JPH02123518A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH02123518A
JPH02123518A JP27816188A JP27816188A JPH02123518A JP H02123518 A JPH02123518 A JP H02123518A JP 27816188 A JP27816188 A JP 27816188A JP 27816188 A JP27816188 A JP 27816188A JP H02123518 A JPH02123518 A JP H02123518A
Authority
JP
Japan
Prior art keywords
magnetic
recording
magnetic layer
binder
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27816188A
Other languages
Japanese (ja)
Other versions
JP3170784B2 (en
Inventor
Junichi Yoshimura
純一 吉村
Tetsuro Yamaguchi
哲朗 山口
Osamu Shimomura
理 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASEI BAABEITAMU KK
Original Assignee
KASEI BAABEITAMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASEI BAABEITAMU KK filed Critical KASEI BAABEITAMU KK
Priority to JP27816188A priority Critical patent/JP3170784B2/en
Publication of JPH02123518A publication Critical patent/JPH02123518A/en
Application granted granted Critical
Publication of JP3170784B2 publication Critical patent/JP3170784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To realize high-density recording by forming a magnetic layer containing Co-contg. magnetic iron oxides and a binder on a nonmagnetic supporting body and using a specific amount of the binder having a specific compsn. CONSTITUTION:The magnetic recording medium consists of a nonmagnetic supporting body and a magnetic layer containing Co-contg. iron oxides and a binder formed on the substrate. It is specified that the binder contains polycarbonate urethane and that the magnetic layer is 0.4 - 1.0mum thick with the residual magnetic flux density >=800 Gauss and the coersive force of 800 - 1,100 Oe. By this method, recording can be performed with shorter wavelength than in a conventional recording medium, which realizes high-density recording and large recording capacity. Moreover, the obtained medium has excellent durability for continuous reproduction and traveling stability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非磁性支持体上にコバルト含有磁性酸化鉄及
び結合剤を含む磁性層を設けてなる磁気記録媒体に関し
、特により高密度な記録が可能であり、走行安定性及び
連続再生耐久性に優れた磁気記録媒体に閃する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a magnetic recording medium comprising a magnetic layer containing cobalt-containing magnetic iron oxide and a binder on a non-magnetic support, and particularly relates to a magnetic recording medium with a higher density. Magnetic recording media that can record data and have excellent running stability and continuous playback durability were developed.

〔従来°の技術〕[Conventional technology]

近年、小型の計算機の能力向上に伴い、日常扱われるプ
ログラムやデータファイルに非常に大容量の記録が必要
となり、磁気ディスク等の磁気記録媒体にも、大容量の
記録媒体が要望されている。
In recent years, as the capabilities of small computers have improved, programs and data files that are used on a daily basis require extremely large-capacity recording, and magnetic recording media such as magnetic disks are also required to have large-capacity recording media.

また、記録媒体の太き、さは取扱い易さや設置又は保管
するスペースの問題からより小さい物が求められている
Further, there is a demand for smaller recording media in terms of ease of handling and space for installation or storage.

そこで、これらの要望に答えるため、同じ大きさの記録
媒体により多くの情報を記録する必要が生じ、そのため
に、記録媒体に記録する信号の波長を短くした、いわゆ
る記録密度の高い記録媒体が研究されている。
Therefore, in order to meet these demands, it became necessary to record more information on a recording medium of the same size, and for this reason, research began on recording media with so-called high recording density, in which the wavelength of the signal recorded on the recording medium was shortened. has been done.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、例えばフレキシブルディスクにおいては
、直径90龍のディスクに1メガバイトの情報を記録で
きる媒体(保磁力500〜7000 e %塗膜厚さ1
.2〜2.0μm)が広く普及しているが、この場合の
記録波長は2.9μm(8,7kbpi)が最短であっ
て、記録容量を増すためにさらに短波長の記録を行なっ
た場合は、出力が低下し、SN比が悪くなるという問題
が生じる。
However, for example, in the case of flexible disks, 1 megabyte of information can be recorded on a disk with a diameter of 90 mm (coercive force: 500 to 7,000 e%, coating thickness: 1
.. 2 to 2.0 μm) is widely used, but the shortest recording wavelength in this case is 2.9 μm (8.7 kbpi), and if recording is performed at an even shorter wavelength to increase the recording capacity, , the problem arises that the output decreases and the S/N ratio deteriorates.

また、デジタル記録の場合には、長波長の場合の出力と
短波長の場合の出力とに大きな差があると、長波長記録
と短波長記録とが隣接した場合に出力波形が歪み、ピー
クが本来あるべき位置から大きくずれてしまうという問
題が生じる。
In addition, in the case of digital recording, if there is a large difference between the output for long wavelengths and the output for short wavelengths, the output waveform will be distorted and the peak will be distorted when long wavelength records and short wavelength records are adjacent. A problem arises in that it deviates significantly from its original position.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、かかる事情に鑑み鋭意検討した結果、特
定の結合剤を用い、特定の磁性層の厚さ、残留磁束密度
及び保磁力を選択することにより、高田度記録が可能で
、走行安定性及び連続再生耐久性に優れた磁気記録媒体
が得られることを見出し、本発明に到達した。
The inventors of the present invention have made intensive studies in view of the above circumstances, and have found that by using a specific binder, selecting a specific magnetic layer thickness, residual magnetic flux density, and coercive force, it is possible to achieve high-speed recording and It has been discovered that a magnetic recording medium with excellent stability and continuous reproduction durability can be obtained, and the present invention has been achieved.

