JPH02124590A - Method and device for forming hologram - Google Patents

Method and device for forming hologram

Info

Publication number
JPH02124590A
JPH02124590A JP18966989A JP18966989A JPH02124590A JP H02124590 A JPH02124590 A JP H02124590A JP 18966989 A JP18966989 A JP 18966989A JP 18966989 A JP18966989 A JP 18966989A JP H02124590 A JPH02124590 A JP H02124590A
Authority
JP
Japan
Prior art keywords
substrate
photoresist
hologram
moving
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18966989A
Other languages
Japanese (ja)
Inventor
Hide Hosoe
秀 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPH02124590A publication Critical patent/JPH02124590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Holo Graphy (AREA)

Abstract

PURPOSE:To form the concentrical patterns of a hologram with high drawing accuracy by forming a photoresist film on a substrate at the point of the time when a photoresist soln. spreads sufficiently on the substrate, then exposing the concentrical patterns of the hologram onto the photoresist on the substrate and subjecting the photoresist to an after-exposing processing. CONSTITUTION:The photoresist soln. is dropped to the central part of rotation of the photoresist substrate B by rotating the substrate B and the rotation of the substrate B is stopped at the point of the time when the soln. spreads sufficiently to the peripheral part of the substrate B, then the photoresist film is formed on the substrate B. The substrate B is again rotated and the concentrical patterns of the hologram are exposed to the photoresist on the substrate B by a light projecting means 2 of a laser beam and a moving means 3 for moving this light projecting means 2 in the direction orthogonal with the revolving shaft 13 of the hologram B; thereafter, the photoresist is subjected to the after-exposing processing. The concentrical patterns of the hologram are formed on the photoresist film uniformly with the high drawing accuracy in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、インライン型の計算機ホログラム干渉計(以
下、単に干渉計と言う)に用いられるホログラムをフォ
トレジストで作成するホログラム作成の方法と装置に関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a hologram creation method and apparatus for creating a hologram using photoresist for use in an in-line computer-generated hologram interferometer (hereinafter simply referred to as an interferometer). Regarding.

〔従来の技術〕[Conventional technology]

非球面形状の光学面や既知の形状を高精度に測定するの
に干渉計がよく用いられる。そして、軸対称のレンズ光
学面やそれをプレス成形する金型面の形状測定にはイン
ライン型の干渉計が用いられる。インライン型の干渉計
は、参照光と被験光が同軸配置とされるため、ホログラ
ムのパターンが同心円となり、被験光を球面波とすると
、ポロダラムのパターンピッチの割に深い形状を測定す
ることかでき、光学系が参照光と被験光に殆ど共通とな
るため、光学系による誤差を小さく押さえ易いと言う特
徴がある。従来、このインライン型干渉計に用いるホロ
グラムは、ホログラムの同心円パターンを計算機で求め
てX−Yプロッタにより描かせ、それを写真撮影する方
法、またはXYプロッタと写真撮影の代わりに電子ビー
ム描画装置でフォトレジストに露光する方法によって作
成していた。
Interferometers are often used to measure aspherical optical surfaces or known shapes with high precision. An in-line interferometer is used to measure the shape of the axially symmetric lens optical surface and the mold surface for press-molding it. In an in-line interferometer, the reference light and test light are arranged coaxially, so the hologram pattern is concentric circles, and if the test light is a spherical wave, it is possible to measure deep shapes considering the pattern pitch of Polo Dallam. Since the optical system is almost the same for the reference light and the test light, it is easy to keep errors caused by the optical system small. Conventionally, holograms used in this in-line interferometer have been created by using a computer to obtain a concentric pattern of the hologram, drawing it with an X-Y plotter, and then taking a photograph of it, or using an electron beam drawing device instead of an X-Y plotter and photography. It was created by exposing photoresist to light.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

