JPH02124099A - Measurement of living bacterium number - Google Patents

Measurement of living bacterium number

Info

Publication number
JPH02124099A
JPH02124099A JP27674688A JP27674688A JPH02124099A JP H02124099 A JPH02124099 A JP H02124099A JP 27674688 A JP27674688 A JP 27674688A JP 27674688 A JP27674688 A JP 27674688A JP H02124099 A JPH02124099 A JP H02124099A
Authority
JP
Japan
Prior art keywords
solution
test sample
gram
bacteria
negative bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27674688A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Sakata
佐方 由嗣
Fumi Takaoka
高岡 文
Nobuyuki Tokioka
時岡 伸之
Haruki Oishi
晴樹 大石
Masakazu Tsuchiya
正和 土谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP27674688A priority Critical patent/JPH02124099A/en
Publication of JPH02124099A publication Critical patent/JPH02124099A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To estimate the number of gram negative bacteria in a specimen and thereby rapidly, simply, specifically measure the number of living bacteria in a high sensitivity for examining the state of infection, etc., by measuring an optical change caused by a gelling reaction of the specimen with the extracted solution of a limulus hemocyte component. CONSTITUTION:A specimen is reacted with a solution in the presence of a water-soluble polysaccharide or/and a water-soluble derivative thereof containing beta-1,3-glucan as a constituent, the solution being prepared by dissolving the freeze-dried product of a hemocyte component extract solution originated from a limulus of the family Limulus in a 0.1M tris-hydrochloric acid buffer solution (pH7.3). An optical change based on the resultant gelling reaction is measured with a nepherometer, etc., and the number of living gram-negative bacteria in the specimen is estimated from the extent of the measured optical change, thereby measuring the number of the living gram-negative bacteria in the specimen.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は、臨床検査や衛生検査の分野に於いて、微生物
の人体への感染状態、微生物による食品や環境への汚染
状態等の程度を知るために実施されている生菌数測定方
法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is useful in the field of clinical testing and sanitary testing to determine the degree of infection of the human body by microorganisms and the degree of contamination of food and the environment by microorganisms. The present invention relates to a method for measuring the number of viable bacteria that has been implemented for this purpose.

[発明の背景コ 細菌学的検査は、臨床検査や衛生検査の分野に於いて、
例えば人体へ感染している菌群のふるい分けを含めた細
菌の感染状態の検査として、或は食品中の細菌汚染の検
査、排水、下水、プール等の水質検査等、食品、環境へ
の汚染状態を知るための検査として、広〈実施されてい
る。なかでも、被検試料中の生菌数の測定は、′a菌に
よる感染或は汚染の度合を知るためのスクリーニング検
査として、古くから汎用されている。
[Background of the Invention Co-bacteriological testing is used in the field of clinical and sanitary testing.
For example, for testing the state of bacterial infection, including sifting bacterial groups that infect the human body, testing for bacterial contamination in food, testing water quality of wastewater, sewage, pools, etc., and testing the state of contamination of food and the environment. It is widely implemented as a test to find out. Among these, the measurement of the number of viable bacteria in a test sample has been widely used for a long time as a screening test to determine the degree of infection or contamination by bacteria 'a'.

生菌数測定は、例えばブドウ@菌、連鎖球菌。Viable bacteria count measurements include, for example, Staphylococcus bacteria and Streptococcus.

Jj+li炎球萌、ジフテリア菌、結核菌等のグラム陽
性省、例えば大腸菌、ビブリオ、ナイセリア、緑膿菌等
のグラム陰性菌等多くの菌を対象として実施されており
、その具体的な測定方法としては1例えば被検試料の塗
抹染色標本を顕微鏡により観がし生菌数を計測する方法
や分光光度計を用い被検試料の濁度を測定することによ
り被検試料中の生1″17数を推定する方法等の、被検
試料を直接測定することにより行う方法と、被検試料を
適当な培地Fで培養した後、培地上のコロニー数を計測
することにより被検試料中の生菌数を推定する方法(培
養法)とが代表的なものとして挙げられる。
Jj+li It is carried out targeting many bacteria such as Gram-positive bacteria such as Jj+li, Diphtheria bacterium, and Mycobacterium tuberculosis, and Gram-negative bacteria such as Escherichia coli, Vibrio, Neisseria, and Pseudomonas aeruginosa. 1 For example, by observing the smear-stained specimen of the test sample under a microscope and counting the number of viable bacteria, or by measuring the turbidity of the test sample using a spectrophotometer, the number of viable bacteria in the test sample can be determined. There are two methods to estimate the number of live bacteria in the test sample, such as a method to directly measure the test sample, and a method to estimate the number of colonies on the culture medium after culturing the test sample in an appropriate medium F. A typical example is a method for estimating the number of cells (cultivation method).

これらの方法のうち、被検試料を直接測定する方法に於
いては、被検試料中の生菌数が106個/ml程度以上
でなければ検出が難しく、更に塗抹染色標本を用いる方
法に於いては菌の染色に熟練を要する等の問題点があり
、また培養法に於いては、培養に24〜72時間を要し
、結果を得るまでに時間がかかること、培養が困難な菌
も存在し、すべての菌に適用できる方法ではないこと等
に問題点があり、短時間で高感度の測定ができ、且つ操
作が簡便な生菌数の測定方法の開発が望まれていた。
Among these methods, in the method of directly measuring the test sample, it is difficult to detect unless the number of viable bacteria in the test sample is about 106 cells/ml or more, and in the method using a smear-stained specimen, However, there are problems such as the need for skill in staining the bacteria, and the culture method requires 24 to 72 hours to obtain results, and there are some bacteria that are difficult to culture. There are problems in that the method cannot be applied to all bacteria, and there has been a desire to develop a method for measuring the number of viable bacteria that can be measured with high sensitivity in a short time and is easy to operate.

[発明の目的コ 本発明は上記した如き状況に鑑みなされたもので、短時
間で高感度の測定ができ、且つ操作が簡便な生菌数測定
方法を提供することを目的とする。
[Purpose of the Invention] The present invention was made in view of the above-mentioned situation, and an object thereof is to provide a method for measuring the number of viable bacteria that can perform highly sensitive measurements in a short time and is easy to operate.

