present invention is to provide an electrolytic solution for medium and high voltages of electrolytic capacitors that exhibits stable characteristics over a wide operating temperature range.

[課題を解決するための手段] 本発明によれば、アルミニウム電解コンデンサ駆動用の
電解液において、主溶媒が非プロトン溶媒であって実質
的に水を含有しない溶媒に、陰イオン部分を1.6−デ
カンジカルボンaまなは2.5−デカンジカルボン酸と
し、陽イオン部分をスピロ二環性アンモニウム、N、N
−ジアルキルテトラヒドロオキサジニウム、並びに1−
アザビシクロ[r、1.qlアルカニウムよりなる群か
ら選択して構成する塩を溶解させてなることを特徴とす
る中高圧用電解コンデンサ用電解液が提供される。
[Means for Solving the Problems] According to the present invention, in an electrolytic solution for driving an aluminum electrolytic capacitor, the main solvent is an aprotic solvent and does not substantially contain water, and an anion moiety is added to the solvent by 1. 6-decanedicarboxylic acid is 2,5-decanedicarboxylic acid, and the cation moiety is spirobicyclic ammonium, N, N
-dialkyltetrahydroxazinium, and 1-
Azabicyclo [r, 1. There is provided an electrolytic solution for medium and high voltage electrolytic capacitors, which is characterized by dissolving a salt selected from the group consisting of ql alkanium.

本発明のスビロ二環性アンモニウムは次の一般式で表す
ことができる: (式中、 nは4〜8の整数、 mは3〜6の整数 である) 本発明のスピロ二環性アンモニウムには、例 えば、 次のような分子種が包含される: 一スピロビビロリジニウム 1=m= 一スピロビピペリジニウム =m= スピロ[ピペリジン1.1−一ピロリジニウム](l=
4、m=5)、 スピロ[アゼチジン−1,1−一ピベリジニウム] (
1=5、m=3)。
The spirobicyclic ammonium of the present invention can be represented by the following general formula: (wherein n is an integer of 4 to 8, m is an integer of 3 to 6) includes, for example, the following molecular species: one spirobivirolidinium 1=m= one spirobipiperidinium=m= spiro[piperidine 1.1-one pyrrolidinium] (l=
4, m=5), spiro[azetidine-1,1-piveridinium] (
1=5, m=3).

本発明のN、N−ジアルキルテトラヒドロオキサジニウ
ムは次の一般式で表すことができる:[式中、R1およ
びR2はアルキル基C,H2゜++(p=1〜6)であ
って同一であっても異りていてもよく、R3およびR4
は水素原子またはアルコキシ基であり、s+t=4、s
=2〜4、t=2〜0である]。
The N,N-dialkyltetrahydroxazinium of the present invention can be represented by the following general formula: [wherein R1 and R2 are alkyl groups C, H2°++ (p=1 to 6) and are the same. R3 and R4 may be present or different;
is a hydrogen atom or an alkoxy group, s+t=4, s
= 2 to 4, t = 2 to 0].

本発明のN、N−ジアルキルテトラヒドロオキサジニウ
ムには、例えば、次のような分子種が包含される: N。
The N,N-dialkyltetrahydroxazinium of the present invention includes, for example, the following molecular species: N.

N−エチルメチルモルポリニウム、 N、N−ジメチルテトラヒドロ−1,3−オキサジニウ
ム、 N。
N-ethylmethylmorporinium, N,N-dimethyltetrahydro-1,3-oxazinium, N.

N−ジエチルテトラしドロー1゜ 2−オキ サジニウム、 N。N-diethyl tetra and draw 1° 2-Oki sadinium, N.

N。N.

−ジメチルー2−メチルモルホリニウ ム、 N。-dimethyl-2-methylmorpholinium Mu, N.

N−ジエチル−5−メトキシテトラヒドロ−1。N-diethyl-5-methoxytetrahydro-1.

3−オキサジニウム。3-Oxazinium.