X−Yブロックと写真撮影による方法は、XYプロッタ
の精度、写真撮影の際のセツティング精度や照明並びに
露出の条件、現像処理条件等の要因によってホログラム
の同心円パターンに歪みやコマ収差、球面収差等が入り
易く、処理も複雑であると言う問題がある。また、電子
ビーム描画装置を用いる方法は、狭い描画範囲について
は描画精度はかなり高いが、描画範囲を拡大すると、電
磁レンズの漏洩磁束が大になったり露光時間が長くなっ
たりするために、描画位置のドリフト等が発生して描画
精度が低下するし、それを解消しようとすれば装置が大
型化し、−層高価なものになると言う問題がある。−船
釣に、電子ビーム描画装置は、もともとが高価であり、
通常の描画範囲が5mm角程度であるから、ホログラム
作成に用いるのは適当でない。
The method using X-Y blocks and photography can cause distortion, comatic aberration, and spherical aberration in the concentric circular pattern of the hologram due to factors such as the accuracy of the XY plotter, the setting accuracy during photography, lighting and exposure conditions, and development processing conditions. etc., and the processing is complicated. In addition, with the method of using an electron beam lithography system, the lithography accuracy is quite high for a narrow lithography range, but when the lithography range is expanded, the leakage magnetic flux of the electromagnetic lens increases and the exposure time becomes longer, so the lithography There is a problem in that positional drift and the like occur, resulting in a decrease in drawing accuracy, and if this problem were to be solved, the apparatus would become larger and more expensive. -For boat fishing, electron beam lithography equipment is originally expensive;
Since the normal drawing range is about 5 mm square, it is not appropriate to use it for creating holograms.

本発明は、上述の問題を解消するためになされたもので
あり、フォトレジス]・に描画範囲の広狭に拘わらず一
様に高い描画精度でホログラムの同心円パターンを容易
に形成することができるホログラム作成の方法と装置を
提供するものである。
The present invention has been made to solve the above-mentioned problems, and provides a hologram that can easily form a concentric pattern of holograms with uniformly high drawing accuracy regardless of the width or narrowness of the drawing range in photoresist. The present invention provides a method and apparatus for making the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、フォトレジスト基板を回転して該基板の回転
中心部にフォトレジスト溶液を滴下し、該溶液が基板の
周辺部にまで十分行き渡った時点で基板の回転を停止し
て基板上にフォトレジスト被膜を形成し、次に再び基板
を回転してレーザビームの投光手段と該投光手段を前記
基板の回転軸と直交する方向に移動させる移動手段とに
よって基板上の7オトレジス]・にホログラムの同心円
パターンを露光した後、該フォトレジストに露光後処理
を施すことを特徴とするホログラム作成方法、およびこ
の方法の実施に用いられる、フォトレジスト基板を交換
可能に固定して回転させる基板回転手段と、基板回転手
段に固定された前記基板上のフォトレジスト る投光手段と、投光手段または基板回転手段をフォトレ
ジスト基板の回転軸と直交する方向に直線運動させる移
動手段と、前記各手段の駆動を制御して基板回転手段に
よりフォトレジスト基板を回転させながら該基板上のフ
ォトレジストに投光手段により光線を入射し該光線の入
射位置をさらに移動手段によって移動させる制御装置と
を備えたことを特徴とするホログラム作成装置にある。
The present invention rotates a photoresist substrate, drops a photoresist solution onto the center of rotation of the substrate, and when the solution has sufficiently spread to the periphery of the substrate, the rotation of the substrate is stopped and a photoresist solution is placed on the substrate. A resist film is formed, and then the substrate is rotated again to apply a laser beam to the seven resists on the substrate using a laser beam projecting means and a moving means that moves the projecting means in a direction orthogonal to the rotation axis of the substrate. A hologram production method characterized by exposing a concentric pattern of a hologram and then subjecting the photoresist to a post-exposure treatment, and a substrate rotation used in carrying out this method, in which a photoresist substrate is exchangeably fixed and rotated. means for projecting light onto the photoresist on the substrate fixed to the substrate rotation means; moving means for linearly moving the light projection means or the substrate rotation means in a direction orthogonal to the rotation axis of the photoresist substrate; and a control device for controlling the drive of the means to rotate the photoresist substrate by the substrate rotation means, to cause a light beam to be incident on the photoresist on the substrate by the light projecting means, and to further move the incident position of the light beam by the moving means. A hologram creation device is characterized by:

〔作用〕[Effect]

本発明の方法によれば、フォトレジスト基板上に所望の
厚さのフォトレジスト被膜を均一に形成することができ
、そしてフォトレジスト被膜にホログラムの同心円パタ
ーンを一様に高い描画精度で露光して干渉計に用いられ
るホログラムを容易に形成することができる。また、本
発明の装置を用いれば、上述の同心円パターンの露光ま
でを能率よく行うことができる。
According to the method of the present invention, a photoresist film of a desired thickness can be uniformly formed on a photoresist substrate, and a concentric pattern of a hologram can be uniformly exposed on the photoresist film with high drawing accuracy. Holograms used in interferometers can be easily formed. Further, by using the apparatus of the present invention, it is possible to efficiently perform the exposure of the above-mentioned concentric pattern.

