JPH02124447A - Light scattering type grain counter for reactive gas - Google Patents

Light scattering type grain counter for reactive gas

Info

Publication number
JPH02124447A
JPH02124447A JP63276166A JP27616688A JPH02124447A JP H02124447 A JPH02124447 A JP H02124447A JP 63276166 A JP63276166 A JP 63276166A JP 27616688 A JP27616688 A JP 27616688A JP H02124447 A JPH02124447 A JP H02124447A
Authority
JP
Japan
Prior art keywords
gas
light scattering
reactive gas
reactive
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63276166A
Other languages
Japanese (ja)
Inventor
Masao Kimura
木村 昌夫
Shigeru Yoshimura
茂 吉村
Tadashi Akiyama
正 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAN KAGAKU KK
Original Assignee
DAN KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAN KAGAKU KK filed Critical DAN KAGAKU KK
Priority to JP63276166A priority Critical patent/JPH02124447A/en
Publication of JPH02124447A publication Critical patent/JPH02124447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)

Abstract

PURPOSE:To make it possible to perform substitution of gas quickly by providing an inactive gas introducing port to the side surface of a detecting cell where a gas stream is stagnated, and injecting clean inactive gas through the port. CONSTITUTION:A port 11 is provided at the side surface of a detecting cell part 2 of a light scattering type grain counter 1. Then, a valve 52 is closed, and valves 51, 53 and 54 are opened. Inactive gas is introduced into the apparatus. Then, part of the inactive gas is directly supplied into the port 11 by way of the valve 54 and a filter 4. The substitution of the gas in the detecting cell part 2 is completed in a short time. During this period, a sucking pump 3 is operated. Then, the valves 51 and 54 are closed, and the valve 52 is opened. Reactive gas is introduced, and counting is performed. In this way, the substitution of the gas is performed before the reactive gas is sucked. The inactive gas does not flow during the measurement of a flow rate. Therefore, errors can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、反応性ガス吸引前の不活性ガスによるガス置
換を、確実かつ容易にした反応性ガス用光散乱式粒子計
数器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a light-scattering particle counter for reactive gases that ensures and facilitates gas replacement with inert gas before reactive gas suction. be.

〔従来の技術〕[Conventional technology]

半導体装置製造用ガス中の粒子濃度を計測するとき、空
気に接触するだけで発火するような反応性ガス(例えば
アルシン、モノシラン、ジボラン等)は、完全に空気と
の接触を断った状態で抽出しなければならない。反応ガ
ス中の粒子濃度を光散乱式粒子計数器によって測定する
ときに、一般に行われている方法は、窒素ガス(N2)
などの不活性ガスをあらかじめ計数器の流体系(反応性
ガス流入部、検出セル、ポンプ、流量計および配管など
)中に導入し、十分に空気を追い出してから(上記操作
をガス置換と呼んでいる)、計測対象の反応性ガスをサ
ンプリングするようにしている。この際、上記ガス置換
が流体系内部の隅々まで行われねばならないことはもち
ろんであり、また、上記ガス置換は計測が終ったあとに
も同様に必要であり、流体系の内部に充満している反応
性ガスを排出するときにも、上記不活性ガスによるガス
置換が行われる。
When measuring particle concentrations in semiconductor device manufacturing gases, reactive gases that can ignite just by contacting air (e.g. arsine, monosilane, diborane, etc.) are extracted after completely cutting off contact with air. Must. When measuring the particle concentration in a reaction gas using a light scattering particle counter, the commonly used method is to use nitrogen gas (N2).
Introduce an inert gas, such as ), the reactive gas to be measured is sampled. At this time, it goes without saying that the above gas replacement must be carried out to every corner inside the fluid system, and the above gas replacement is also necessary after the measurement is completed, so that the inside of the fluid system is not filled. Gas replacement with the above-mentioned inert gas is also performed when exhausting the reactive gas.

第3図は従来用いられていた汎用の光散乱式粒子計数器
と同等の流体系を有する装置で1反応性ガスをサンプリ
ングする場合の配管図を示すものである。上記装置のガ
スに接する部分の材質には、ステンレス、弗素樹脂など
が使われている。図において、1は光散乱式粒子計数器
、2は検出セル。
FIG. 3 shows a piping diagram for sampling a single reactive gas using an apparatus having a fluid system equivalent to a conventionally used general-purpose light scattering particle counter. Stainless steel, fluororesin, etc. are used as materials for the parts of the above device that come into contact with gas. In the figure, 1 is a light scattering particle counter, and 2 is a detection cell.