本発明の 1−アザビシクロ [r。of the present invention 1-Azabicyclo [r.

q] アルカニウムは次の一般式で表すことができる:[式中
、R1はアルキル基Cp H3p+l (P ” 1〜
6)であり、q=0.1.2.3であって、q=Qのと
きI=3〜6かつr=3〜6であり、q=1.2.3の
とき]=2.3かつr=2゜3である]。
q] Alkanium can be represented by the following general formula: [wherein R1 is an alkyl group Cp H3p+l (P'' 1~
6), q=0.1.2.3, when q=Q, I=3 to 6 and r=3 to 6, and when q=1.2.3]=2. 3 and r=2°3].

本発明の1−アザビシクロ[r、1.q]アルカニウム
には、例えば、次のような分子種が包含される: にH3 N−メチルピロリジジニウム (q=0. 1=r =3) N−エチルキノリジジニウム (q=0、 = r =4) N−n−プロピルピロコリジニウム (q=0. 1=4、 r=3) 、 N−メチル−1−アザビシクロ[5゜ 3゜ 0] デカニウム (q=0. 1=3、 r=5) CH。
1-Azabicyclo[r, 1. q] Alkanium includes, for example, the following molecular species: H3 N-methylpyrrolizidinium (q=0. 1=r=3) N-ethylquinolizidinium (q=0, = r = 4) N-n-propylpyrocollidinium (q = 0. 1 = 4, r = 3), N-methyl-1-azabicyclo[5゜3゜0] decanium (q = 0. 1 = 3) , r=5) CH.

N−メチル−1−アザビシクロ [2゜ 2゜ ] ペンタニウム (q= ! =r=2 s N−エチル−1−アザビシクロ[3,3,1]ノナニウ
ム(q=1.1=r=3) ミ C2H。
N-Methyl-1-azabicyclo[2゜2゜] Pentanium (q = ! = r = 2 s N-ethyl-1-azabicyclo[3,3,1] nonanium (q = 1.1 = r = 3) Mi C2H.

N−エチルキヌクリジニウム(q=2、l=m=2)。N-ethylquinuclidinium (q=2, l=m=2).

前記した陰イオン部分を1.6−デカンジカルボン酸マ
たは2,5−デカンジカルボン酸とし、陽イオン部分を
スビロ二環性アンモニウム、N、N−ジアルキルテトラ
ヒドロオキサジニウム、並びに1−アザビシクロ[r、
1.q]アルカニウムよりなる群から選択して構成する
塩を溶解するに際し、その濃度を0.5〜30重量%と
すれば好適であり、その濃度を1.0〜10重量%とす
れば更に好適である。
The anion moiety described above is 1,6-decanedicarboxylic acid or 2,5-decanedicarboxylic acid, and the cation moiety is subirobicyclic ammonium, N,N-dialkyltetrahydroxazinium, and 1-azabicyclo[ r,
1. q] When dissolving the salt selected from the group consisting of alkanium, it is preferable to set the concentration to 0.5 to 30% by weight, and it is more preferable to set the concentration to 1.0 to 10% by weight. It is.

非プロトン溶媒を、N−メチルホルムアミド、N、N−
ジメチルホルムアミド、N−エチルホルムアミド、N、
N−ジエチルホルムアミド、N−メチルアセトアミド、
N、N−ジメチルアセトアミド、N−エチルアセトアミ
ド、N、N−ジエチルアセトアミド、γ−ブチロラクト
ン、N−メチル−2−ピロリドン、エチレンカーボネー
ト、プロピレンカーボネート、ジメチルスルホオキシド
並びにアセトニトリルよりなる群から選択すれば好適な
電解コンデンサ用電解液を得ることができる。
The aprotic solvent was N-methylformamide, N,N-
dimethylformamide, N-ethylformamide, N,
N-diethylformamide, N-methylacetamide,
Preferably selected from the group consisting of N,N-dimethylacetamide, N-ethylacetamide, N,N-diethylacetamide, γ-butyrolactone, N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, dimethylsulfoxide and acetonitrile. An electrolytic solution for electrolytic capacitors can be obtained.