[発明の構成コ 本発明は、被検試料とカブトガニ血球成分(以下、AL
と略記する。)抽出液(以下、AL温溶液略記する。)
とを反応させた際に生じるゲル化反応に基づく光学的変
化を測定し、その光学的変化の程度から被検試料中のグ
ラム陰性菌の生菌数を推定することを特徴とするグラム
陰性菌の生菌数測定方法の発明である。
[Configuration of the Invention] The present invention provides a test sample and horseshoe crab blood cell components (hereinafter referred to as AL).
It is abbreviated as ) Extract liquid (hereinafter abbreviated as AL warm solution)
Gram-negative bacteria characterized by measuring the optical change based on the gelation reaction that occurs when reacting with and estimating the viable number of Gram-negative bacteria in the test sample from the degree of the optical change. This invention is a method for measuring the number of viable bacteria.

即ち、本発明者らは、主にグラム陰性菌の細胞表449
中に存在するリボ多糖の一種であり、発熱物ff(Py
rogen)の−秤としても知られるエンドトキシン(
以下、ETと略記する。)の測定法として、ノ\L溶液
がETによって活性化されて凝固する現象を利用した、
所謂リムルステストがその簡便性、費用が安価な点等か
ら広く利用されている点に着目し、この現象を利用すれ
ば、グラム陰性濱そのものを生菌のままで検出し得るの
ではないかと考え、鋭、・コ研究の結果、AL温溶液グ
ラム陰性菌の生菌とも反応してゲル化反応を生じ、この
ゲル化反応に基づく光学的変化をを測定し、その光学的
変化の程度から被検試料中のグラム陰性菌の生菌数を推
定し得ることを見出し、本発明を完成するに至った。
That is, the present inventors mainly investigated the cell surface of Gram-negative bacteria.
It is a type of ribopolysaccharide present in Py
Endotoxin (also known as rogen)
Hereinafter, it will be abbreviated as ET. ), the method utilizes the phenomenon in which the \L solution is activated by ET and coagulates.
Noting that the so-called limulus test is widely used due to its simplicity and low cost, we thought that by utilizing this phenomenon, it would be possible to detect Gram-negative beaches as viable bacteria. As a result of our research, we found that the AL warm solution also reacts with live Gram-negative bacteria to produce a gelation reaction, and the optical change based on this gelation reaction was measured, and based on the degree of the optical change, it was possible to determine the The present inventors have discovered that it is possible to estimate the number of viable Gram-negative bacteria in a sample, and have completed the present invention.

本発明の測定方法を実施するには、例えば以下の如く行
えばよい。
To carry out the measuring method of the present invention, for example, it may be carried out as follows.

即ち、先ず、被検試料とAL温溶液を良く混合して反応
させ、反応の結果生じるゲル化反応に基づく光学的変化
を測定する。次いで、ここで得られた光学的変化の程度
を、予め所定個数のグラム陰性菌を含む溶液を被検試料
として得られた、グラム陰性省の生菌数と光学的変化の
程度の関係を表わす検量線に当てはめれば、被検試料中
のグラム陰性菌の生菌数が推定できる。
That is, first, the test sample and the AL hot solution are thoroughly mixed and reacted, and the optical change based on the gelation reaction that occurs as a result of the reaction is measured. Next, the degree of optical change obtained here is expressed as a relationship between the number of viable Gram-negative bacteria and the degree of optical change, obtained in advance using a solution containing a predetermined number of Gram-negative bacteria as a test sample. By applying it to the calibration curve, the number of viable Gram-negative bacteria in the test sample can be estimated.

本発明に於いて使用可能なAL温溶液しては、リムルス
(1、imulus)属、タキフエウス(丁achyp
Heus )属或はカルシノスコルビウス(Carci
noscorpius)属に属するカブトガニの血球か
ら抽出されたもので、ETとの反応により凝固反応が生
じるものであれば特に限定されることなく挙げられる。
The AL hot solution that can be used in the present invention includes Limulus (1, imulus), Tachypheus
Heus) genus or Carcinoscorbius (Carci)
It is extracted from the blood cells of horseshoe crabs belonging to the genus Noscorpius), and is not particularly limited as long as it causes a coagulation reaction by reaction with ET.

圭だ、例えばA CC(ASSOCIATES OF 
CAPE C0D)社。
Kei, for example, ACC (ASSOCIATES OF)
CAPE C0D) company.

ヘマケム社、MAB社、マリンクロット社等より市原さ
れているAL温溶液凍結乾燥品をもとに調製したものも
当然用いることが可能である。
Of course, it is also possible to use products prepared based on freeze-dried AL warm solutions commercially available from Hemakem, MAB, Mallinckrodt, and others.

本発明の測定方法の被検試料としては、グラム陰性菌の
生菌を含有するであろうと考えられるものであれば特に
限定されることなく挙げられるが、例えば血液、血清、
髄液、尿等の生体体液、例えばジュース、牛乳等の飲み
物、例えば蒲鉾、魚のすり身等の食品からの抽出液、例
えば水道水、プールの水、下水等の生活環境水等が挙げ
られる。
The test sample for the measurement method of the present invention is not particularly limited as long as it is considered to contain viable Gram-negative bacteria, but examples include blood, serum,
Examples include biological body fluids such as cerebrospinal fluid and urine, drinks such as juice and milk, extracts from foods such as kamaboko and fish paste, and living environment water such as tap water, pool water, and sewage.

本発明の測定方法は、被検試料としてグラム陰性菌の生
菌を含有するであろうと考えられるものを用いる以外は
、AL温溶液用い、ETとの反応の結果生じるゲル化反
応に基づく光学的変化を測定することによりETのgi
f1定を行う自体公知のET測定法に準じてこれを行え
ばよく、使用されるその他の試薬等も上記した如き自体
公知のETIJ定法に於いて用いられる試薬に準じて、
適宜選択して用いればよい。AL温溶液用い、ETとの
反応の結果生じるゲル化反応に基づく光学的変化をFl
!!I定することによりETの測定を行う自体公知のE
 T gil+定法としては、例えばゲル化に伴って生
ずる濁度を測定する比濁法やゲル化に伴って生ずる濁度
が一定の値に達するまでの時間を測定するゲル化時間測
定法等が挙げられる。
The measurement method of the present invention uses an AL warm solution, except that it uses a test sample that is thought to contain live Gram-negative bacteria, and uses an optical method based on the gelation reaction that occurs as a result of the reaction with ET. gi of ET by measuring the change
This can be carried out according to the per se known ET measurement method for determining f1, and the other reagents used are also according to the reagents used in the per se known ETIJ standard method as described above.
They may be selected and used as appropriate. Using a warm AL solution, the optical change due to the gelation reaction resulting from the reaction with ET is expressed as Fl
! ! ET is measured by determining I.
Examples of the T gil + standard method include the nephelometric method, which measures the turbidity that occurs with gelation, and the gelation time measurement method, which measures the time until the turbidity that occurs with gelation reaches a certain value. It will be done.

