JPH0212458B2 - - Google Patents

Info

Publication number
JPH0212458B2
JPH0212458B2 JP3330383A JP3330383A JPH0212458B2 JP H0212458 B2 JPH0212458 B2 JP H0212458B2 JP 3330383 A JP3330383 A JP 3330383A JP 3330383 A JP3330383 A JP 3330383A JP H0212458 B2 JPH0212458 B2 JP H0212458B2
Authority
JP
Japan
Prior art keywords
group
general formula
formula
alkyl group
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3330383A
Other languages
Japanese (ja)
Other versions
JPS59157046A (en
Inventor
Takashi Oonishi
Yoshiji Fujita
Takuji Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP3330383A priority Critical patent/JPS59157046A/en
Publication of JPS59157046A publication Critical patent/JPS59157046A/en
Publication of JPH0212458B2 publication Critical patent/JPH0212458B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一般式() で示されるδ,ε―不飽和ケトンの製造方法に関
する。 上記一般式()において、R1,R2及びR3
同一又は異なり、各々水素原子;メチル基、エチ
ル基、プロピル基、ブチル基、3―メチルブチル
基、ペンチル基、ヘキシル基、ヘプチル基、オク
チル基、3,7―ジメチルオクチル基などのアル
キル基;シクロペンチル基、シクロヘキシル基、
メンチル基などのシクロアルキル基;ビニル基、
1―プロペニル基、アリル基、イソプロペニル
基、2―メチルアリル基、1―ブテニル基、2―
ブテニル基、プレニル基、3―メチル―3―ブテ
ニル基、2,3―ジメチル―2―ブテニル基、3
―メチル―2―ペンテニル基、3―メチル―3―
ペンテニル基、3,7―ジメチル―2―オクテニ
ル基、3,7―ジメチル―6―オクテニル基、ゲ
ラニル基、ネリル基、3―エチル―7―メチル―
2,6―ノナジエニル基などのアルケニル基;又
はフエニル基、トリル基、キシリル基、ナフチル
基などのアリール基を表わす。R4はメチル基、
エチル基、プロピル基、ブチル基、3―メチルブ
チル基、ペンチル基、ヘキシル基、ヘプチル基、
オクチル基、3,7―ジメチルオクチル基などの
アルキル基;フエニル基、トリル基、キシリル
基、ナフチル基などのアリール基;又は―CH=
CHR7基を表わす。ここで、R7は水素原子;又は
メチル基、エチル基、プロピル基、ブチル基、3
―メチルブチル基、ペンチル基、ヘキシル基、ヘ
プチル基、オクチル基、3,7―ジメチルオクチ
ル基などのアルキル基を表わす。 一般式()で示されるδ,ε―不飽和ケトン
はそれ自体香料として使用できるばかりでなく、
香料、化粧品基材、医薬、農薬などの製造中間体
としても有用な化合物である。 従来、δ,ε―不飽和ケトンはメシチルオキシ
ドをアルカリ縮合剤の存在下にハロゲン化炭化水
素と反応させてα位が炭化水素基で置換された
β,γ―不飽和ケトンとし、ついでこれをビニル
グリニヤール試薬と反応させるか、エチニル化反
応後、部分水素添加することによりアリル型アル
コールとし、該アリル型アルコールを加熱異性化
することにより製造されている(特開昭52−
83409号参照)。この従来法は安価なメシチルオキ
サイドを原料としていること、操作が容易である
ことなどから該δ,ε―不飽和ケトンの工業的な
製造方法として優れているが、その反面、使用す
る原料に起因して製造されるδ,ε―不飽和ケト
ンはその基本骨格のδ位の位置にメチル基を有
し、かつε位の位置に1つの炭化水素基を有する
ものに限定されてしまい、多様のδ,ε―不飽和
ケトンの製造には適していない。 本発明者らはメシチルオキシドを原料とする従
来法における上記問題点を解決すべく鋭意検討し
た結果、前記一般式()で示されるような極め
て多様のδ,ε―不飽和ケトンが容易に製造され
る方法を見出し、本発明に至つた。 すなわち、本発明によれば、一般式() 〔式中、R1,R2及びR3は一般式()におけ
ると同じ意味を有し、R5はアルキル基又はアリ
ール基を表わし、R6はアルキル基、アリール基
又は
The present invention is based on the general formula () This invention relates to a method for producing a δ,ε-unsaturated ketone represented by In the above general formula (), R 1 , R 2 and R 3 are the same or different, each a hydrogen atom; methyl group, ethyl group, propyl group, butyl group, 3-methylbutyl group, pentyl group, hexyl group, heptyl group, Alkyl groups such as octyl group, 3,7-dimethyloctyl group; cyclopentyl group, cyclohexyl group,
Cycloalkyl group such as menthyl group; vinyl group,
1-propenyl group, allyl group, isopropenyl group, 2-methylallyl group, 1-butenyl group, 2-
butenyl group, prenyl group, 3-methyl-3-butenyl group, 2,3-dimethyl-2-butenyl group, 3
-Methyl-2-pentenyl group, 3-methyl-3-
Pentenyl group, 3,7-dimethyl-2-octenyl group, 3,7-dimethyl-6-octenyl group, geranyl group, neryl group, 3-ethyl-7-methyl-
It represents an alkenyl group such as a 2,6-nonadienyl group; or an aryl group such as a phenyl group, tolyl group, xylyl group, or naphthyl group. R 4 is a methyl group,
Ethyl group, propyl group, butyl group, 3-methylbutyl group, pentyl group, hexyl group, heptyl group,
Alkyl groups such as octyl group and 3,7-dimethyloctyl group; aryl groups such as phenyl group, tolyl group, xylyl group, and naphthyl group; or -CH=
Represents 7 CHR groups. Here, R 7 is a hydrogen atom; or a methyl group, ethyl group, propyl group, butyl group, 3
-Represents an alkyl group such as a methylbutyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, or a 3,7-dimethyloctyl group. The δ,ε-unsaturated ketone represented by the general formula () can not only be used as a fragrance itself, but also
It is also a useful compound as an intermediate in the production of fragrances, cosmetic base materials, medicines, agricultural chemicals, etc. Conventionally, δ, ε-unsaturated ketones are produced by reacting mesityl oxide with halogenated hydrocarbons in the presence of an alkaline condensing agent to produce β, γ-unsaturated ketones with α-positions substituted with hydrocarbon groups. It is produced by reacting with a vinyl Grignard reagent or ethynylation reaction followed by partial hydrogenation to obtain an allyl type alcohol, and then heating and isomerizing the allyl type alcohol (JP-A-52-1999)
(See No. 83409). This conventional method is excellent as an industrial method for producing δ,ε-unsaturated ketones because it uses cheap mesityl oxide as a raw material and is easy to operate. The δ,ε-unsaturated ketones produced by this method are limited to those having a methyl group at the δ position of the basic skeleton and one hydrocarbon group at the ε position, and are therefore diverse. It is not suitable for the production of δ, ε-unsaturated ketones. The present inventors have made intensive studies to solve the above-mentioned problems in the conventional method using mesityl oxide as a raw material. We have discovered a method for producing it, leading to the present invention. That is, according to the present invention, the general formula () [In the formula, R 1 , R 2 and R 3 have the same meanings as in the general formula (), R 5 represents an alkyl group or an aryl group, and R 6 represents an alkyl group, an aryl group or