副溶媒をエチレングリコール、プロピレングリコール、
ジエチレングリコール、ヘキシレングリコール、フェニ
ルグリコール、グリセリン、エリスリトール並びにヘキ
シトールよりなる群から選択される多価アルコール溶媒
、あるいはメチルセルソルブ、エチルセルソルブから選
択されるアルコールエーテル溶媒とすれば、優れた電解
コンデンサ用電解液を得ることができる。
Subsolvents include ethylene glycol, propylene glycol,
Polyhydric alcohol solvents selected from the group consisting of diethylene glycol, hexylene glycol, phenyl glycol, glycerin, erythritol, and hexitol, or alcohol ether solvents selected from methyl cellosolve and ethyl cellosolve, are excellent for electrolytic capacitors. An electrolyte can be obtained.

[作用] 本発明が開示した陰イオン部分を1,6−デカンジカル
ボン#!i、tたは2.5−デカンジカルボン酸とし、
陽イオン部分をスピロ二環性アンモニウム、N、N−ジ
アルキルテトラヒドロオキサジニウム、並びに1−アザ
ビシクロ[r。
[Function] The anion moiety disclosed in the present invention is converted into 1,6-decanedicarbone #! i, t or 2,5-decanedicarboxylic acid,
The cationic moieties include spirobicyclic ammonium, N,N-dialkyltetrahydroxazinium, and 1-azabicyclo[r.

1.9]アルカニウムよりなる群がら選択して構成する
塩が、主溶媒が非プロトン溶媒であって実質的に水を含
有しない溶媒中でどのような作用をするのかその作用機
構自体は明らかではない、しかしながら、従来のエチレ
ングリコールに五ホウ酸アンモニウムを溶解した電解液
、あるいは非プロトン溶媒を主体とするものであっても
本発明が開示した特定の陰イオン部分および陽イオン部
分からなる塩を含有しない電解液と異り、本発明の電解
コンデンサ用電解液は電解コンデンサの陽極、陰極、ア
ルミニウム酸化被膜誘電体並びに電解液から構成される
電気化学的反応系の化学的定常状態の安定化に何らかの
寄与をしているものと推定される。
1.9] The mechanism of action of a salt selected from the group consisting of alkanium is not clear as to how it acts in a solvent where the main solvent is an aprotic solvent and does not substantially contain water. However, even if the electrolytic solution is a conventional electrolytic solution in which ammonium pentaborate is dissolved in ethylene glycol or an aprotic solvent, it contains a salt consisting of a specific anionic moiety and a cationic moiety disclosed in the present invention. Unlike electrolytes that do not have any effect, the electrolyte for electrolytic capacitors of the present invention has some effect on stabilizing the chemical steady state of the electrochemical reaction system consisting of the anode, cathode, aluminum oxide film dielectric, and electrolyte of the electrolytic capacitor. It is estimated that this contributes to

低温特性の改善に関しては、本発明の電解コンデンサ用
電解液は、−10°C前後で凝固するものが大半である
従来のエチレングリコール系電解液と異り、−50℃前
後でも凝固しない非プロトン溶媒を主体とするなめ、電
解質である陰イオン部分を1,6−デカンジカルボン酸
マたは2.5−デカンジカルボン酸とし、陽イオン部分
をスピロ二環性アンモニウム、N、N−ジアルキルテト
ラヒドロオキサジニウム、並びに1−アザビシクロ[r
、1. q]アルカニウムよりなる群から選択して構成
する塩の寄与も加えた凝固点降下作用が実現し一50″
C以下でも凝固せず電解質の解離状態が安定化し低温特
性が向上する点を揚げることができる。
Regarding the improvement of low-temperature characteristics, the electrolytic solution for electrolytic capacitors of the present invention is an aprotic electrolytic solution that does not solidify even at around -50°C, unlike conventional ethylene glycol-based electrolytes, which solidify at around -10°C. The anionic part of the electrolyte is 1,6-decanedicarboxylic acid or 2,5-decanedicarboxylic acid, and the cationic part is spirobicyclic ammonium, N,N-dialkyltetrahydroxa. Zinium, as well as 1-azabicyclo[r
, 1. q] A freezing point lowering effect is realized with the contribution of a salt selected from the group consisting of alkane.
Even if the temperature is below C, solidification does not occur, the dissociation state of the electrolyte is stabilized, and low-temperature characteristics are improved.