3は吸引ポンプ、4はフィルタ、51.52.53はそ
れぞれバルブを示し、6は流量計を示しており。
3 is a suction pump, 4 is a filter, 51, 52, and 53 are valves, and 6 is a flow meter.

Gは反応性ガス、N2は窒素ガスの流入をそれぞれ示し
ている。ただし、バルブ53と図示のバイパス回路8と
は、上記光散乱式粒子計数器1のガス入口とガス出口と
の間のガス圧力を均圧にするためのもので、計測対象の
反応性ガスGの圧力が常圧であるときは必要としない、
上記第3図に示す従来装置の操作はつぎに示すとおりで
ある。すなわち、バルブ52を閉じたままバルブ51と
53とを開き、N□ガスを装置内に導入する。この際、
吸引\ ポンプ3は運転しておく、つぎにバルブ51を閉じてバ
ルブ52を開き、サンプルガスとして反応性ガスGを導
入する。ここで、N2ガスを導入する時間、すなわちガ
ス置換時間は、あらかじめ出口ガス中の酸素濃度をモニ
タすることによって求めておく必要がある。
G indicates the inflow of reactive gas, and N2 indicates the inflow of nitrogen gas. However, the valve 53 and the illustrated bypass circuit 8 are for equalizing the gas pressure between the gas inlet and the gas outlet of the light scattering particle counter 1, and are used to equalize the gas pressure between the gas inlet and the gas outlet of the light scattering particle counter 1. Not required when the pressure is normal pressure,
The operation of the conventional apparatus shown in FIG. 3 is as follows. That is, valves 51 and 53 are opened while valve 52 is closed, and N□ gas is introduced into the apparatus. On this occasion,
Suction\ The pump 3 is operated, and then the valve 51 is closed and the valve 52 is opened to introduce the reactive gas G as the sample gas. Here, the time for introducing the N2 gas, that is, the gas replacement time, must be determined in advance by monitoring the oxygen concentration in the outlet gas.

上記検出セル2のガス導入部(サンプルノズルという)
は細管であって、この先端から流出するガスは細いジェ
ット流となり、上記検出セル2の下側に位置する吸引ノ
ズルに直ちに吸込まれ、ガス流は上記検出セル2の内部
に拡がることなくジェット流として通り抜けてしまう。
Gas introduction part of the detection cell 2 (referred to as sample nozzle)
is a thin tube, and the gas flowing out from the tip becomes a thin jet stream, which is immediately sucked into the suction nozzle located below the detection cell 2, and the gas stream does not spread inside the detection cell 2 and becomes a jet stream. It passes through as.

光散乱式粒子計数器では粒子検出性能を重視するため、
検出セル内部が上記ジェット流を発生するように複雑な
構造に形成されている。その結果、ガスの流れに対して
澱み部を生じ、検出セル内の大部分の空気は、上記ジェ
ット流の乱れと気体拡散とによって不活性ガスを混入し
て徐々に置換が行われ、ガス置換に極めて長時間を要す
ることになる。
Because light scattering particle counters emphasize particle detection performance,
The inside of the detection cell is formed into a complicated structure so as to generate the jet stream. As a result, a stagnation area is created in the gas flow, and most of the air in the detection cell is gradually replaced with inert gas by the turbulence of the jet flow and gas diffusion, and the gas is replaced. This will take an extremely long time.

第4図に示す例は、上記の欠点に対し、より多量の不活
性ガスを流入させることができるように改良した装置で
あり、かつ検出セル2の澱み部分に多少空気が残ってい
ても、不活性ガスのシースによって反応性ガスが接触す
ることがないようにしたものである0図における9はト
ータル流量計。
The example shown in FIG. 4 is an improved device that overcomes the above drawbacks by allowing a larger amount of inert gas to flow in, and even if some air remains in the stagnant portion of the detection cell 2. 9 in Figure 0 is a total flow meter that prevents contact with reactive gas by an inert gas sheath.

10はシース流量計を示し、他は第3図に示す従来例の
場合と同様である。この装置の操作はつぎに示すとおり
に行う、まず、バルブ52を閉じたままでそれぞれのバ
ルブ51.53.54を開いてN2ガスを導入する。吸
引ポンプ3は運転状態にしておく。
Reference numeral 10 indicates a sheath flowmeter, and the other parts are the same as in the conventional example shown in FIG. The operation of this apparatus is as follows: First, N2 gas is introduced by opening each valve 51, 53, 54 while keeping valve 52 closed. The suction pump 3 is left in operation.