【式】基を表わす。ここで、R7 は水素原子又はアルキル基を表わし、R8はアル
キル基又はアリール基を表わす。) で示される含硫黄ホモアリル型アルコールを酸化
して対応するスルホキシドとし、ついで該スルホ
キシドを加熱下に反応させることにより前記一般
式()で示されるδ,ε―不飽和ケトンを製造
することができる。また、一般式()で示され
る含硫黄ホモアリル型アルコールは一般式() 〔式中、R1,R2及びR3は一般式()におけ
ると同じ意味を有し、Xは塩素原子、臭素原子又
はヨウ素原子を表わす。〕 で示されるアリルグリニヤール試薬と一般式
() 〔式中、R5及びR6は一般式()におけると
同じ意味を有する。〕 で示されるα―チオケトンとを反応させることに
よつて高収率で得られる。 一般式()で示される含硫黄ホモアリル型ア
ルコールを酸化することにより対応するスルホキ
シドが得られる。この酸化反応は通常の酸化方法
に従つて行なうことができるが、過ギ酸、過酢
酸、過プロピオン酸、過フタル酸、過安息香酸、
m―クロル過安息香酸などの有機過酸、過酸化水
素のような適当な酸化剤で処理する自体公知の方
法により行なうのが簡便である。酸化剤としては
扱い易さ、目的とするスルホキシドへの選択性の
観点からm―クロル過安息香酸が特に好ましい。
〔D.Heissler,Tetrahedron Letters487(1976)
参照〕。酸化剤の使用量は、一般式()におい
てR6がアルキル基又はアリール基である含硫黄
ホモアリル型アルコールに対してはほぼ1当量が
最適であり、また一般式()においてR6
[Formula] represents a group. Here, R 7 represents a hydrogen atom or an alkyl group, and R 8 represents an alkyl group or an aryl group. ) The δ,ε-unsaturated ketone represented by the general formula () can be produced by oxidizing the sulfur-containing homoallylic alcohol represented by the formula () to the corresponding sulfoxide, and then reacting the sulfoxide under heating. . In addition, the sulfur-containing homoallylic alcohol represented by the general formula () has the general formula () [In the formula, R 1 , R 2 and R 3 have the same meanings as in the general formula (), and X represents a chlorine atom, a bromine atom or an iodine atom. ] Allyl Grignard reagent and general formula () [In the formula, R 5 and R 6 have the same meanings as in the general formula (). ] It can be obtained in high yield by reacting with the α-thioketone shown below. The corresponding sulfoxide can be obtained by oxidizing the sulfur-containing homoallylic alcohol represented by the general formula (). This oxidation reaction can be carried out according to ordinary oxidation methods, including performic acid, peracetic acid, perpropionic acid, perphthalic acid, perbenzoic acid,
This can be easily carried out by a method known per se, which involves treatment with an organic peracid such as m-chloroperbenzoic acid or a suitable oxidizing agent such as hydrogen peroxide. As the oxidizing agent, m-chloroperbenzoic acid is particularly preferred from the viewpoint of ease of handling and selectivity to the target sulfoxide.
[D. Heissler, Tetrahedron Letters 487 (1976)
reference〕. The optimum amount of the oxidizing agent to be used is approximately 1 equivalent for sulfur-containing homoallylic alcohols in which R 6 in the general formula () is an alkyl group or an aryl group;