高温で使用する際の外観不良発生に関しては、最終的に
水または水素ガスの発生を抑えることが有効であり、本
発明の電解コンデンサ用電解液は、主溶媒が非プロトン
溶媒であって実質的に水を含有せず、水和劣化が起こら
ないため、たとえアルミニウム酸化被膜にクラックが発
生しても使用中に速やかに修復され、本来電極上で水素
発生を伴う水酸化アルミニウムの生成反応が進行するこ
とはないが、本発明が開示した特定の塩の作用によりこ
の特性はさらに強化されると推定される。
Regarding the occurrence of appearance defects when used at high temperatures, it is effective to ultimately suppress the generation of water or hydrogen gas. Since it does not contain water and hydration deterioration does not occur, even if cracks occur in the aluminum oxide film, they are quickly repaired during use, and the reaction to generate aluminum hydroxide, which originally involves hydrogen generation, proceeds on the electrode. However, it is presumed that this property is further enhanced by the action of the specific salts disclosed in the present invention.

[発明の効果] 本発明の電解コンデンサ用電解液を用いた電解コンデン
サは広い使用温度範囲で安定した特性を示し、低温側で
は静電容量の減少は小さく誘電正接の増大すなわち消費
電力の増加は低く抑えることができ、高温側でも静電容
量はほとんど変化せず誘電正接すなわち消費電力や漏れ
電流の変化は小さく、ガス発生を伴わないため高温で長
時間使用しても外観不良は発生しない。
[Effects of the Invention] An electrolytic capacitor using the electrolytic solution for electrolytic capacitors of the present invention exhibits stable characteristics over a wide operating temperature range, and the decrease in capacitance is small at low temperatures, and the increase in dielectric loss tangent, that is, the increase in power consumption, is small. Capacitance hardly changes even at high temperatures, and changes in dielectric loss tangent, that is, power consumption and leakage current, are small. Since no gas is generated, no appearance defects occur even when used at high temperatures for long periods of time.

[実施例] 以下に実施例により本発明を更に詳細に説明するが、本
発明は以下の実施例にのみ限定されるものではない。
[Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited only to the following Examples.

本発明により調製する電解コンデンサ用電解液の組成を
第1表に示す、なお比較例として従来の典型的な電解コ
ンデンサ用電解液の組成を第1表に併せて示す0本発明
の電解コンデンサ用電解液は非プロトン溶媒単独の溶媒
または非プロトン溶媒を主体とし多価アルコール溶媒を
混合した溶媒と、陰イオン部分を1.6−デカンジカル
ボン酸または2,5−デカンジカルボン酸とし、陽イオ
ン部分をスビロ二環性アンモニウム、N、N−ジアルキ
ルテトラヒドロオキサジニウム、並びに1−アザビシク
ロ[r、1゜9]アルカニウムよりなる群から選択して
構成する塩とからなる。従来の典型的な電解コンデンサ
用電解液は、多価アルコール溶媒単独の溶媒または米国
特許筒3,546,119号により非プロトン溶媒を主
体とし多価アルコール溶媒を混合した溶媒にホウ酸塩を
溶解したものである。常法により測定した伝導度および
火花電圧の値を第1表に併せて示す。
The composition of the electrolytic solution for electrolytic capacitors prepared according to the present invention is shown in Table 1. As a comparative example, the composition of the conventional typical electrolytic solution for electrolytic capacitors is also shown in Table 1. The electrolyte consists of a solvent consisting of an aprotic solvent alone or a mixture of an aprotic solvent and a polyhydric alcohol solvent, an anion portion of which is 1,6-decanedicarboxylic acid or 2,5-decanedicarboxylic acid, and a cationic portion. and a salt selected from the group consisting of subirobicyclic ammonium, N,N-dialkyltetrahydroxazinium, and 1-azabicyclo[r,1°9]alkanium. Typical conventional electrolytic solutions for electrolytic capacitors include a polyhydric alcohol solvent alone or a borate solution dissolved in a solvent consisting mainly of an aprotic solvent and a polyhydric alcohol solvent, as described in U.S. Pat. No. 3,546,119. This is what I did. The values of conductivity and spark voltage measured by conventional methods are also shown in Table 1.