つぎにバルブ54を閉じバルブ52を開いて1反応性ガ
スGを導入する。検出セル2において、サンプルノズル
を蔽っているパイプ部分をシースノズルというが1通常
上記シースノズルはサンプルノズルの2〜3倍の内径を
有しており、多量の不活性ガスを流すことができる。こ
のシース中の不活性ガス流は計測中にも流しておくから
、ガス置換の効率が上記従来例よりもすぐれている。
Next, the valve 54 is closed and the valve 52 is opened to introduce one reactive gas G. In the detection cell 2, the pipe portion covering the sample nozzle is called a sheath nozzle.1 The sheath nozzle usually has an inner diameter two to three times that of the sample nozzle, and can flow a large amount of inert gas. Since this inert gas flow in the sheath is allowed to flow even during measurement, the efficiency of gas replacement is superior to that of the above-mentioned conventional example.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来例では1反応性ガスの流量を2つの流量計9お
よびlOの読みQいQ2の差として求める。
In the conventional example described above, the flow rate of one reactive gas is determined as the difference between the readings Q and Q2 of the two flowmeters 9 and lO.

サンプルノズルの入口に流量計を接続しない理由は、上
記流量計からの発塵が無視できないからである。一般に
反応性ガス流量Q、−Q、とシース流量Q2との比は4
〜9倍程度であり、それぞれの流量計の流量QいQ2の
読取り誤差をEとすると組合せ誤差E′は次式で与えら
れる。
The reason why a flow meter is not connected to the inlet of the sample nozzle is that dust generation from the flow meter cannot be ignored. Generally, the ratio between the reactive gas flow rate Q, -Q and the sheath flow rate Q2 is 4
If the reading error of the flow rate Q2 of each flow meter is E, then the combination error E' is given by the following equation.

=9のときε’ = i X13.5となり、例えば精
度±3%の流量計を使用しても19〜41%の誤差とな
り、測定精度が悪くなるという欠点を有している。
When =9, ε' = iX13.5, and for example, even if a flowmeter with an accuracy of ±3% is used, the error will be 19 to 41%, which has the disadvantage of poor measurement accuracy.

本発明は、検出セル内のガス置換が効率よく短時間に完
了し、反応性ガス流量測定に対して誤差の増大がない1
反応性ガス用光散乱式粒子計数器を得ることを目的とす
る。
The present invention enables gas replacement within the detection cell to be completed efficiently in a short time, and there is no increase in error in reactive gas flow rate measurement.
The purpose is to obtain a light scattering particle counter for reactive gases.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、検出セル部に1個以上の不活性ガス導入口
を設けることによって達成される。
The above object is achieved by providing one or more inert gas inlets in the detection cell section.

〔作用〕[Effect]

光散乱式粒子計数器は、計測対象である反応性ガスの吸
引を開始する前に、不活性ガスによる流体系内部のガス
置換を行うが、検出セルはその構造のためガスの流れに
澱み部を生じ、上記ガス置換に長時間を要していた。本
発明では、ガスの流れに澱みを生じる検出セルの側面に
不活性ガス導入用のボートを設け、該ポートから清浄な
不活性ガスを直接注入し、ガス置換を効率よく短時間に
完了させることができる。また、反応性ガスの流t g
+q定に際して、測定中には不活性ガスを流さないので
、そのために測定誤差が増大することがない。
A light scattering particle counter replaces the inside of the fluid system with an inert gas before starting to suck in the reactive gas that is the measurement target, but the structure of the detection cell prevents stagnation from occurring in the gas flow. This caused the gas replacement to take a long time. In the present invention, an inert gas introduction boat is provided on the side of the detection cell where stagnation occurs in the gas flow, and clean inert gas is directly injected from the port to efficiently complete gas replacement in a short time. Can be done. Also, the flow of reactive gas t g
During the +q constant, no inert gas is flowed during the measurement, so there is no increase in measurement error.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による反応性ガス用光散乱式粒子計数器
における流体系配管の一実施例を示す図、第2図は上記
流体系配管の他の実施例を示す図である。第1図におい
て、光散乱式粒子計数器1に設けられた検出セル2の側
面には、例えば窒素(N2)などの不活性ガスを、フィ
ルタ4を介して直接注入するボート11が設けられてい
るが、その他は第3図に示した従来例と同様である。す
なわち、吸引ポンプ3、フィルタ4.それぞれのバルブ
51.52.53.54、流量計6を備え、ガス入口と
ガス出口とのガス圧を調整するバイパス8を設けている
。なお1本装置のガスに接する流体系を形成する部分の
材質には、ステンレスあるいは弗素樹脂などの材料が使
用されている。
FIG. 1 is a diagram showing one embodiment of the fluid system piping in a light scattering particle counter for reactive gas according to the present invention, and FIG. 2 is a diagram showing another embodiment of the fluid system piping. In FIG. 1, a boat 11 for directly injecting an inert gas such as nitrogen (N2) through a filter 4 is provided on the side of a detection cell 2 provided in a light scattering particle counter 1. However, the rest is the same as the conventional example shown in FIG. That is, a suction pump 3, a filter 4. It is provided with respective valves 51, 52, 53, 54, a flow meter 6, and a bypass 8 for adjusting the gas pressure between the gas inlet and the gas outlet. Note that materials such as stainless steel or fluororesin are used for the parts of this device that form the fluid system that come into contact with the gas.