〔実施例〕〔Example〕

以下、本発明を図示例によって説明する。 The present invention will be explained below using illustrated examples.

第1図は本発明ホログラム作成方法の実施に用いられる
装置の一例を示す概要構成図、第2図はレーザビームの
入射が基板の回転中心を通る直線上を移動して行われる
ようにする調節量を求める方法の例を示す原理図である
Fig. 1 is a schematic configuration diagram showing an example of a device used to carry out the hologram production method of the present invention, and Fig. 2 is an adjustment that allows the laser beam to be incident by moving on a straight line passing through the center of rotation of the substrate. FIG. 2 is a principle diagram showing an example of a method for determining a quantity.

第1図において、■は基板回転手段、2は投光手段、3
は移動手段、4は制御装置である。基板回転手段1は、
エアーベアリングのような精密な軸受11と、軸受11
によって回転可能に支持されて上端に真空チャックによ
る基板取付台12を有する回転軸I3と、回転軸13を
回転させるDCモータ14等から成る。投光手段2は、
レーザ光源とエクスハングーレンズ、偏光板、ビームス
プリッタ−反射面、結像レンズ等の光学系および結像レ
ンズを動かして自動的に結像させるレンズ駆動機構とか
ら成る。このレンズ駆動機構にはCDプレーヤ等に用い
られている公知の機構が用いられる。
In FIG. 1, ■ is a substrate rotating means, 2 is a light projecting means, and 3 is a substrate rotating means.
4 is a moving means, and 4 is a control device. The substrate rotation means 1 is
A precision bearing 11 such as an air bearing, and a bearing 11
It consists of a rotating shaft I3 that is rotatably supported by a rotary shaft I3 and has a substrate mounting base 12 with a vacuum chuck at its upper end, a DC motor 14 that rotates the rotating shaft 13, and the like. The light projecting means 2 is
It consists of a laser light source, an optical system such as an exhang lens, a polarizing plate, a beam splitter/reflection surface, and an imaging lens, and a lens drive mechanism that moves the imaging lens to automatically form an image. A known mechanism used in CD players and the like is used for this lens drive mechanism.

移動手段3は、投光手段2を基板回転手段lの基板取付
台12の上面に平行に直線的に移動させるための送りね
し3段、送りねじ31を回転させるDCモータ32等か
ら成る。制御装置4は、マイクロコンビコータ41、キ
ーボード42、基板回転手段lのモータ14を駆動制御
するための回転検出器43と増幅器44、移動手段3の
モータ32を駆動制御するための回転検出器45と増幅
器46等から成る。
The moving means 3 includes three stages of feed screws for linearly moving the light projecting means 2 parallel to the upper surface of the substrate mount 12 of the substrate rotation means 1, a DC motor 32 for rotating the feed screw 31, and the like. The control device 4 includes a microcombi coater 41, a keyboard 42, a rotation detector 43 and an amplifier 44 for driving and controlling the motor 14 of the substrate rotating means 1, and a rotation detector 45 for driving and controlling the motor 32 of the moving means 3. and an amplifier 46.

この装置によるホログラムの作成について説明すると、
まず、基板回転手段lの基板取付台12にガラス製の基
板Bを載置し、真空チャックにより固定する。軸受11
から突出しているパイプ15は真空チャックのサタンヨ
ンパイプである。次に基板Bを取り付けた基板取付台1
2を3000〜5000rpmで回転し、ンリンジ、ビ
ユレット等の適当な手段により7オI・レジスト溶液を
基板Bの回転中心部に滴下して、フォトレジスト溶液が
基板Bの周辺部にまで十分行き渡った時点で基板取付台
12の回転を停止する。それによって基板B上に1〜5
μmの厚さの均一なフォトレジスI・被膜を形成する。
To explain the creation of holograms using this device,
First, a glass substrate B is placed on the substrate mount 12 of the substrate rotation means 1 and fixed by a vacuum chuck. Bearing 11
The pipe 15 protruding from the top is a satanyong pipe of a vacuum chuck. Next, board mounting base 1 with board B attached
2 was rotated at 3,000 to 5,000 rpm, and the photoresist solution was dropped onto the center of rotation of the substrate B using an appropriate means such as a ring or a billet, so that the photoresist solution was sufficiently spread to the periphery of the substrate B. At this point, the rotation of the board mounting base 12 is stopped. Thereby 1 to 5
A uniform photoresist I film with a thickness of μm is formed.