【式】基である含硫黄ホモアリル型 アルコールに対してはほぼ2当量が最適である。
反応温度は−30℃〜+50℃の範囲が適当である。
また、この酸化反応は溶媒の存在下で行なうのが
好ましく、溶媒としてはクロロホルム、塩化メチ
レン、四塩化炭素、ジエチルエーテル、ベンゼ
ン、トルエンなどの不活性溶媒が用いられる。反
応終了後、反応混合液から生成した有機酸及び未
反応の酸化剤を塩基で中和後除去し、ついで溶媒
を留去することによりスルホキシドを得る。この
スルホキシドは精製することなく、次の加熱下の
反応に付すことができる。 酸化剤としてm―クロル過安息香酸を使用する
場合の好ましい実施態様においては、一般式
()で示される含硫黄ホモアリル型アルコール
を溶解した塩化メチレン溶液中に、該含硫黄ホモ
アリル型アルコールに対し、この含硫黄ホモアリ
ル型アルコールが一般式()においてR6がア
ルキル基又はアリール基であるものの場合にはほ
ぼ1当量のm―クロル過安息香酸の塩化メチレン
溶液を、また一般式()においてR6
Approximately 2 equivalents is optimal for the sulfur-containing homoallylic alcohol which is the group [Formula].
The reaction temperature is suitably in the range of -30°C to +50°C.
Further, this oxidation reaction is preferably carried out in the presence of a solvent, and inert solvents such as chloroform, methylene chloride, carbon tetrachloride, diethyl ether, benzene, and toluene are used as the solvent. After the reaction is completed, the organic acid produced from the reaction mixture and the unreacted oxidizing agent are neutralized with a base and then removed, and then the solvent is distilled off to obtain a sulfoxide. This sulfoxide can be subjected to the next reaction under heating without being purified. In a preferred embodiment when m-chloroperbenzoic acid is used as the oxidizing agent, in a methylene chloride solution in which a sulfur-containing homoallylic alcohol represented by the general formula () is dissolved, the sulfur-containing homoallylic alcohol is When this sulfur-containing homoallylic alcohol is one in which R 6 is an alkyl group or an aryl group in the general formula (), approximately 1 equivalent of m-chloroperbenzoic acid in a methylene chloride solution is added; but

【式】基であるものの場合にはほぼ 2当量のm―クロル過安息香酸の塩化メチレン溶
液を0〜5℃で滴下し、ついで室温で約1時間撹
拌することにより反応を行なう。反応終了後、反
応混合液に使用したm―クロル過安息香酸に対し
て約3倍モル量の10%水酸化カリウム水溶液を加
え、生成したm―クロル安息香酸及び未反応のm
―クロル過安息香酸を中和する。ついで、この混
合溶液を水洗、乾燥した後、これより塩化メチレ
ンを減圧下に留去し、得られたスルホキシドを含
む残渣を次の加熱下の反応に付す。 上記の酸化反応により得られた一般式()で
示される含硫黄ホモアリル型アルコールに対応す
るスルホキシドを、加熱下に反応させることによ
り一般式()で示されるδ,ε―不飽和ケトン
を得ることができる。この反応は液相又は気相
で、温度約100〜600℃に加熱することにより行な
うことができるが、反応速度、選択率の面から温
度約130〜250℃、好ましくは150〜230℃で液相に
て行なうのが実際的である。反応系の雰囲気に特
に制限はないが、一般には窒素、ヘリウムなどの
不活性ガス雰囲気が好ましい。また、この反応は
溶媒の不存在下に行なうこともできるが、溶媒の
存在下で行なうのが好ましい。溶媒としてはN,
N―ジメチルホルムアミド、ε―カプロラクタ
ム、N―メチル―2―ピロリドン、N―エチル―
2―ピロリドンなどの含窒素化合物が特に好まし
く用いられる。反応時間は反応温度によつて大き
く影響されるが、N―メチル―2―ピロリドンを
溶媒とする液相系で温度165℃で反応が行なわれ
る場合、約6時間で反応は完了する。この加熱下
での反応は次式に示すように2段階の反応を経て
進行していると思われるが、特にこの反応機構に
限定されるものではない。 〔上記式中、R1,R2,R3,R5,R7及びR8は一
般式()におけると同じ意味を有し、R6′はア
ルキル基又はアリール基を表わす。〕 なお、上記反応中、α′位の
In the case of the group [Formula], approximately 2 equivalents of a methylene chloride solution of m-chloroperbenzoic acid is added dropwise at 0 to 5°C, followed by stirring at room temperature for about 1 hour to carry out the reaction. After the reaction is complete, a 10% aqueous potassium hydroxide solution is added to the reaction mixture in an amount approximately three times the molar amount of the m-chloroperbenzoic acid used, and the m-chlorobenzoic acid produced and the unreacted m
- Neutralizes chlorperbenzoic acid. After this mixed solution is washed with water and dried, methylene chloride is distilled off from it under reduced pressure, and the resulting residue containing sulfoxide is subjected to the next reaction under heating. Obtaining the δ,ε-unsaturated ketone represented by the general formula () by reacting the sulfoxide corresponding to the sulfur-containing homoallylic alcohol represented by the general formula () obtained by the above oxidation reaction under heating. Can be done. This reaction can be carried out in the liquid phase or gas phase by heating at a temperature of about 100 to 600°C, but from the viewpoint of reaction rate and selectivity, the reaction is carried out at a temperature of about 130 to 250°C, preferably 150 to 230°C. It is practical to do this in parallel. Although there are no particular restrictions on the atmosphere of the reaction system, an atmosphere of an inert gas such as nitrogen or helium is generally preferred. Although this reaction can be carried out in the absence of a solvent, it is preferably carried out in the presence of a solvent. N as a solvent,
N-dimethylformamide, ε-caprolactam, N-methyl-2-pyrrolidone, N-ethyl-
Nitrogen-containing compounds such as 2-pyrrolidone are particularly preferably used. The reaction time is greatly influenced by the reaction temperature, but when the reaction is carried out at a temperature of 165° C. in a liquid phase system using N-methyl-2-pyrrolidone as a solvent, the reaction is completed in about 6 hours. This reaction under heating is thought to proceed through a two-step reaction as shown in the following formula, but the reaction mechanism is not particularly limited. [In the above formula, R 1 , R 2 , R 3 , R 5 , R 7 and R 8 have the same meanings as in the general formula (), and R 6 ' represents an alkyl group or an aryl group. ] In addition, during the above reaction, the α′ position