本装置の操作に際しては、バルブ52を閉じたままでバ
ルブ51.53および54を開き、不活性ガスを装置内
に導入するが、このとき、バルブ54を介して」1記不
活性ガスの一部が、検出セル2の側面に設けたボート1
1に直接供給されるため、上記検出セル2内のガス置換
を効率よく短時間で完了させることができる。この際、
吸引ポンプ3は運転しておく。つぎにバルブ51および
54を閉じてバルブ52を開き、反応性ガスを導入し計
数を行う1反応性ガスの流量測定については、測定中に
不活性ガスを流さないので誤差が増大することがない。
When operating this device, valves 51, 53 and 54 are opened while valve 52 is closed, and inert gas is introduced into the device. However, the boat 1 installed on the side of the detection cell 2
Since the gas is directly supplied to the detection cell 1, gas replacement within the detection cell 2 can be efficiently completed in a short time. On this occasion,
Suction pump 3 is operated. Next, valves 51 and 54 are closed, valve 52 is opened, reactive gas is introduced, and counting is performed.1 Regarding the flow rate measurement of reactive gas, no inert gas is flowed during the measurement, so errors do not increase. .

第2図に示した本発明の他の実施例は、上記実施例が検
出セルにおける不活性ガスのポート11を1個所数けた
のに対し1本実施例では上記ポート11を2個所に設け
て、検出セル2内のガス置換をより短時間に完了させる
ようにしたことと、流体系の部品のいくつかを光散乱式
粒子計数器1の内部に取り込んだ点が異なるが、上記実
施例と同様な効果が得られるのはもちろんである。
In another embodiment of the present invention shown in FIG. 2, the inert gas port 11 in the detection cell is provided at one location in the above embodiment, whereas in this embodiment, the port 11 is provided at two locations. , differs from the above embodiment in that the gas replacement in the detection cell 2 is completed in a shorter time and that some of the components of the fluid system are incorporated into the light scattering particle counter 1. Of course, similar effects can be obtained.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による反応性ガス用光散乱式粒子計
数器は、不活性ガス用フィルタや流量計および制御弁な
どを備えた反応性ガス用光乱乱式粒子計数器において1
反応性ガスの吸引を開始するr+?jにガス置換を行う
ため、検出セル部に1個以上の不活性ガス導入口を設け
たことにより、清浄な不活性ガスによるガス置換を速や
かに行うことができ、しかも粒子計数の誤差を増大する
ことがないという効果を有する。
As described above, the light scattering particle counter for reactive gases according to the present invention is a light scattering particle counter for reactive gases equipped with an inert gas filter, a flow meter, a control valve, etc.
r+ to start suctioning reactive gas? By providing one or more inert gas inlet ports in the detection cell section, gas replacement with clean inert gas can be performed quickly and the error in particle counting can be increased. This has the effect that there is nothing to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による反応性ガス用光散乱式粒子計数器
における流体系配管の一実施例を示す図、第2図は上記
流体系配管の他の実施例を示す図。 第3図は従来の反応性ガス用光散乱式粒子計数器におけ
る流体系配管の例を示す図、第4図は上記従来の流体系
配管の他の例を示す図である。 1・・反応性ガス用光散乱式粒子計数器2・・・検出セ
ル     4・・・フィルタ6.9.10・・・流量
FIG. 1 is a diagram showing one embodiment of the fluid system piping in a light scattering particle counter for reactive gas according to the present invention, and FIG. 2 is a diagram showing another embodiment of the fluid system piping. FIG. 3 is a diagram showing an example of fluid system piping in a conventional light scattering particle counter for reactive gas, and FIG. 4 is a diagram showing another example of the above-mentioned conventional fluid system piping. 1...Light scattering particle counter for reactive gas 2...Detection cell 4...Filter 6.9.10...Flowmeter