本発明の測定方法は、これら比濁法、ゲル化時間測定法
等のいずれの方法も採用可能であることは言うまでもな
いが、特にゲル化時間測定法、その中でも、被検試料と
AL温溶液含む反応液に光線を照射し、反応開始後の反
応液の透過光量が初期透過光量から所定の割合減少する
までの時間を測定する特開昭61−159162号公報
に記載のゲル化時間測定法がより好ましく用いられる。
It goes without saying that the measuring method of the present invention can employ any of these methods such as turbidimetry and gelling time measuring method, but especially the gelling time measuring method, in particular the test sample and AL hot solution. A gelation time measuring method described in JP-A-61-159162, which involves irradiating a reaction solution containing light with light and measuring the time until the amount of transmitted light of the reaction solution decreases by a predetermined percentage from the initial amount of transmitted light after the reaction has started. is more preferably used.

本発明の測定方法に於いて、AL温溶液被検試料とを反
応させる際のPHとしては、AL溶液中のETと反応し
て凝固反応を起こす因子が失活しないPHであれば何れ
にてもよいが、通常6〜8の範囲が好ましく用いられる
。尚、被検試料のpHによる影習を回避して、常にこの
PI(範囲内で測定が行えるようにするためには、反応
時にトリス(ヒドロキシメチル)アミノメタン(Tri
s)やグツド緩衝剤(Goods’Buffer)等の
通常生化学の分野で広く用いられるFJ街剤を共存させ
ておくことが望ましい。また、AL温溶液被検試料とを
反応させる際の温度としては、AL溶液中のETと反応
して凝固反応を起こす因子が失活しない温度であればよ
いが1通常、0〜40°C1より好ましくは25〜40
°Cが用いられる。本発明の測定方法は、例えばトキシ
ノメータET−201(和光純薬工業C株)ffi) 
、LAL−5000(ACC社製)等の比濁時間分析法
専用装置を利用して実施することもできるし1分光光度
計等のその他の光学的原理を利用した測定装置を用いて
も同様に実施できる。
In the measurement method of the present invention, the pH at which the AL warm solution test sample is reacted can be any pH at which the factor that reacts with ET in the AL solution and causes a coagulation reaction is not inactivated. However, the range of 6 to 8 is usually preferably used. In addition, in order to avoid effects caused by the pH of the test sample and always perform measurements within this PI range, tris(hydroxymethyl)aminomethane (Tris) must be
It is desirable to coexist with FJ agents that are commonly used in the field of biochemistry, such as s) and Goods' Buffer. In addition, the temperature at which the AL warm solution test sample is reacted may be any temperature that does not deactivate the factors that react with ET in the AL solution and cause a coagulation reaction, but usually 0 to 40°C. More preferably 25-40
°C is used. The measuring method of the present invention can be carried out using, for example, a toxinometer ET-201 (Wako Pure Chemical Industries C Ltd. ffi).
, it can be carried out using a specialized device for turbidimetric time analysis such as LAL-5000 (manufactured by ACC), or it can be similarly carried out using a measuring device using other optical principles such as a spectrophotometer. Can be implemented.

ところで、一般にAL温溶液ETのみならず、カルボキ
シメチル化したβ−1,3−グルカンとも反応して凝固
することが知られている[ Kakinumaeし a
l、、Iliochem、  Biophys、  R
e5earch  Communicatjon、厄■
工η−,434−439(1981) ]。また、その
現象は、AL溶液中に共存するβ−1,3−グルカン(
以下、GLと略記する。)!3受性因子がGL又はその
誘導体と反応することにより惹起されることも既に知ら
れている[岩永ら、日本wi菌学雑誌。
By the way, it is generally known that AL hot solution ET reacts with not only ET but also carboxymethylated β-1,3-glucan and coagulates.
l,, Iliochem, Biophys, R
e5earch Communicatjon, evil■
Engineering η-, 434-439 (1981)]. In addition, this phenomenon is caused by β-1,3-glucan (β-1,3-glucan) coexisting in the AL solution.
Hereinafter, it will be abbreviated as GL. )! It is already known that the 3-receptivity factor is induced by reacting with GL or its derivatives [Iwanaga et al., Japanese Journal of Mycology.

31シー(□l、  78]−803(1983)  
コ 。
31 Sea (□l, 78]-803 (1983)
Ko .

従って、被検試料中にそのような物質、即ちGLやGL
誘導体が含まれている可能性のある場合には、そのため
の対策を講じる必要がある。
Therefore, such substances, namely GL and GL
If there is a possibility that derivatives may be contained, it is necessary to take measures to prevent this.

そのような場合には、本発明者らが先に見出し。In such cases, the inventors first found out.

特許出願している(特願昭63−45069号)下記の
方法を利用して本発明の測定方法を実施すればよい。即
ち、被検試料とカブトガニ血球成分抽出液とを反応させ
る際に、GLを構成成分とする水溶性の多糖類(以下、
GLPSと略記する。)又は/及びその水溶性の誘導体
を大量に共存させて本発明の方法を実施すれば、GLF
S受性因子は不活化されてGLによるAL温溶液凝固反
応は生じず、ETに起因する凝固反応のみが起こるので
、この現象を利用すればたとえ、被検試料中にOLを膜
の構成成分として含む菌が混在していたとしてもグラム
陰性菌のみを特異的に検出することができる。
The measuring method of the present invention may be carried out using the following method for which a patent application has been filed (Japanese Patent Application No. 63-45069). That is, when reacting the test sample with the horseshoe crab blood cell extract, a water-soluble polysaccharide (hereinafter referred to as
It is abbreviated as GLPS. ) or/and its water-soluble derivative in large quantities and carry out the method of the present invention, GLF
Since the S-susceptibility factor is inactivated and the AL hot solution coagulation reaction by GL does not occur, only the coagulation reaction due to ET occurs, so if this phenomenon is used, even if the OL is contained in the test sample as a component of the membrane. It is possible to specifically detect only gram-negative bacteria even if there are a mixture of bacteria including gram-negative bacteria.