そして次に基板取付台12を回転させ、移動手段3によ
って投光手段2を基板取付台12の回転軸に直交する方
向に移動させながら、投光手段2によってホログラムの
同心円パターンを基板B上のフォトレジストに露光する
。この露光は、フォトレジストやレーザ光源の種類にも
よるが、通常光の段取りをも含めて1時間程度で終了す
る。露光を終了しI;ら、基板取付台12から露光され
たフォトレジストを有する基板Bを外して、あとはそれ
を従来のフォトレジストによるホログラムの作成と同様
の方法で処理してホログラムを得る。
Then, while rotating the substrate mount 12 and moving the light projection means 2 by the moving means 3 in a direction perpendicular to the rotation axis of the substrate mount 12, the light projection means 2 projects a concentric pattern of the hologram onto the substrate B. Expose the photoresist. Although this exposure depends on the type of photoresist and laser light source, it can be completed in about one hour, including preparation for normal light. After the exposure is completed, the substrate B having the exposed photoresist is removed from the substrate mounting table 12, and then processed to obtain a hologram in the same manner as in the production of a hologram using a conventional photoresist.

基板B上にフォトレジスト被膜を形成するための前述の
基板回転手段lの駆動制御およびフォトレジストに同心
円パターンを露光するための投光手段2等の駆動制御は
、キーボード42からの指令を受けてマイクロコンピュ
ータ41が行う。特に、フォトレジストに同心円パター
ンを露光する駆動制御は、マイクロコンピュータ41が
キーボード42から被験形状の設計関数の係数を入力さ
れて自動的にホログラムパターンを算出し、その算出結
果に基づいて基板Bの回転数と投光手段2の移動速度、
すなわち回転軸13と送りねじ31の回転数を制御し、
投光手段2によるフォトレジストへのレーザビームの入
射を制御することによって行われる。
Drive control of the substrate rotation means 1 described above for forming a photoresist film on the substrate B and drive control of the light projection means 2 and the like for exposing a concentric pattern on the photoresist are performed in response to commands from the keyboard 42. The microcomputer 41 performs this. In particular, the drive control for exposing the photoresist to a concentric pattern is such that the microcomputer 41 receives the coefficients of the design function of the test shape from the keyboard 42 and automatically calculates the hologram pattern. The rotation speed and the moving speed of the light projecting means 2,
That is, controlling the rotation speed of the rotating shaft 13 and the feed screw 31,
This is performed by controlling the incidence of a laser beam onto the photoresist by the light projecting means 2.

回転軸13と送りねじ31の回転はマイクロコンピュー
タ41から駆動4g号を入力された増幅器44と46が
ぞれぞれDCモータ14と32を回転検出器43と45
の検出情報か所定の回転数を与えるように駆動すること
で行われる。また投光手段2によるフォトレジストへの
レーザビームの入射は、基板B上のフォトレジストへ直
径1μm程度スポットで結像するように付着)れる◇ 回転軸13の軸振れは、軸受11にエアーベアリングを
用いると、容易に露光範囲で0.05μm程度以下にで
きる。また送りねじ31による投光手段2の横送りもエ
アースライダとザーポモータの組合わせにより容易に露
光範囲で0.1μm程度の位置決め精度にできる。した
がって、投光手段2による同心円パターンの露光を描画
範囲の広狭に拘わりなく、−様にパターンピッチ誤差0
.1μm以下と言った高い描画精度で行うことができ、
高精度のホログラムを得ることができる。軸受や横送り
手段にエアーベアリングや送りねじ以外の軸振れの少な
い軸受や送り精度の高い横送り手段を用いてもよいこと
は言うまでもない。また、投光手段2を横送りする代わ
りに基板回転手段lを横送りするようにしてもよい。
The rotation of the rotating shaft 13 and the feed screw 31 is determined by amplifiers 44 and 46 which receive the drive signal 4g from the microcomputer 41, and the DC motors 14 and 32 are controlled by rotation detectors 43 and 45, respectively.
This is done by driving to give a predetermined rotation speed based on the detection information of. In addition, the laser beam incident on the photoresist by the light projecting means 2 is attached to the photoresist on the substrate B so as to form an image in a spot of about 1 μm in diameter. By using this, the exposure range can be easily reduced to about 0.05 μm or less. Further, the horizontal movement of the light projection means 2 by the feed screw 31 can be easily achieved with a positioning accuracy of about 0.1 μm in the exposure range by a combination of an air slider and a zarpo motor. Therefore, regardless of the width or narrowness of the drawing range when exposing the concentric pattern by the light projecting means 2, the pattern pitch error is 0.
.. It can be performed with high drawing accuracy of 1 μm or less,
High precision holograms can be obtained. It goes without saying that a bearing with less axial runout or a lateral feeder with high feed accuracy other than an air bearing or a feed screw may be used as the bearing or the lateral feeder. Furthermore, instead of horizontally transporting the light projecting means 2, the substrate rotating means 1 may be horizontally transported.