【式】基がβ′位 の水素原子を伴つて脱離する反応は、α位の
[Formula] The reaction in which the group is eliminated with the hydrogen atom at the β' position is

【式】基がβ位の水素原子を伴つて脱離する 反応と同様の上述の条件下で行なわれる。 反応終了後、溶媒不存在下で得られた反応混合
物の場合にはこれをそのまま蒸留することによ
り、また溶媒存在下で得られた反応混合物の場合
にはこれを水に注ぎ、例えばヘキサンなどで抽出
し、抽出液を蒸留するか又はカラムクロマトグラ
フイーに付することにより一般式()で示され
るδ,ε―不飽和ケトンを単離することができ
る。 前記一般式()で示されるアリルグリニヤー
ル試薬は、対応するアリルハライドと金属マグネ
シウムとを窒素、ヘリウムなどの不活性ガス雰囲
気下、テトラヒドロフラン、ジエチルエーテルな
どのエーテル系の溶媒中で−30℃〜50℃好ましく
は−5℃〜30℃の温度で反応させることによつて
調製することができる。この反応に要する時間は
アリルハライドの種類及び反応温度によつてかな
り影響されるが、通常約1時間である。この反応
系に一般式()で示されるα―チオケトンを−
30℃〜50℃好ましくは−10℃〜30℃の温度で滴下
し、そのままの温度ないしは室温下で約1時間撹
拌することにより一般式()で示される含硫黄
ホモアリル型アルコールを含む反応混合物が得ら
れる。一般式()で示されるα―チオケトンの
使用量は一般式()で示されるアリルグリニヤ
ール試薬に対して約0.3〜1当量好ましくは約0.5
〜0.9当量である。反応混合物からの含硫黄ホモ
アリル型アルコールの分離回収は通常の方法によ
り行なうことができる。例えば、反応混合物に塩
化アンモニウム水溶液を加え、ついでジエチルエ
ーテル、ヘキサンなどで抽出し、抽出液を水洗、
乾燥したのち、溶媒を留去することにより一般式
()で示される含硫黄ホモアリル型アルコール
を得る。この含硫黄ホモアリル型アルコールは精
製することなく、次の酸化反応に付することがで
きるが、さらに蒸留又はカラムクロマトグラフイ
ーにより精製した含硫黄ホモアリル型アルコール
を該酸化反応に付することも何らさしつかえな
い。 原料として用いる一般式()で示されるα―
チオケトンは一般式() 〔式中、R6は一般式()におけると同じ意
味を有する。〕 で示されるケトンと一般式() R5S−SR5 …() 〔式中、R5は一般式()におけると同じ意
味を有する。〕 で示されるジスルフイド又は一般式() R5S−Y …() 〔式中、R5は一般式()におけると同じ意
味を有し、Yはハロゲン原子を表わす。〕 で示されるスルフエニルハライドを水素化ナトリ
ウム、水素化カリウム、n―ブチルリチウムなど
の塩基の存在下に反応させることにより容易に製
造することができる。一般式()で示されるケ
トンとしては、例えばメチルエチルケトン、ジエ
チルケトン、エチルフエニルケトン、α―メチル
チオジエチルケトンなどを挙げることができる。
一般式()で示されるジスルフイドの好ましい
例としてジメチルジスルフイド、ジエチルジスル
フイド、ジフエニルジスルフイドなどを挙げるこ
とができ、また一般式()で示されるスルフエ
ニルハライドとしては好ましくはメチルスルフエ
ニルクロライド、エチルスルフエニルクロライ
ド、フエニルスルフエニルブロマイドなどを例示
することができる。 以下、実施例により本発明を具体的に説明す
る。 実施例 1 1―(1―メチルチオ)エチル―1,2,2―
トリメチル―3―ブテン―1―オールの合成 100ml容三つ口フラスコに金属マグネシウム
0.95g及び乾燥テトラヒドロフラン45mlをとり、
窒素ガス雰囲気下、内温約20℃に保ちながら、塩
化プレニル4.1gを徐々に滴下し、グリニヤール
試薬を調整した。次に、このグリニヤール試薬に
3―メチルチオ―2―ブタノン(純度93.4%)
3.79gの15mlテトラヒドロフラン溶液を内温20〜
23℃で滴下した。1時間、室温で撹拌したのち、
反応混合液を大量の塩化アンモニウム水溶液中に
注ぎ、これをジエチルエーテルで抽出した。抽出
液を数回水洗したのち、無水硫酸ナトリウム上で
乾燥した。エーテルを減圧下に留去したのち、そ
の残渣を減圧下に蒸留することにより、bp.62.0
〜63.5℃/0.7〜0.75mmHgの留分5.66g(純度99.6
%)を得た。収率100%。このものはガスクロマ
トグラフイー分析(充填剤OV−1,1m、カラム
温度80〜140℃)の結果、約1対4のジアステレ
オマーであることが判つた。この生成物をH1
NMR分析及びIR分析により、1―(1―メチル
チオ)エチル―1,2,2―トリメチル―3―ブ
テン―1―オールを確認した。代表的なシグナル
を次に記した。 H1−NMR(CDCl3,ppm): 1.15(6H,S)
The reaction is carried out under the same conditions as described above for the reaction in which the group [formula] is eliminated with a hydrogen atom in the β position. After the reaction is complete, in the case of a reaction mixture obtained in the absence of a solvent, it can be distilled as it is, or in the case of a reaction mixture obtained in the presence of a solvent, it can be poured into water and diluted with, for example, hexane. The δ,ε-unsaturated ketone represented by the general formula () can be isolated by distilling the extract or subjecting it to column chromatography. The allyl Grignard reagent represented by the general formula () is prepared by mixing the corresponding allyl halide and magnesium metal in an ether solvent such as tetrahydrofuran or diethyl ether in an inert gas atmosphere such as nitrogen or helium at -30°C to 50°C. It can be prepared by reacting at a temperature of preferably -5°C to 30°C. The time required for this reaction is considerably influenced by the type of allyl halide and the reaction temperature, but is usually about 1 hour. α-thioketone represented by the general formula () is added to this reaction system.