この測定方法に於いて用いることのできるGLPS及び
その水溶性の誘導体としては、OLをその構成成分とし
て含む多糖類であって、水溶性のものであれば特に限定
されることなく用いることができるが、倒えば各種細菌
類(例えば、Alcaljgenes属、 Lamjn
aria[、Agrobacl:erium[等)、酵
母類(例えば、Saccharomyces属等)、キ
ノコ類(例えば、シイタケ、スエヒロタケ、カワラタケ
等)等の細胞壁から得られる天然の多糖、具体的には例
えばカードラン、パキマン、スクレロクン、レンチナン
、シゾフィラン、コリオラン等。
GLPS and its water-soluble derivatives that can be used in this measurement method are not particularly limited as long as they are polysaccharides that contain OL as a constituent and are water-soluble. However, if it falls down, various bacteria (e.g. Alcaljgenes, Lamjn
Natural polysaccharides obtained from the cell walls of A. aria [, Agrobacl: erium [, etc.], yeasts (e.g., Saccharomyces genus, etc.), mushrooms (e.g., Shiitake, Suehirotake, Kawaratake, etc.), specifically, for example, curdlan, Pachyman, sclerokun, lentinan, schizophyllan, coriolan, etc.

或は、藻類(例えば、褐藻、ユーグレナ、ケイ藻等)の
貯蔵性多糖、具体的には例えばラミナラン。
Alternatively, storage polysaccharides of algae (for example, brown algae, euglenoid algae, diatoms, etc.), specifically, for example, laminaran.

パラミロン等、或は又これらを常法、例えば大有機化学
第19巻、第7版、70〜lot頁、小竹無二雄監修、
昭和42年5月IO日、朝′f!;書店;  A、 E
、 C1,arke ら、Phyしochemistr
y、  上、 175−188(1967);   T
Paramylon, etc., or these can be prepared using conventional methods, for example, Large Organic Chemistry Vol. 19, 7th edition, pages 70-lot, supervised by Mujio Kotake,
IO day, May 1962, morning'f! ;Bookstore; A, E
, C1, Arke et al., Physiochemistr.
y, 175-188 (1967); T
.

5asakiら、Europ、 J、 Cancer、
 15.211−215(1967)等に記載された方
法に準じてカルボキシメチル基。
5asaki et al., Europe, J. Cancer,
15. Carboxymethyl group according to the method described in 211-215 (1967) etc.

カルボキシエチル基、メチル基、ヒドロキシエチル基、
ヒドロキシプロピル基、スルホプロピル基等を導入して
得られる水溶性の誘導体等が好ましく挙げられ、これら
を単独で或は2種以上適宜組み合わせて用いる等は任意
である。
Carboxyethyl group, methyl group, hydroxyethyl group,
Preferred examples include water-soluble derivatives obtained by introducing a hydroxypropyl group, a sulfopropyl group, etc., and these may be used alone or in an appropriate combination of two or more.

AL温溶液被検試料との反応時にGLPS又は/及びそ
の水溶性の誘導体を共存させる方法としては、例えば、
水、緩衝液、或は希アルカリ溶液等にこれらを溶解し、
これを用いてALの凍結乾燥品を溶解する方法、ALの
凍結乾燥品を注射用蒸留水や緩衝液で溶解して調製した
A L溶液に、上記した如き方法で調製したGLPS又
は/及びその水溶性の誘導体の溶液を添加する方法、G
LPS又は/及びその水溶性の誘導体を試料に添加する
方法、予め必要量のG L P S又は/及びその水溶
性の誘導体を添加したAL温溶液凍結乾燥して得た試薬
を注射用蒸留水や緩衝液で溶解して調製する方法等が挙
げられる。しかしながら、どのような方法であれ、最終
的に、AL温溶液被検試料が反応する際に、AL溶液中
に共存するGL感受性因子は不活化するがETとIE 
T 感受性因子との反応及びその反応により惹起される
A L溶液の凝固反応は阻害しないような歌のGLPS
又は/及びその水溶性の誘導体が共存するような方法で
あればよく、これらに限定されるものではない。
Examples of methods for allowing GLPS or/and its water-soluble derivatives to coexist during the reaction with the AL warm solution test sample include:
Dissolve these in water, buffer solution, dilute alkaline solution, etc.
A method of dissolving a freeze-dried AL product using this method, adding GLPS prepared by the method described above or/and its Method of adding a solution of a water-soluble derivative, G
A method of adding LPS or/and its water-soluble derivative to a sample. A reagent obtained by freeze-drying a warm AL solution to which a required amount of GLPS or/and its water-soluble derivative has been added in advance is added to distilled water for injection. Examples include a method of preparing by dissolving in a buffer solution, etc. However, no matter which method is used, when the AL warm solution test sample reacts, the GL-sensitive factors coexisting in the AL solution are inactivated, but ET and IE are inactivated.
T A GLPS that does not inhibit the reaction with sensitive factors and the coagulation reaction of the A L solution caused by that reaction.
and/or its water-soluble derivative coexist, and is not limited to these methods.

該反応液中のGLPS又は/及びその水溶性の誘導体の
濃度としては、例えばA L溶液の凍結乾燥品或はAL
温溶液製造ロフトやETに対する検出感度(EIJ/m
l)等によっても多少変動はあるが。
The concentration of GLPS or/and its water-soluble derivative in the reaction solution is, for example, a lyophilized product of an AL solution or a lyophilized product of an AL solution.
Detection sensitivity for hot solution manufacturing loft and ET (EIJ/m
Although there is some variation depending on factors such as l).