なお、レーザビームの入射は、基板すの回転中心を通る
直線上に行われなければならないから、その調整のため
に図示例では基板回転手段1の軸受11を回転軸13の
方向と送りねじ31による投光手段2の送り方向に直交
する方向に調節移動できるようにしている。これに限ら
ず、横送り手段が同様の方向に調節移動し得るものであ
ってもよい。
Incidentally, since the laser beam must be incident on a straight line passing through the rotation center of the substrate, in order to adjust it, in the illustrated example, the bearing 11 of the substrate rotation means 1 is aligned with the direction of the rotation axis 13 and the feed screw 31. The light projecting means 2 can be adjusted and moved in a direction perpendicular to the sending direction of the light projecting means 2. However, the present invention is not limited to this, and the transverse feeding means may be capable of adjustment movement in the same direction.

この調節移動は、予めダミーレジスト基板に回転中心位
置の露光を行って、その結果から調節移動量を求めて行
えばよい。その具体的な方法を第2図も参照して以下説
明する。
This adjustment movement may be performed by exposing the dummy resist substrate in advance at the rotation center position and determining the amount of adjustment movement from the result. The specific method will be explained below with reference to FIG. 2 as well.

まず、基板取付台12にフォトレジスト基板を取り付け
、前述のホログラム作成方法の手順に従って基板上にフ
ォトレジスト被膜を形成しダミーレジスト基板を作成す
る。次に、ダミーレジスト基板を回転させ乍ら、その回
転中心と思われる第2図に示したP1位置と、そこから
移動手段3でlO〜20μm程度の距離d1だけ移動さ
せたP2位置で投光手段2によりフォトレジスト被膜に
レーザビームの入射を行う。さらに、P2からdlと同
程度の距離d2だけ移動させたP3位置でも同様にレザ
ビームの入射を行う。以上の露光を終えたダミーレジス
ト基板に露光後処理を行って、第2図に示したような同
心円パターンを有する現像ダミー−ジス1一基板を得る
。この現像ダミーレジスト基板の同心円の半径rl+r
2+r3を工具顕微鏡等によって測定する。そして、ダ
ミーレジスト基板の第2図に0で示した実際の回転中心
からPl+P2+P3を結ぶ直線に下した垂線の長さ、
すなわちレーザビームの入射位置の直線移動方向の実際
の回転中心からのずれ量をdy、P、と上述の垂線の足
との距離をdxとすると、 r・−ζνiア   ・・・■ r2=f;欝■]ア ・・・■ の関係があり、■、■式から dy−±Eア馬ν  ・・・■ が求まるから、これによりホログラム作成の際のレーザ
ビームの入射が基板Bの回転中心を通る直線上に行われ
るように調整することができる。
First, a photoresist substrate is attached to the substrate mounting table 12, and a photoresist film is formed on the substrate according to the procedure of the hologram production method described above to produce a dummy resist substrate. Next, while rotating the dummy resist substrate, light is projected at the P1 position shown in FIG. By means of means 2, a laser beam is made incident on the photoresist film. Furthermore, the laser beam is similarly incident at position P3, which is moved from P2 by a distance d2 that is approximately the same as dl. The dummy resist substrate subjected to the above exposure is subjected to a post-exposure treatment to obtain a development dummy resist substrate 1 having a concentric pattern as shown in FIG. The radius of the concentric circle of this development dummy resist substrate rl+r
2+r3 is measured using a tool microscope or the like. Then, the length of the perpendicular line drawn from the actual rotation center indicated by 0 in FIG. 2 of the dummy resist substrate to the straight line connecting Pl + P2 + P3,
In other words, if the amount of deviation of the laser beam incident position from the actual center of rotation in the linear movement direction is dy, P is the distance between the foot of the above-mentioned perpendicular line is dx, then r・-ζνi...■ r2=f ; 欝■】A ...■ There is a relationship, and dy-±E ama ν ...■ can be found from the formulas ■ and It can be adjusted so that it is performed on a straight line passing through the center.