本発明の電解液を用いて作成した電解コンデンサの低温
特性に関する試験結果を第2表に示す1本発明の電解液
を用いる電解コンデンサは、低温(−55℃〉でも静電
容量の損失は小さく、消′gt電力の目安となる誘電正
接(tanδ)の増大は低く抑えられ、インピーダンス
も増大しない(実施例1〜15)、従来の多価アルコー
ル溶媒単独の溶媒にホウ酸塩を溶解した電解液を用いる
電解コンデンサは、低温(−55℃)では常温の96%
の静電容量が失われ、誘電正接(tanδ)は約80倍
となりインピーダンスの値も大きいく比較例1)。従来
の非プロトン溶媒を主体とし多価アルコール溶媒を混合
した溶媒にホウ酸塩を溶解した電解液を用いる電解コン
デンサは、低温特性については比較的良好な結果を与え
る(比較例2)。
Table 2 shows the test results regarding the low-temperature characteristics of the electrolytic capacitor made using the electrolytic solution of the present invention. , the increase in the dielectric loss tangent (tan δ), which is a measure of the consumed power, is suppressed to a low level, and the impedance does not increase (Examples 1 to 15). Electrolytic capacitors that use liquid have a temperature of 96% of normal temperature at low temperatures (-55℃).
The capacitance is lost, the dielectric loss tangent (tan δ) is approximately 80 times larger, and the impedance value is also large (Comparative Example 1). An electrolytic capacitor using a conventional electrolytic solution in which a borate is dissolved in a solvent mainly composed of an aprotic solvent and a polyhydric alcohol solvent gives relatively good results in terms of low-temperature characteristics (Comparative Example 2).

本発明の電解液を用いて作成した電解コンデンサの高温
(130℃)での使用試験によるライフ評価結果を第3
表に示す0本発明の電解液を用いる電解コンデンサは、
130℃で1000時間使用しても静電容量の損失はほ
とんどなく、誘電正接(tanδ)の増大は僅かであり
、誘電体の電気化学的状態を反映する漏れ電流値の変化
もほとんどなく、外観不良は全く発生しない(実施例1
〜15)、従来の多価アルコール溶媒単独の溶媒にホウ
酸塩を溶解した電解液を用いる電解コンデンサおよび従
来の非プロトン溶媒を主体とし多価アルコール溶媒を混
合した溶媒にホウ酸塩を溶解した電解液を用いる電解コ
ーンデンサは、130’Cでの高温試験の途中で全ての
供試検体についてガス発生による内圧上昇のための液出
、安全弁作動などの外観不良が発生し試験w、Rは不可
能となった(比較例1および2)。
The life evaluation results of electrolytic capacitors made using the electrolyte of the present invention at high temperatures (130°C) are shown in the third section.
The electrolytic capacitor using the electrolyte of the present invention shown in the table is as follows:
Even after 1000 hours of use at 130°C, there is almost no loss in capacitance, only a slight increase in dielectric loss tangent (tan δ), and almost no change in leakage current value reflecting the electrochemical state of the dielectric. No defects occur at all (Example 1)
~15), an electrolytic capacitor using an electrolyte in which a borate is dissolved in a conventional polyhydric alcohol solvent alone, and a borate dissolved in a conventional solvent consisting mainly of an aprotic solvent and a polyhydric alcohol solvent. For electrolytic cone capacitors that use electrolytic solution, during the high-temperature test at 130'C, all test specimens suffered from liquid leakage due to internal pressure increase due to gas generation, and appearance defects such as safety valve activation, and tests W and R were rejected. It became possible (Comparative Examples 1 and 2).