通常、被検試料とAL温溶液の反応液中に於いて、10
0 ng/ml乃至100 B/ml程度好ましくは、
10μ。
Usually, in the reaction solution of the test sample and AL warm solution, 10
Preferably about 0 ng/ml to 100 B/ml,
10μ.

/ml乃至10 +ng/ml程度の濃度範囲が挙げら
れる。
Examples include a concentration range of approximately 10 +ng/ml to 10 +ng/ml.

しかしながら、上記した如き市販のALの凍M乾燥品を
ET測定用のAL温溶液して調製したものは、0.03
〜5 EU/mlのETに対する検出感度を有しており
、これらは、GLを構成成分とする多糖類又は/及びそ
の誘導体を0.1〜1000 ng/ml添加すること
により凝固反応を起こす。このようなAL温溶液用いた
場合には、添加するGLPS又は/及びその水溶性の誘
導体の濃度としては、OLを構成成分とする多糖類又は
/及びその誘導体により凝固反応を起こす濃度の100
0倍以上はあることが望ましい。
However, when the above-mentioned commercially available lyophilized AL product was prepared as an AL warm solution for ET measurement, the temperature was 0.03
It has a detection sensitivity for ET of ~5 EU/ml, and a coagulation reaction is caused by adding 0.1 to 1000 ng/ml of a polysaccharide having GL as a constituent or/and its derivative. When such an AL hot solution is used, the concentration of GLPS and/or its water-soluble derivative to be added is 100%, which is the concentration that causes a coagulation reaction by the polysaccharide containing OL as a constituent component and/or its derivative.
It is desirable that it be 0 times or more.

被検試料とAL温溶液の反応時にGLPS又は/及びそ
の水溶性の誘導体を共存させることにより行う本発明の
検査方法は、AL温溶液被検試料とを反応させる際にG
LPS又は/及びその水溶性の誘導体を所定量共存させ
ておく以外は、先に述べたAL温溶液用いて行う本発明
に係るグラム陰性菌の生菌数測定方法に準じてこれを行
えばよい。
The test method of the present invention is carried out by allowing GLPS or/and its water-soluble derivative to coexist during the reaction between the test sample and the AL warm solution.
This may be carried out in accordance with the method for measuring the viable count of Gram-negative bacteria according to the present invention using the AL warm solution described above, except for allowing a predetermined amount of LPS or/and its water-soluble derivative to coexist. .

以下に参考例及び実施例を挙げ、本発明を更に具体的に
説明するが5本発明はこれらにより何ら限定されるもの
ではない。
The present invention will be described in more detail with reference to Reference Examples and Examples below, but the present invention is not limited by these in any way.

[実施例コ 参考例 1.  カルボキシメチル化カードランの調製 カードラン(和光紬薬工業(株)製)60gにトルエン
540 ml とエタノールe30 mlを加え、これ
に50 %水酸化ナトリウム水溶液61 gを滴下した
後、50℃に加熱して1時間攪拌した。これに、モノク
ロル酢酸35 gをトルエン二二タノル=9:1の混合
溶媒100 mlに溶解したものを加え、更に50℃で
1時間攪拌した。この反応液に更に水酸化ナトリウム水
溶液とモノクロル酪酸溶液を加えるf)η記の操作を、
2度繰り返した後、冷却し、−晩装置した。これを、9
0%メタノール11中に流し込み、生じた沈澱を渡取し
、乾燥して142gの1fll結晶を得た。得られた粗
結晶を1420口] の蒸留水に溶解し、この溶液のp
Hを希塩酸を用いて8に調整した。これに、メタノール
12.78 1を、攪拌下に滴下し、生じた沈澱を躍取
し、90%メタノール500 ml で洗浄後、乾燥し
、目的のカルボキシメチルカードラン(以下、CMCU
と略記する。)を得た。
[Example Reference Example 1. Preparation of carboxymethylated curdlan 540 ml of toluene and 30 ml of ethanol e were added to 60 g of curdlan (manufactured by Wako Tsumugi Kogyo Co., Ltd.), 61 g of a 50% aqueous sodium hydroxide solution was added dropwise thereto, and the mixture was heated to 50°C. The mixture was stirred for 1 hour. To this was added a solution of 35 g of monochloroacetic acid dissolved in 100 ml of a mixed solvent of toluene ditanol = 9:1, and the mixture was further stirred at 50°C for 1 hour. Further add a sodium hydroxide aqueous solution and a monochlorobutyric acid solution to this reaction solution.
After repeating twice, it was cooled and stored overnight. This is 9
The mixture was poured into 0% methanol 11, and the resulting precipitate was collected and dried to obtain 142 g of 1 fll crystal. The obtained crude crystals were dissolved in 1,420 mouths of distilled water, and the p of this solution was
H was adjusted to 8 using dilute hydrochloric acid. To this, 12.78 ml of methanol was added dropwise while stirring, the resulting precipitate was collected, washed with 500 ml of 90% methanol, dried, and the desired carboxymethyl curdlan (hereinafter referred to as CMCU) was collected.
It is abbreviated as ) was obtained.

実施例1 (被検試料) 以下に示す菌ツ濁液を被検試料とした。Example 1 (test sample) The bacterial suspension shown below was used as a test sample.

Enterococcus faecalis (臨床
分離株ニゲラム陽性1a)  、 Sしaphyroc
occus  aureus  ATCC25923(
グラム陽性+?j) 、 Escherichia c
oli ATCC25922(グラム陰性菌) 、Kl
ebsiella pneumoniae (m床分離
株ニゲラム陰性菌) Pseudomonas aer
ugin。
Enterococcus faecalis (clinical isolate nigerum positive 1a), S. faecalis
occus aureus ATCC25923(
Gram positive+? j), Escherichia c.
oli ATCC25922 (Gram-negative bacteria), Kl
ebsiella pneumoniae (m-bed isolate nigerum-negative bacteria) Pseudomonas aer
ugin.

sa ATCC27853(グラム陰性菌)をそれぞれ
37℃で18時uQスラント培養し、得られた菌体を濁
度がMcFarland 0.5と同じになるように滅
菌生理食塩水に懸濁した。これらの溶液を原液とし、更
に適宜段階希釈したものを被検試料とした。
sa ATCC27853 (Gram-negative bacteria) was cultured on a uQ slant at 37° C. for 18 hours, and the resulting bacterial cells were suspended in sterile physiological saline so that the turbidity was the same as McFarland 0.5. These solutions were used as stock solutions, and the appropriate serial dilutions were used as test samples.