The reaction mixture containing the sulfur-containing homoallylic alcohol represented by the general formula () is prepared by adding dropwise at a temperature of 30°C to 50°C, preferably -10°C to 30°C, and stirring for about 1 hour at that temperature or at room temperature. can get. The amount of α-thioketone represented by the general formula () to be used is about 0.3 to 1 equivalent, preferably about 0.5 equivalent to the allyl Grignard reagent represented by the general formula ().
~0.9 equivalent. The sulfur-containing homoallylic alcohol can be separated and recovered from the reaction mixture by a conventional method. For example, add ammonium chloride aqueous solution to the reaction mixture, then extract with diethyl ether, hexane, etc., wash the extract with water,
After drying, the solvent is distilled off to obtain a sulfur-containing homoallylic alcohol represented by the general formula (). This sulfur-containing homoallylic alcohol can be subjected to the next oxidation reaction without being purified, but there is no problem in subjecting a sulfur-containing homoallylic alcohol that has been further purified by distillation or column chromatography to the oxidation reaction. do not have. α- shown by the general formula () used as a raw material
Thioketone has the general formula () [In the formula, R 6 has the same meaning as in the general formula (). ] Ketone represented by the general formula () R 5 S-SR 5 ... () [wherein R 5 has the same meaning as in the general formula (). ] Disulfide represented by the general formula () R 5 S-Y ... () [wherein R 5 has the same meaning as in the general formula (), and Y represents a halogen atom. ] It can be easily produced by reacting the sulfenyl halide represented by the following in the presence of a base such as sodium hydride, potassium hydride, or n-butyllithium. Examples of the ketone represented by the general formula () include methyl ethyl ketone, diethyl ketone, ethyl phenyl ketone, and α-methylthiodiethyl ketone.
Preferred examples of the disulfide represented by the general formula () include dimethyl disulfide, diethyl disulfide, diphenyl disulfide, etc. Preferable examples of the sulfenyl halide represented by the general formula () include Examples include methylsulfenyl chloride, ethylsulfenyl chloride, and phenylsulfenyl bromide. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 1-(1-methylthio)ethyl-1,2,2-
Synthesis of trimethyl-3-buten-1-ol Metal magnesium in a 100ml three-necked flask
Take 0.95g and 45ml of dry tetrahydrofuran,
Under a nitrogen gas atmosphere, 4.1 g of prenyl chloride was gradually added dropwise while maintaining the internal temperature at about 20° C. to prepare a Grignard reagent. Next, add 3-methylthio-2-butanone (93.4% purity) to this Grignard reagent.
Add 3.79g of 15ml tetrahydrofuran solution to an internal temperature of 20~
It was added dropwise at 23°C. After stirring for 1 hour at room temperature,
The reaction mixture was poured into a large amount of aqueous ammonium chloride solution, and extracted with diethyl ether. After washing the extract with water several times, it was dried over anhydrous sodium sulfate. After distilling off the ether under reduced pressure, the residue was distilled under reduced pressure to obtain bp.62.0
~63.5℃/0.7~0.75mmHg fraction 5.66g (purity 99.6
%) was obtained. Yield 100%. As a result of gas chromatography analysis (filling material: OV-1, 1 m, column temperature: 80 to 140°C), this product was found to be a diastereomer with a ratio of approximately 1:4. This product is H 1
1-(1-methylthio)ethyl-1,2,2-trimethyl-3-buten-1-ol was confirmed by NMR analysis and IR analysis. Representative signals are listed below. H1 -NMR ( CDCl3 , ppm): 1.15 (6H, S)