なお、r3は、r、とr2が接近しているときに、いず
れがrlかを判別するために用いられる。また、dyに
ついては0式で正負2通りの値が求められるが、算出し
たdyの値の9割程度を補正して、再度ダミーレジスト
基板で同様にdx、dyを求めることにより補正の方向
が正しかったか逆であったかを知ることができるから、
今度は正しい方向に補正することかできる。dx、dy
を1μm以下にするのは、2〜3回dx、dyを求めて
補正を行うようにすれば約10分程度の時間で誤りなく
できる。これは極めて実用性の高い方法である。そして
、この露光ルーチンをマイクロコンピュータにプログラ
ムして実施するようにすれば作業効率を非常に良くする
ことができる。また、上述の例ではダミーレジスト基板
の作成から行うようにしたが、別途ダミーレジスト基板
を作成しておいて、それを基板取付台に取り付けて行う
ようにしてもよい。
Note that r3 is used to determine which is rl when r and r2 are close to each other. Also, for dy, two values, positive and negative, can be obtained using formula 0, but the direction of correction can be determined by correcting about 90% of the calculated value of dy and then obtaining dx and dy in the same way using a dummy resist substrate. Because you can know if you were right or wrong,
Now you can correct it in the right direction. dx, dy
It can be done without error in about 10 minutes by calculating and correcting dx and dy two to three times to make it 1 μm or less. This is an extremely practical method. If this exposure routine is programmed into a microcomputer and executed, work efficiency can be greatly improved. Further, in the above example, the process starts with the creation of a dummy resist substrate, but it is also possible to create a dummy resist substrate separately and attach it to a substrate mounting base.

なお、−船釣にはレーザビームの移動直線が回転中心か
ら±10μm程度までずれていても実害のないことが多
い。
In addition, in boat fishing, even if the moving straight line of the laser beam deviates from the center of rotation by about ±10 μm, there is often no actual damage.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、フォトレジストホログラムの同心円パ
ターンを描画範囲の広狭に拘わりなく一様に高い描画精
度で露光して、インライン型干渉計に用いられる高い精
度のホログラムを高い生産性で作成することかできる。
According to the present invention, a concentric circle pattern of a photoresist hologram is exposed with high drawing accuracy regardless of the width of the drawing range, and a highly accurate hologram used in an in-line interferometer can be created with high productivity. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明ホログラム作成方法の実施に用いられる
装置の一例を示す概要構成図、第2図はレーザビームの
入射が基板の回転中心を通る直線上を移動して行われる
ようにする調整量を求める方法の例を示す原理図である
。 l・・・基板回転手段   11・・・軸受12・・・
基板取付台    13・・・回転軸14・・・DCモ
ータ    15・・・サクションパイプ2・・・投光
手段     3・・・移動手段31・・・送りねじ 
    32・・・DCモータ4・・・制御装置 什・・マイクロコンピュータ
Figure 1 is a schematic configuration diagram showing an example of a device used to carry out the hologram production method of the present invention, and Figure 2 is an adjustment that allows the laser beam to be incident by moving on a straight line passing through the center of rotation of the substrate. FIG. 2 is a principle diagram showing an example of a method for determining a quantity. l... Board rotation means 11... Bearing 12...
Board mounting base 13... Rotating shaft 14... DC motor 15... Suction pipe 2... Light projecting means 3... Moving means 31... Feed screw
32...DC motor 4...Control device...Microcomputer

Claims (2)