Claims (1)

【特許請求の範囲】 1、不活性ガス用フィルタや流量計および制御弁などを
備えた反応性ガス用光散乱式粒子計数器において、反応
性ガスの吸引を開始する前にガス置換を行うため、検出
セル部に1個以上の不活性ガス導入口を設けたことを特
徴とする反応性ガス用光散乱式粒子計数器。 2、上記不活性ガス用フィルタや流量計および制御弁な
どは、上記光散乱式粒子計数器の本体内に組込んだこと
を特徴とする特許請求の範囲第1項に記載した反応性ガ
ス用光散乱式粒子計数器。
[Claims] 1. To perform gas replacement before starting suction of reactive gas in a light scattering particle counter for reactive gas equipped with an inert gas filter, a flow meter, a control valve, etc. A light scattering particle counter for reactive gas, characterized in that a detection cell section is provided with one or more inert gas inlets. 2. The inert gas filter, flow meter, control valve, etc. are incorporated into the main body of the light scattering particle counter, as set forth in claim 1. Light scattering particle counter.
JP63276166A 1988-11-02 1988-11-02 Light scattering type grain counter for reactive gas Pending JPH02124447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63276166A JPH02124447A (en) 1988-11-02 1988-11-02 Light scattering type grain counter for reactive gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63276166A JPH02124447A (en) 1988-11-02 1988-11-02 Light scattering type grain counter for reactive gas

Publications (1)

Publication Number Publication Date
JPH02124447A true JPH02124447A (en) 1990-05-11

Family

ID=17565653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63276166A Pending JPH02124447A (en) 1988-11-02 1988-11-02 Light scattering type grain counter for reactive gas

Country Status (1)

Country Link
JP (1) JPH02124447A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017387A (en) * 2005-07-11 2007-01-25 Shimadzu Corp Laser diffraction/scattering type particle size distribution measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017387A (en) * 2005-07-11 2007-01-25 Shimadzu Corp Laser diffraction/scattering type particle size distribution measuring device
JP4591245B2 (en) * 2005-07-11 2010-12-01 株式会社島津製作所 Laser diffraction / scattering particle size distribution analyzer

Similar Documents

Publication Publication Date Title
US3699814A (en) Gas sampler
US6370936B1 (en) Sampling apparatus for exhaust gas
US4393304A (en) Gas analyzer of the fluid modulation type
CN104364630A (en) Exhaust gas dilution device
US3787122A (en) Light scattering particle analyzer
US4755357A (en) Sampling device for a gas analyzer
JPH02124447A (en) Light scattering type grain counter for reactive gas
JP3607118B2 (en) Exhaust gas dilution device
JP2006153746A (en) Exhaust gas analyzer and mixing system
JPH0743636Y2 (en) SO ▲ 2 ▼ Gas analyzer
US3901672A (en) Filter system for halogen gas detector
JP2003194674A (en) Infrared gas analyzer
JP3246395B2 (en) Probe for ammonia measuring device
JP2580749B2 (en) Exhaust gas analysis method for exhaust gas introduction device
JPS586903B2 (en) Sampling method
JP2001124692A (en) Particulate measuring device
CN205449907U (en) Gas chromatograph with head space injector
JPS588462B2 (en) analysis system
CN113514207B (en) Gas detection system and detection method thereof
JP3058479B2 (en) Exhaust gas flow measurement device
JP3992121B2 (en) Exhaust gas dilution sampling device
CN211347592U (en) Dilution probe
JPS6093940A (en) Sampling apparatus
JP2002277361A (en) Method and system for analyzing exhaust gas in semiconductor process
JP2006153716A (en) Exhaust gas analyzer and soot measuring method