尚、原液中の生菌数はトリプトソイアガー甲板培地を用
いる常法により測定し、その結果を基に各被検試料中の
生菌数を求めた。
The number of viable bacteria in the stock solution was measured by a conventional method using a trypto soy agar plate medium, and based on the results, the number of viable bacteria in each test sample was determined.

(測定操作法) リムルス属カブトガニ由来の血球成分抽出液の凍M乾燥
品(以下LALと略記する。和光紬薬工業(株)製、凝
固感度: 0.03EU/ml、5mi用)をETを含
まない0.1’l Tris−W酸緩衝液(pH7,3
)5.0mlに溶解した溶液(以下、LAL溶液と略記
する。)  0.1mlに被検試料0.1mlを加え、
よく混合した後、トキシンメーターET−201(和光
紬薬工業(株)製)を用いて37°Cで試料の透過光量
が5%減少するまでの時11fl (以下、ゲル化時1
18と称する。)を測定した。
(Measurement procedure) A freeze-dried product of a blood cell component extract derived from horseshoe crabs of the genus Limulus (hereinafter abbreviated as LAL, manufactured by Wako Tsumugi Pharmaceutical Co., Ltd., coagulation sensitivity: 0.03 EU/ml, for 5 mi) was subjected to ET. 0.1'l Tris-W acid buffer (pH 7,3
) Add 0.1 ml of the test sample to 0.1 ml of the solution (hereinafter abbreviated as LAL solution) dissolved in 5.0 ml,
After mixing well, use a toxin meter ET-201 (manufactured by Wako Tsumugi Kogyo Co., Ltd.) to measure 11fl at 37°C until the amount of transmitted light of the sample decreases by 5% (hereinafter referred to as gelling time 1).
It is called 18. ) was measured.

(結果) 結果を第1図に示す。尚、第1図に於いて、〇−はEs
eherichia coli ATCC25922を
菌として含む被検試料により得られた結果を、−・−は
に1ebsIeJJa pncumoniaeを菌とし
て含む被検試料により得られた結果を、−△−はPse
udomonas acruginosaATCC27
853を菌として含む被検試料によりマ:)られた結果
を、−口−はEnjCrococcus faccal
is又は5taphyrococcus aureus
 ATCC25923を菌として含む被検試料により得
られた結果を夫々示す。
(Results) The results are shown in Figure 1. In addition, in Figure 1, 〇- is Es
The results obtained with the test sample containing Eherichia coli ATCC25922 as the bacterium, -.
udomonas acruginosa ATCC27
853 as a bacterium.
is or 5taphyrococcus aureus
The results obtained using test samples containing ATCC25923 as bacteria are shown.

この結果から明らかな如く、グラム陰性菌であるEsc
hcrichiacoli、Pseudomonas 
aeruginosa。
As is clear from this result, the Gram-negative bacterium Esc.
hcrichiacoli, Pseudomonas
aeruginosa.

KICbsjella pneumoniaeについて
は生菌数の対数イ]αとゲル化時110の対数値の11
0には良好な相関か観察された。
For KICbsjella pneumoniae, the logarithm of the number of viable bacteria] α and the logarithm of 110 at the time of gelation are 11
A good correlation was observed for 0.

一方、グラム陽性菌であるEnシerococcus 
f’aeca1is及びSl;aphyrococcu
s aurcusはいずれの生前数でもcjO分以内に
試料の透過光量が5%の減少を示さす、ケル化時+1Q
による生菌数の推定は不可能であった。
On the other hand, the Gram-positive bacterium Enserococcus
f'aecalis and Sl; aphyrococcu
s aurcus shows a 5% decrease in the amount of transmitted light of the sample within cjO minutes for any number of births, +1Q at the time of Kelization.
It was not possible to estimate the number of viable bacteria.

以上の結果からトキシンメーターET−201を使用し
てL A L 78液により被検試料のゲル化時111
1のS!り定を行った場合、試料中のグラム陽性菌は検
出されず、グラム陰性菌の生菌数のみを特異的に測定で
きることが判る。
From the above results, when the test sample was gelled with L A L 78 liquid using Toxin Meter ET-201, 111
1 S! It can be seen that when this assay is carried out, Gram-positive bacteria in the sample are not detected, and only the number of viable Gram-negative bacteria can be specifically measured.

実施例2 (被検試N) 実施例1と同じものを使用した。Example 2 (Test test N) The same material as in Example 1 was used.

($11定操作法) LAL (和光紬薬工業(株)製、凝固感度:0.03
ELI/ml、5ml用)を、参考例1で、?I!!I
製したCMCU 1.Omgを含む0.1M Tris
−塩酸緩衝液(pl+7.3)(エンドトキシンは未含
有) 5.0mlに溶解した溶液(以下これをCMCU
−LAL溶液と略記する。
($11 constant operation method) LAL (manufactured by Wako Tsumugi Pharmaceutical Co., Ltd., coagulation sensitivity: 0.03
ELI/ml, for 5ml) in Reference Example 1, ? I! ! I
Manufactured CMCU 1. 0.1M Tris containing Omg
- A solution dissolved in 5.0 ml of hydrochloric acid buffer (pl+7.3) (does not contain endotoxin) (hereinafter referred to as CMCU)
-Abbreviated as LAL solution.

)  0.1mlに被検試料を0.1ml加え、よく混
合した後、実施例1と同様に、ゲル化時間を測定した。
) After adding 0.1 ml of the test sample to 0.1 ml and mixing well, the gelation time was measured in the same manner as in Example 1.

(結果) 結果を第2図に示す。尚、第2図に於いて、〇−はEs
cherjchia colj ATCC25922を
菌として含む被検試料により得られた結果を、−△−は
Pseudomonas aeruginosa AT
CC27853を菌として含む被検試料により得られた
結果を、−ローはEnterococcus faec
alis 又はSシaphyrococcus aur
eus八rCCへ5923を菌として含む被検試料によ
り得られた結果を夫々示す。
(Results) The results are shown in Figure 2. In addition, in Figure 2, 〇- is Es
cherjchia colj ATCC25922 as a bacterium, -△- indicates Pseudomonas aeruginosa AT
The results obtained from the test sample containing CC27853 as a bacterium are expressed as -low is Enterococcus faec
alis or S siaphyrococcus aur
The results obtained with the test sample containing eus8rCC5923 as a bacterium are shown.