【特許請求の範囲】[Claims] (1)フォトレジスト基板を回転して該基板の回転中心
部にフォトレジスト溶液を滴下し、該溶液が基板の周辺
部にまで十分行き渡った時点で基板の回転を停止して基
板上にフォトレジスト被膜を形成し、次に再び基板を回
転してレーザビームの投光手段と該投光手段を前記基板
の回転軸と直交する方向に移動させる移動手段とによっ
て基板上のフォトレジストにホログラムの同心円パター
ンを露光した後、該フォトレジストに露光後処理を施す
ことを特徴とするホログラム作成方法。
(1) Rotate the photoresist substrate and drop the photoresist solution onto the center of rotation of the substrate, and when the solution has sufficiently spread to the periphery of the substrate, stop the rotation of the substrate and apply the photoresist solution onto the substrate. A film is formed, and then the substrate is rotated again to form a concentric circle of a hologram on the photoresist on the substrate using a laser beam projection means and a moving means for moving the projection means in a direction orthogonal to the rotation axis of the substrate. A method for producing a hologram, which comprises performing post-exposure treatment on the photoresist after exposing the pattern.
(2)フォトレジスト基板を交換可能に固定して回転さ
せる基板回転手段と、基板回転手段に固定された前記基
板上のフォトレジストにレーザ光源から光線を入射する
投光手段と、投光手段または基板回転手段をフォトレジ
スト基板の回転軸と直交する方向に直線運動させる移動
手段と、前記各手段の駆動を制御して基板回転手段によ
りフォトレジスト基板を回転させながら該基板上のフォ
トレジストに投光手段により光線を入射し該光線の入射
位置をさらに移動手段によって移動させる制御装置とを
備えたことを特徴とするホログラム作成装置。
(2) a substrate rotating means for fixing and rotating a photoresist substrate in a replaceable manner; a light projecting means for projecting a light beam from a laser light source onto the photoresist on the substrate fixed to the substrate rotating means; and a light projecting means or a moving means for linearly moving the substrate rotating means in a direction orthogonal to the rotation axis of the photoresist substrate; and a moving means for linearly moving the substrate rotating means in a direction perpendicular to the rotation axis of the photoresist substrate; 1. A hologram creation apparatus comprising: a control device for inputting a light beam using an optical means and further moving the incident position of the light beam using a moving means.
JP18966989A 1988-07-26 1989-07-21 Method and device for forming hologram Pending JPH02124590A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9800488 1988-07-26
JP63-98004 1988-07-26

Publications (1)

Publication Number Publication Date
JPH02124590A true JPH02124590A (en) 1990-05-11

Family

ID=14207564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18966989A Pending JPH02124590A (en) 1988-07-26 1989-07-21 Method and device for forming hologram

Country Status (1)

Country Link
JP (1) JPH02124590A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337302A (en) * 1986-08-01 1988-02-18 Sanyo Electric Co Ltd Production of fresnel zone plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337302A (en) * 1986-08-01 1988-02-18 Sanyo Electric Co Ltd Production of fresnel zone plate

Similar Documents

Publication Publication Date Title
US5811211A (en) Peripheral edge exposure method
JPH01161243A (en) Apparatus and method for manufacturing large-area electronic device such as flat panel type display using aligned dual optical system with correlationship
JP2646412B2 (en) Exposure equipment
JPH0257333B2 (en)
JP3172085B2 (en) Peripheral exposure equipment
US5291239A (en) System and method for leveling semiconductor wafers
JP2016157877A (en) Management method and device of lithography device, and exposure method and system
US20040025322A1 (en) Waffle wafer chuck apparatus and method
JP2809081B2 (en) Exposure equipment
JPH02124590A (en) Method and device for forming hologram
TWI282912B (en) Method of preparing a substrate, method of measuring, semiconductor device manufacturing method, lithographic apparatus, computer-readable medium and substrate
JPH0147006B2 (en)
US5291315A (en) Method of obtaining hologram and an exposure apparatus
JPH11219999A (en) Delivery method for substrate and aligner using the same
JP6744596B2 (en) Lithographic apparatus management apparatus, program for the apparatus, exposure system, and device manufacturing method
JPS60123028A (en) Exposing device
JPH06176408A (en) Exposure device of rotary scanning system
JPS62114222A (en) Exposing apparatus
JP2003203855A (en) Exposure method and aligner, and device manufacturing method
JPH0256924A (en) Aligner
US9575413B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2010283304A (en) Exposure apparatus, exposure method, and device manufacturing method
JPH04291938A (en) Aligner and exposure method for inessential resist on wafer
JP2001267235A (en) Exposure system and method of aligning photomask in the same
JP2544666B2 (en) Wafer edge exposure method