【式】 1.23(3H,s)【formula】 1.23 (3H, s)

【式】 1.37(3H,d)【formula】 1.37 (3H, d)

【式】 2.08(3H,s)―SCH3 2.66〜3.10(1H,m))[Formula] 2.08 (3H, s) - SCH 3 2.66 ~ 3.10 (1H, m))

【式】 4.85〜5.15(2H,m)【formula】 4.85~5.15 (2H, m)

【式】 5.90〜6.35(1H,m)【formula】 5.90~6.35 (1H, m)

【式】 IR(cm-1):3480,3080,2980,1635,1375,
1090,910 7―メチル―6―オクテン―2―オンの合成 1―(1―メチルチオ)エチル―1,2,2―
トリメチル―3―ブテン―1―オール3.0gを塩
化メチレン45mlに溶解し、約0℃に冷却した。次
にこの溶液にm―クロル過安息香酸(純度80%)
3.6gの45ml塩化メチレン溶液を同一温度で滴下
した。ついで、温度を室温にもどし1時間撹拌し
た。反応混合液に使用したm―クロル過安息香酸
に対して3倍当量の10%水酸化カリウム水溶液を
加えて1時間撹拌した。塩化メチレン層を分離
し、さらに水層を塩化メチレンで抽出した。塩化
メチレン層と塩化メチレン抽出液とを合わせ、こ
の混合液を水洗し、ついで無水硫酸ナトリウム上
で乾燥した。塩化メチレンを減圧下に留去した。
その残渣をN―メチル―2―ピロリドン4.8gに
溶解し、窒素雰囲気下、175±2℃の浴温で6時
間加熱した。次に、反応混合液を大量の水に注ぎ
ヘキサンで抽出した。ヘキサン層を水洗し、無水
硫酸ナトリウム上で乾燥した。ヘキサンを減圧下
に留去したのち、その残渣をシリカゲルクロマト
グラフイー(溶出液:酢酸エチル―ヘキサン系)
で精製することにより、油状の7―メチル―6―
オクテン―2―オンを1.22g得た。収率55%。生
成物のGC―Massスペクトルにおける特徴的フラ
グメントを次に示した。 GC条件:カラム充填剤PEG20M、カラム長
2m、温度120℃ Massスペクトルm/e:〔M〕+140,122,82,
67,47 実施例 2〜5 種々のアリルグリニヤール試薬()とα―チ
オケトン()とを実施例1と同様の条件下で反
応させ、分離回収することにより含硫黄ホモアリ
ル型アルコール()を得、ついで該含硫黄ホモ
アリル型アルコール()を実施例1と同様の条
件下で加熱反応させ、分離精製することにより
δ,ε―不飽和ケトン()を得た。結果は第1
表に示したとおりである。
[Formula] IR (cm -1 ): 3480, 3080, 2980, 1635, 1375,
1090,910 Synthesis of 7-methyl-6-octen-2-one 1-(1-methylthio)ethyl-1,2,2-
3.0 g of trimethyl-3-buten-1-ol was dissolved in 45 ml of methylene chloride and cooled to about 0°C. Next, add m-chloroperbenzoic acid (purity 80%) to this solution.
A solution of 3.6 g in 45 ml methylene chloride was added dropwise at the same temperature. Then, the temperature was returned to room temperature and stirred for 1 hour. A 10% aqueous potassium hydroxide solution in an amount of three times the amount of m-chloroperbenzoic acid used was added to the reaction mixture, and the mixture was stirred for 1 hour. The methylene chloride layer was separated, and the aqueous layer was further extracted with methylene chloride. The methylene chloride layer and the methylene chloride extract were combined, and the mixture was washed with water and then dried over anhydrous sodium sulfate. Methylene chloride was distilled off under reduced pressure.
The residue was dissolved in 4.8 g of N-methyl-2-pyrrolidone and heated under a nitrogen atmosphere at a bath temperature of 175±2° C. for 6 hours. Next, the reaction mixture was poured into a large amount of water and extracted with hexane. The hexane layer was washed with water and dried over anhydrous sodium sulfate. After distilling off hexane under reduced pressure, the residue was subjected to silica gel chromatography (eluent: ethyl acetate-hexane system).
By refining with
1.22 g of octen-2-one was obtained. Yield 55%. Characteristic fragments in the GC-Mass spectrum of the product are shown below. GC conditions: column packing material PEG20M, column length
2m, temperature 120℃ Mass spectrum m/e: [M] + 140, 122, 82,
67, 47 Examples 2 to 5 Various allyl Grignard reagents () and α-thioketone () were reacted under the same conditions as in Example 1, and the sulfur-containing homoallylic alcohol () was obtained by separating and recovering. Then, the sulfur-containing homoallylic alcohol () was heated and reacted under the same conditions as in Example 1, and was separated and purified to obtain a δ,ε-unsaturated ketone (). The result is the first
As shown in the table.