この結果から明らかな如く、CMCU−LAL溶液を用
いてJ(す定を行った場合にも、グラム陰性菌であるE
scherichia colj、 Pseudomo
nas aeruginosaについては生菌数の対数
値とゲル化時間の対数(1への間には良好な相関が観察
されたが、グラム陽性菌であるEnterococcu
s faecalis及びSl:aphyrococc
us aureusはいずれの生菌数でも60分以内に
、試料の透過光量が5%の減少を示さず、ゲル化時間に
よる生菌数の推定は不可能であった。
As is clear from this result, even when the CMCU-LAL solution was used for the determination of E.
scherichia colj, Pseudomo
For nas aeruginosa, a good correlation was observed between the logarithm of the number of viable bacteria and the logarithm of gelation time (to 1), but for Enterococcus, a gram-positive bacterium,
S faecalis and Sl: aphyrococc
For any viable bacterial count, the amount of transmitted light of the sample did not show a 5% decrease within 60 minutes, making it impossible to estimate the viable bacterial count based on the gelation time.

以」二の結果からトキシンメーターET−201−を使
用してCMCU−LAL溶液により被検試料のゲル化時
間の測定を行った場合も、試料中のグラム陽性菌は検出
されず、グラム陰性菌の生菌数のみを特異的に測定でき
ることが判る。
From the above two results, even when the gelation time of the test sample was measured using the CMCU-LAL solution using a toxin meter ET-201-, Gram-positive bacteria were not detected in the sample, and Gram-negative bacteria were detected. It can be seen that only the number of viable bacteria can be specifically measured.

ヂ施例3.真菌類の生菌数の測定 (被検、試料) 以下に示す菌懸濁液を被検試料とした。Example 3. Measuring the number of viable fungi (test, sample) The bacterial suspension shown below was used as a test sample.

Aspcrgillus niger IFO4407
(カビ) 、Aspergi11us jerreus
 IFO4100(カビ)、八5perzillus 
flavus IFO5839(カビ) 、5poro
thrix 5chenckii IFO8158(カ
ビ) + Cryptococcus albindu
s IFO1320(酵母) 、 Candida a
lbicans IFOO579(酵母)、Candi
da t、ropjcalis IFO1400(酵母
) −Candidakrusei IFOO584(
酵母) 、 Candida albicans IF
O1060(酵母)をそれぞれ30℃で2日間スラント
培養し、得られた菌体を適当量lJi菌生理食塩水に懸
濁したものを両回濁液とした。
Aspcrgillus niger IFO4407
(mold), Aspergi11us jerreus
IFO4100 (mold), 85 perzillus
flavus IFO5839 (mold), 5poro
thrix 5chenckii IFO8158 (mold) + Cryptococcus albindu
s IFO1320 (yeast), Candida a
lbicans IFOO579 (yeast), Candi
da t, ropjcalis IFO1400 (yeast) - Candidakrusei IFOO584 (
yeast), Candida albicans IF
O1060 (yeast) was slant cultured at 30° C. for 2 days, and the resulting bacterial cells were suspended in an appropriate amount of lJi bacterial saline to prepare both suspensions.

尚、各両回濁液中の生菌数は、ベネット法変法の寒天平
板培地を使用する常法により測定した。
The number of viable bacteria in each suspension was determined by a conventional method using a modified Bennett method using an agar plate medium.

(AL溶液) 実施例1で用いたLAL溶液及び実施例2で用いたC 
M CU −L A L溶液を用いた。
(AL solution) LAL solution used in Example 1 and C used in Example 2
MCU-LAL solution was used.

(測定操作法) 実施例1と同様の操作法により行った。(Measurement operation method) The same procedure as in Example 1 was used.

(結果) 各被検試料につき得られたゲル化時間(Tg)を表1に
示す。尚、表1には各被検試料中の生菌数も併せて示し
た。
(Results) Table 1 shows the gelation time (Tg) obtained for each test sample. Note that Table 1 also shows the number of viable bacteria in each test sample.

表1 As2゜ Aspergillus。Table 1 As2゜ Aspergillus.

Can、=Candjda。Can,=Candjda.

人五の結果から明らかな如く、 従来のLAL溶 液ではカビ、酵母等の真菌類の一部とも反応するが、C
MCU−LAL溶液は真菌類とは反応しないこと、即ち
CMCU−LAL溶液はグラム陰性菌と特異的に反応す
ることが判る。
As is clear from Jingo's results, conventional LAL solutions react with some fungi such as mold and yeast, but C
It can be seen that the MCU-LAL solution does not react with fungi, that is, the CMCU-LAL solution specifically reacts with Gram-negative bacteria.