Claims (3)

【特許請求の範囲】[Claims] (1)アルミニウム電解コンデンサ駆動用の電解液にお
いて、主溶媒が非プロトン溶媒であって実質的に水を含
有しない溶媒に、陰イオン部分を1,6−デカンジカル
ボン酸または2,5−デカンジカルボン酸とし、陽イオ
ン部分をスピロ二環性アンモニウム、N,N−ジアルキ
ルテトラヒドロオキサジニウム、並びに1−アザビシク
ロ[r.l.q]アルカニウムよりなる群から選択して
構成する塩を溶解させてなることを特徴とする中高圧用
電解コンデンサ用電解液。
(1) In an electrolytic solution for driving an aluminum electrolytic capacitor, the main solvent is an aprotic solvent and does not substantially contain water, and the anion moiety is added to 1,6-decanedicarboxylic acid or 2,5-decanedicarboxylic acid. acid, and the cation moiety is spirobicyclic ammonium, N,N-dialkyltetrahydroxazinium, and 1-azabicyclo[r. l. q] An electrolytic solution for medium-high voltage electrolytic capacitors, characterized by dissolving a salt selected from the group consisting of alkanium.
(2)非プロトン溶媒が、N−メチルホルムアミド、N
,N−ジメチルホルムアミド、N−エチルホルムアミド
、N,N−ジエチルホルムアミド、N−メチルアセトア
ミド、N,N−ジメチルアセトアミド、N−エチルアセ
トアミド、N,N−ジエチルアセトアミド、γ−ブチロ
ラクトン、N−メチル−2−ピロリドン、エチレンカー
ボネート、プロピレンカーボネート、ジメチルスルホオ
キシド並びにアセトニトリルよりなる群から選択される
請求項1記載の電解コンデンサ用電解液。
(2) The aprotic solvent is N-methylformamide, N
, N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N-ethylacetamide, N,N-diethylacetamide, γ-butyrolactone, N-methyl- The electrolytic solution for an electrolytic capacitor according to claim 1, which is selected from the group consisting of 2-pyrrolidone, ethylene carbonate, propylene carbonate, dimethyl sulfoxide, and acetonitrile.
(3)副溶媒をエチレングリコール、プロピレングリコ
ール、ジエチレングリコール、ヘキシレングリコール、
フェニルグリコール、グリセリン、エリスリトール並び
にヘキシトールよりなる群から選択される多価アルコー
ル溶媒、あるいはメチルセルソルブ、エチルセルソルブ
から選択されるアルコールエーテル溶媒とする請求項1
記載の電解コンデンサ用電解液。
(3) Subsolvent: ethylene glycol, propylene glycol, diethylene glycol, hexylene glycol,
Claim 1: The solvent is a polyhydric alcohol solvent selected from the group consisting of phenyl glycol, glycerin, erythritol, and hexitol, or an alcohol ether solvent selected from methylcellosolve and ethylcellosolve.
Electrolyte for electrolytic capacitors as described.
JP27739288A 1988-11-04 1988-11-04 Electrolyte for electrolytic capacitor Pending JPH02125410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27739288A JPH02125410A (en) 1988-11-04 1988-11-04 Electrolyte for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27739288A JPH02125410A (en) 1988-11-04 1988-11-04 Electrolyte for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH02125410A true JPH02125410A (en) 1990-05-14