【表】【table】

【表】 実施例 6〜11 種々のアリルグリニヤール試薬()とα―チ
オケトン()とを実施例1と同様の条件下で反
応させ分離回収することにより含硫黄ホモアリル
型アルコール()を得、ついで該含硫黄ホモア
リル型アルコール()を実施例1と同様の条件
下で加熱反応させ、分離精製することによりδ,
ε―不飽和ケトン()を得た。結果は第2表に
示したとおりである。
[Table] Examples 6 to 11 Various allyl Grignard reagents () and α-thioketone () were reacted under the same conditions as in Example 1, separated and recovered to obtain sulfur-containing homoallylic alcohols (), and then The sulfur-containing homoallylic alcohol () is subjected to a heating reaction under the same conditions as in Example 1, and is separated and purified to obtain δ,
ε-unsaturated ketone () was obtained. The results are shown in Table 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式() (式中、R1,R2及びR3同一又は異なり、各々
水素原子、アルキル基、シクロアルキル基、アル
ケニル基又はアリール基を表わし、R5はアルキ
ル基又はアリール基を表わし、R6はアルキル基、
アリール基又は【式】基を表わす。 ここで、R7は水素原子又はアルキル基を表わし、
R8はアルキル基又はアリール基を表わす。) で示される含硫黄ホモアリル型アルコールを酸化
して対応するスルホキシドとし、ついで該スルホ
キシドを加熱下に反応させることを特徴とする一
般式() 〔式中、R1,R2及びR3は一般式()におけ
ると同じ意味を有し、R4は一般式()におい
てR6がアルキル基又はアリール基である場合R6
と同一の基を表わし、R6が【式】基 である場合 ―CH=CHR7基を表わす。ここで、R7及びR8
は一般式()におけると同じ意味を有する。〕 で示されるδ,ε―不飽和ケトンの製造方法。 2 一般式() (式中、R1,R2及びR3は同一又は異なり、
各々水素原子、アルキル基、シクロアルキル基、
アルケニル基又はアリール基を表わし、Xは塩素
原子、臭素原子又はヨウ素原子を表わす。) で示されるアリルグリニヤール試薬と一般式
() (式中、R5はアルキル基又はアリール基を表
わし、R6はアルキル基、アリール基又は
【式】基を表わす。ここで、R7は水 素原子又はアルキル基を表わし、R8はアルキル
基又はアリール基を表わす。) で示されるα―チオケトンとを反応させて一般式
() 〔式中、R1,R2及びR3は一般式()におけ
ると同じ意味を有し、R5及びR6は一般式()
におけると同じ意味を有する。〕 で示される含硫黄ホモアリル型アルコールを得、
該含硫黄ホモアリル型アルコールを酸化して対応
するスルホキシドとし、ついで該スルホキシドを
加熱下に反応させることを特徴とする一般式
() 〔式中、R1,R2及びR3は一般式()におけ
ると同じ意味を有し、R4は一般式()におい
てR6がアルキル基又はアリール基である場合R6
と同一の基を表わし、R6が【式】基 である場合―CH=CHR7基を表わす。ここで、
R7及びR8は一般式()におけると同じ意味を
有する。〕 で示されるδ,ε―不飽和ケトンの製造方法。
[Claims] 1 General formula () (In the formula, R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group or an aryl group, R 5 represents an alkyl group or an aryl group, and R 6 represents an alkyl group. basis,
Represents an aryl group or a [formula] group. Here, R 7 represents a hydrogen atom or an alkyl group,
R 8 represents an alkyl group or an aryl group. ) The sulfur-containing homoallylic alcohol represented by formula () is oxidized to form the corresponding sulfoxide, and then the sulfoxide is reacted under heating. [In the formula, R 1 , R 2 and R 3 have the same meanings as in the general formula (), and R 4 is R 6 when R 6 is an alkyl group or an aryl group in the general formula ()
represents the same group as , and when R 6 is a [formula] group -CH=CHR 7 represents a group. Here, R 7 and R 8
has the same meaning as in general formula (). ] A method for producing a δ,ε-unsaturated ketone represented by 2 General formula () (In the formula, R 1 , R 2 and R 3 are the same or different,
Each hydrogen atom, alkyl group, cycloalkyl group,
It represents an alkenyl group or an aryl group, and X represents a chlorine atom, a bromine atom or an iodine atom. ) Allyl Grignard reagent and general formula () (In the formula, R 5 represents an alkyl group or an aryl group, R 6 represents an alkyl group, an aryl group, or a [formula] group. Here, R 7 represents a hydrogen atom or an alkyl group, and R 8 represents an alkyl group. or an aryl group) is reacted with an α-thioketone represented by the general formula (). [In the formula, R 1 , R 2 and R 3 have the same meanings as in the general formula (), and R 5 and R 6 have the same meaning as in the general formula ()
has the same meaning as in. ] A sulfur-containing homoallylic alcohol is obtained,
General formula () characterized in that the sulfur-containing homoallylic alcohol is oxidized to the corresponding sulfoxide, and then the sulfoxide is reacted under heating. [In the formula, R 1 , R 2 and R 3 have the same meanings as in the general formula (), and R 4 is R 6 when R 6 is an alkyl group or an aryl group in the general formula ()
represents the same group as , and when R 6 is a [formula] group, it represents a --CH=CHR 7 group. here,
R 7 and R 8 have the same meanings as in general formula (). ] A method for producing a δ,ε-unsaturated ketone represented by
JP3330383A 1983-02-28 1983-02-28 Preparation of delta, epsilon-unsaturated ketone Granted JPS59157046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3330383A JPS59157046A (en) 1983-02-28 1983-02-28 Preparation of delta, epsilon-unsaturated ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3330383A JPS59157046A (en) 1983-02-28 1983-02-28 Preparation of delta, epsilon-unsaturated ketone