[発明の効果コ 以北述べた如く、本発明は、従来から行われている塗抹
染色標本による方法、培養法等の生菌数検査方法に比較
して、より簡単な操作で、短時間に且つ高感度で被検試
料中のグラム陰性菌の生菌数を特異的に測定し得る方法
を提供するものであり、斯業に貢献するところ大なる発
明である。
[Effects of the Invention] As mentioned above, the present invention can be performed in a shorter time with a simpler operation compared to the conventional viable bacteria count testing methods such as methods using smear-stained specimens and culture methods. Moreover, it provides a method that can specifically measure the number of viable Gram-negative bacteria in a test sample with high sensitivity, and is a great invention that contributes to this industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1に於いて得られた検量線を示し、横
軸は生菌数(個/ml)を縦軸は透過光量が5%減少す
るまでの時間(分)(以下、ゲル化時間と略記する。)
を夫々示す。図中、−〇−はEscherichia 
coli ATCC25922を菌として含む被検試料
により得られた結果を、−・−はKlebsiclla
 pneumoniaeを菌として含む被検試料により
得られた結果を、−△−はPseudomonas a
eruginosaATCC27853を菌として含む
被検試料により得られた結果を、−口−はEntero
coccus faecalis又はSシaphyro
coccus aureus ATCC25923を菌
として含む被検試料により得られた結果を夫々示す。 第2図は、実施例2に於いて得ら九た検量線を示し、横
軸は生菌数(個/ m l )を横軸はゲル化時117
1を夫々示す。図中、−〇−はEscherichia
 coliATCC25922を菌として含む被検試料
により得られた結果を、−Δ−はPseudomona
s aeruginosa ATCC27853を菌と
して含む被検試料により得られた結果を、−ローはEn
terococcus faecalis又は5jap
hyrococcus aureus ATCC259
23を菌として含む被検試料により得られた結果を夫々
示す。 特許出願人  和光純薬工業株式会社 第 図 10’   10″  105 キ 菌 孝女5 (イ固/m1) 第 図 手続補正書 平成2年1月3冴困
Figure 1 shows the calibration curve obtained in Example 1, where the horizontal axis is the number of viable bacteria (cells/ml) and the vertical axis is the time (minutes) until the amount of transmitted light decreases by 5% (hereinafter referred to as (abbreviated as gelation time)
are shown respectively. In the figure, -〇- is Escherichia
The results obtained from the test sample containing E. coli ATCC25922 as bacteria are shown in the table below.
-△- indicates the results obtained from the test sample containing P. pneumoniae as the bacteria.
The results obtained from the test sample containing S. eruginosa ATCC27853 as a bacterium are
coccus faecalis or S shyaphyro
The results obtained using test samples containing coccus aureus ATCC25923 as bacteria are shown. Figure 2 shows the standard curve obtained in Example 2, where the horizontal axis represents the number of viable bacteria (cells/ml) and the horizontal axis represents the number of viable bacteria (117 cells/ml) at the time of gelation.
1 is shown respectively. In the figure, -〇- is Escherichia
-Δ- indicates the results obtained from the test sample containing E.coli ATCC25922 as a bacterium.
-low is En En
terococcus faecalis or 5jap
hyrococcus aureus ATCC259
The results obtained using test samples containing 23 as bacteria are shown. Patent Applicant: Wako Pure Chemical Industries, Ltd. Figure 10'10'' 105 Ki Fungi Takajo 5 (Ik/m1) Figure Procedural Amendment January 3, 1990

Claims (2)

【特許請求の範囲】[Claims] (1)被検試料とカブトガニ血球成分抽出液とを反応さ
せた際に生じるゲル化反応に基づく光学的変化を測定し
、その光学的変化の程度から被検試料中のグラム陰性菌
の生菌数を推定することを特徴とするグラム陰性菌の生
菌数測定方法。
(1) Measure the optical change based on the gelation reaction that occurs when the test sample and horseshoe crab blood cell extract are reacted, and determine whether the Gram-negative bacteria in the test sample is viable based on the degree of the optical change. A method for measuring the viable count of Gram-negative bacteria, characterized by estimating the number.
(2)被検試料とカブトガニ血球成分抽出液とを反応さ
せる際に、β−1,3−グルカンを構成成分とする水溶
性の多糖類又は/及びその水溶性の誘導体を共存させる
請求項1に記載の測定方法。
(2) Claim 1 in which a water-soluble polysaccharide containing β-1,3-glucan and/or a water-soluble derivative thereof is coexisting when reacting the test sample with the horseshoe crab blood cell extract. Measurement method described in.
JP27674688A 1988-11-01 1988-11-01 Measurement of living bacterium number Pending JPH02124099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27674688A JPH02124099A (en) 1988-11-01 1988-11-01 Measurement of living bacterium number

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27674688A JPH02124099A (en) 1988-11-01 1988-11-01 Measurement of living bacterium number

Publications (1)

Publication Number Publication Date
JPH02124099A true JPH02124099A (en) 1990-05-11

Family

ID=17573764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27674688A Pending JPH02124099A (en) 1988-11-01 1988-11-01 Measurement of living bacterium number

Country Status (1)

Country Link
JP (1) JPH02124099A (en)

Similar Documents

Publication Publication Date Title
Yin et al. Picogram-sensitive assay for endotoxin: Gelation of Limulus polyphemus blood cell lysate induced lipopolysaccharides and lipid A from gram-negative bacteria
Strand et al. Screening of chitosans and conditions for bacterial flocculation
CN109790561B (en) Method for detecting endotoxin by using horseshoe crab amoeba-like cell lysate substantially free of coagulogen
EP0330991B1 (en) Process for measuring endotoxin
Nagi et al. Application of limulus test (G pathway) for the detection of different conformers of (1→ 3)-β-D-glucans
JP5670207B2 (en) A method for real-time detection of microorganisms in liquid media by agglutination
Tsuchiya et al. Detection of peptidoglycan and β-glucan with silkworm larvae plasma test
WO1990002951A1 (en) Limulus amoebocyte lysate g-factor activation
Arreguin-Campos et al. Biomimetic sensing of Escherichia coli at the solid-liquid interface: From surface-imprinted polymer synthesis toward real sample sensing in food safety
US7598054B2 (en) Rapid peptidoglycan-based assay for detection of bacterial contamination of platelets
CN103492878A (en) Methods for detecting contaminants in solutions containing glucose polymers
US6284885B1 (en) Process for preparing (1→3)-β-D-glucan from fungi
CN109642248B (en) Detection of cells in a liquid sample
CN110106121B (en) Lactobacillus plantarum for producing extracellular polysaccharide
JPH02124099A (en) Measurement of living bacterium number
Jauho et al. New technology for regiospecific covalent coupling of polysaccharide antigens in ELISA for serological detection
KR101888741B1 (en) Methods of rapid sensing for antibiotics using glucose meter and bacteria
JP2688773B2 (en) Endotoxin inactivation method
JPH02500856A (en) endotoxin assay
CN109323996B (en) Fungus detection kit
RU2294373C2 (en) Method for determination of lysozyme activity of biological objects
JP3822974B2 (en) Method for producing endotoxin-specific lysate
JP4318244B2 (en) Aspergillus derived glucan
RU2147126C1 (en) Method for evaluating intestine dysbacteriosis bacterial therapy effectiveness
JP2007509628A (en) Rapid assay based on peptidoglycan for detection of contamination in platelets