Family

ID=17582900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27739288A Pending JPH02125410A (en) 1988-11-04 1988-11-04 Electrolyte for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH02125410A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019452A1 (en) * 1994-12-21 1996-06-27 Neurosearch A/S A process for the preparation of substituted 4-ethyl-piperidines and an intermediate for the preparation of same
WO2005022571A1 (en) * 2003-08-29 2005-03-10 Japan Carlit Co., Ltd. Electrolytic solution for electric double layer capacitor and electric double layer capacitor
JP2007106750A (en) * 2005-09-14 2007-04-26 Japan Carlit Co Ltd:The Method for purifying spiro compound and electric double layer capacitor using the same
WO2008120439A1 (en) * 2007-03-28 2008-10-09 Sanyo Chemical Industries, Ltd. Electrolyte, and electrolyte solution or electrochemical element comprising the same
JP2009283643A (en) * 2008-05-22 2009-12-03 Sanyo Chem Ind Ltd Electrolyte, electrolytic solution using it, and electrochemical element
US10475595B2 (en) 2016-05-20 2019-11-12 Avx Corporation Ultracapacitor for use at high temperatures
US10658127B2 (en) 2016-05-20 2020-05-19 Avx Corporation Nonaqueous electrolyte for an ultracapacitor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019452A1 (en) * 1994-12-21 1996-06-27 Neurosearch A/S A process for the preparation of substituted 4-ethyl-piperidines and an intermediate for the preparation of same
WO2005022571A1 (en) * 2003-08-29 2005-03-10 Japan Carlit Co., Ltd. Electrolytic solution for electric double layer capacitor and electric double layer capacitor
JPWO2005022571A1 (en) * 2003-08-29 2006-10-26 日本カーリット株式会社 Electrolytic solution for electric double layer capacitor and electric double layer capacitor
US7411777B2 (en) 2003-08-29 2008-08-12 Japan Carlit Co., Ltd. Electrolytic solution for electric double layer capacitor and electric double layer capacitor
JP2007106750A (en) * 2005-09-14 2007-04-26 Japan Carlit Co Ltd:The Method for purifying spiro compound and electric double layer capacitor using the same
EP2141712A4 (en) * 2007-03-28 2012-02-29 Sanyo Chemical Ind Ltd Electrolyte, and electrolyte solution or electrochemical element comprising the same
EP2141712A1 (en) * 2007-03-28 2010-01-06 Sanyo Chemical Industries, Ltd. Electrolyte, and electrolyte solution or electrochemical element comprising the same
JPWO2008120439A1 (en) * 2007-03-28 2010-07-15 三洋化成工業株式会社 Electrolyte, electrolytic solution using the same, and electrochemical element
WO2008120439A1 (en) * 2007-03-28 2008-10-09 Sanyo Chemical Industries, Ltd. Electrolyte, and electrolyte solution or electrochemical element comprising the same
JP2012094862A (en) * 2007-03-28 2012-05-17 Sanyo Chem Ind Ltd Electrolyte, electrolytic solution and electrochemical element
JP2009283643A (en) * 2008-05-22 2009-12-03 Sanyo Chem Ind Ltd Electrolyte, electrolytic solution using it, and electrochemical element
US10475595B2 (en) 2016-05-20 2019-11-12 Avx Corporation Ultracapacitor for use at high temperatures
US10658127B2 (en) 2016-05-20 2020-05-19 Avx Corporation Nonaqueous electrolyte for an ultracapacitor
US10840031B2 (en) 2016-05-20 2020-11-17 Avx Corporation Ultracapacitor for use at high temperatures

Similar Documents

Publication Publication Date Title
KR100861331B1 (en) An electrolytic solution for an electrochemical capacitor and an electrochemical capacitor using the same
JPWO2007037337A1 (en) Electrolytic solution for electrochemical element and electrochemical element using the same
JPH0257694B2 (en)
JPH02125410A (en) Electrolyte for electrolytic capacitor
JP4116309B2 (en) Electrolyte for electrochemical capacitors
JP2009123789A (en) Electrolyte for electric double-layer capacitor and electric double-layer capacitor
JP5275011B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JPH0325912A (en) Electrolyte for electrolytic capacitor
JPH01154509A (en) Electrolyte for electrolytic capacitor
JP2005197666A (en) Electrochemical capacitor and electrolyte therefor
JPH0473922A (en) Electrolyte for electrolytic capacitor
JPH0265115A (en) Electrolyte for electrolytic capacitor
JPH0325911A (en) Electrolyte for electrolytic capacitor
JPH1154379A (en) Electrolyte and electrochemical element using the same
JPH02137308A (en) Electrolyte for electrolytic capacitor
JP2012109539A (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor using the same
JPH01245508A (en) Electrolyte for electrolytic capacitor
JP2665243B2 (en) Electrolyte for electrolytic capacitors
JPH0418719A (en) Electrolyte for electrolytic capacitor driving, and electrolytic capacitor soaked with the electrolyte
WO2004109727A1 (en) Electrolytic solution for electrochemical element, method of searching for the same, method of producing the same, and electrochemical element
JP2008277464A (en) Quaternary ammonium salt electrolyte, electrolytic solution using the same, and electrochemical element
JPH0410514A (en) Electrolyte for electrolytic capacitor
JPH01175722A (en) Electrolyte for electrolytic capacitor
JPH05152165A (en) Electrolyte for electrolytic capacitor
JP2011155093A (en) Electrolyte and electrochemical element using the same