Publications (2)

Publication Number Publication Date
JPS59157046A JPS59157046A (en) 1984-09-06
JPH0212458B2 true JPH0212458B2 (en) 1990-03-20

Family

ID=12382778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3330383A Granted JPS59157046A (en) 1983-02-28 1983-02-28 Preparation of delta, epsilon-unsaturated ketone

Country Status (1)

Country Link
JP (1) JPS59157046A (en)

Also Published As

Publication number Publication date
JPS59157046A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
Back et al. Selenosulfonation of acetylenes: preparation of novel. beta.-(phenylseleno) vinyl sulfones and their conversion to acetylenic and. beta.-functionalized sulfones
Whitesell et al. Asymmetric synthesis of chiral sulfinate esters and sulfoxides. Synthesis of sulforaphane
Kamigata et al. Reactions of sulfonyl chlorides with silyl enol ethers catalysed by aruthenium (II) phosphine complex: convenientsynthesis of β-keto sulfones
Rubottom et al. The Mcpba Oxidation of Alkyl Trimethylsilyl Ketene Acetals
Salomon et al. A synthesis of mixed dialkylperoxides via reaction of an alkylhydroperoxide with alkyl trifluoromethane sulfonates
JPH0212458B2 (en)
Mehta et al. Grob-type fragmentation of a carvone derived β-hydroxymesylate: application to the synthesis of chiral lavandulol derivatives
Shimizu et al. One-step oxidation of olefins into. ALPHA.-phenylseleno carbonyl compounds.
JP2720984B2 (en) Method for producing phenyl-substituted epoxide
JPH027300B2 (en)
Murai et al. Synthesis of. BETA.-and. ALPHA.-rotunols. Revision of the structure of a stress metabolite" 1-keto-. ALPHA.-cyperone".
US4107181A (en) Useful prostaglandin intermediates
NAGASHIMA et al. Syntheses and Reactions of Phenylthio-and Propylthioacetylenic Compounds
JPH0753681B2 (en) Method for producing tropone derivative
CH640496A5 (en) PROCESS FOR THE PREPARATION OF BETA-DAMASCENONE.
US4052434A (en) Prostaglandin intermediates
Kinoshita et al. Two-carbon Michael acceptors. Acetyl cation equivalents
Lebarillier et al. Synthesis and Reactivity of α-and β-Chloro-α-phenylselanyl Esters
JPS6042775B2 (en) 1,7-octadien-3-one and its manufacturing method
KR20000070905A (en) Method for preparing 3,3-dimethylbutyraldehyde
US4058567A (en) Cyclopentene sulfoxides
JPS6148815B2 (en)
JPH0316932B2 (en)
Fujinami et al. FORMATION OF 1, 1-DITHIODICARBOXYLIC ACID ESTERS FROM CYCLIC KETONES, CARBON DISULFIDE, AND LITHIUM METHOXIDE
Fujisawa et al. The highly regioselective coupling reaction of allylic alcohols with lithium enolate of dithioesters using 1-chloro-2-methyl-N, N-tetramethylenepropenylamine