即ち、本発明の要旨は、非磁性支持体上にコバルト含有
磁性酸化鉄及び結合剤を含む磁性層を設けてなる磁気記
録媒体であっ′て、結合剤がポリカーボネートポリウレ
タンを含有し、磁性層の厚さが0.4〜1.0μmであ
り、磁性層の残留磁束密度が800ガウス以上、かつ磁
性層の保磁力が800〜1100 Oeの範囲であるこ
とを特徴とする磁気記録媒体に存する。
That is, the gist of the present invention is a magnetic recording medium in which a magnetic layer containing cobalt-containing magnetic iron oxide and a binder is provided on a non-magnetic support, the binder containing polycarbonate polyurethane, The magnetic recording medium has a thickness of 0.4 to 1.0 μm, a residual magnetic flux density of the magnetic layer of 800 Gauss or more, and a coercive force of the magnetic layer of 800 to 1100 Oe.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては、磁性体として針状のコバルト含有磁
性酸化鉄を使用する。特に、磁性体の長軸径が0.1〜
1.0μm、好ましくは0.2〜0.6μmの範囲のも
のが好適である。磁性体の長軸径が0.1μmより小さ
い場合は、結合剤中に磁性体を均一に分散することが難
しく、磁性層の強度が充分でなくなり、連続再生耐久性
が悪くなる傾向がある。また1、0μmより大きい場合
は、磁性層中の磁化分布が不均一になり易く、雑音が大
きくなるためSN比が悪くなる傾向がある。
In the present invention, acicular cobalt-containing magnetic iron oxide is used as the magnetic material. In particular, the long axis diameter of the magnetic material is 0.1~
A thickness in the range of 1.0 μm, preferably 0.2 to 0.6 μm is suitable. When the long axis diameter of the magnetic material is smaller than 0.1 μm, it is difficult to uniformly disperse the magnetic material in the binder, the strength of the magnetic layer becomes insufficient, and the continuous reproduction durability tends to deteriorate. If the thickness is larger than 1.0 μm, the magnetization distribution in the magnetic layer tends to become non-uniform, and noise tends to increase, resulting in a poor signal-to-noise ratio.

さらに、本発明で用いるコバルト含有磁性酸化鉄は、保
磁力が900〜1000 Oeの範囲、最大磁化が70
 emu/ g以上であり、かつBET法による比表面
積が30〜4o=/gの範囲であるものが特に好適に用
いられる。
Furthermore, the cobalt-containing magnetic iron oxide used in the present invention has a coercive force in the range of 900 to 1000 Oe and a maximum magnetization of 70 Oe.
Emu/g or more and a specific surface area measured by the BET method in the range of 30 to 4o=/g are particularly preferably used.

コバルト含有磁性酸化鉄は、従来、保磁力、残留磁化と
もに大きい磁気記録媒体が得られる磁性体として知られ
ているα−Fe、Fe−Co系合金、Fe−Co−Ni
系合金等の金属磁性粉末と較べて、酸化劣化しにくいた
め耐環境性が良好であり、また磁性体自体の硬度も高い
ため磁性層の強度も高く、得られる磁気記録媒体の耐久
性もすぐれている。
Cobalt-containing magnetic iron oxides include α-Fe, Fe-Co alloys, and Fe-Co-Ni, which are known as magnetic materials that can produce magnetic recording media with large coercive force and residual magnetization.
Compared to metal magnetic powders such as alloys, it is less susceptible to oxidative deterioration and has good environmental resistance.The magnetic material itself has high hardness, so the strength of the magnetic layer is high, and the resulting magnetic recording medium has excellent durability. ing.

本発明で用いる結合剤は、ポリカーボネートポリウレタ
ンを含有することを特徴とする。ここで、ポリカーボネ
ートポリウレタンとは、ポリカーボネートポリオール(
A)と、有機ジイソシアネート(B)とを反応させ、必
要に応じて反応生成物中の残存イソシアネート基と低分
子量ジオール(C)とを反応させて得られるポリウレタ
ンのことである。
The binder used in the present invention is characterized by containing polycarbonate polyurethane. Here, polycarbonate polyurethane refers to polycarbonate polyol (
It is a polyurethane obtained by reacting A) with an organic diisocyanate (B) and, if necessary, reacting the remaining isocyanate groups in the reaction product with a low molecular weight diol (C).

ポリカーボネートポリオール(A)は、例えば、公知の
多価アルコール、例えば1.5−ベンタンジオール、1
.6−ヘキサンジオール、1.8−オクタンジオール等
と、ホスゲン等との脱塩酸縮合によって得られるカーボ
ネート結合を有するポリオールである。
The polycarbonate polyol (A) is, for example, a known polyhydric alcohol, such as 1,5-bentanediol, 1
.. It is a polyol having a carbonate bond obtained by dehydrochloric acid condensation of 6-hexanediol, 1,8-octanediol, etc., and phosgene, etc.

有機ジイソシアネート(B)としては、ヘキサメチレン
ジイソシアネート(HMDI)、キシリレンジイソシア
ネート (XDI)、)リレンジイソシアネート(TD
I) 、4.4’−ジフェニルメタンジイソシアネート
(MDI)等の公知の有機ジイソシアネート単量体及び
これらの混合物が挙げられるが、特にTDI及び/又は
MDIを使用した場合に耐久性、走行安定性の向上の効
果が顕著である。
Examples of the organic diisocyanate (B) include hexamethylene diisocyanate (HMDI), xylylene diisocyanate (XDI), and lylene diisocyanate (TD).
I), known organic diisocyanate monomers such as 4,4'-diphenylmethane diisocyanate (MDI), and mixtures thereof, but especially when TDI and/or MDI is used, durability and running stability can be improved. The effect is remarkable.

ポリカーボネートポリオール(A)と有機ジイソシアネ
ート(B)とを反応させた後の残存イソシアネート基と
反応させる低分子量ジオール(C)としてはジエチレン
グリコール、トリエチレングリコール、プロピレングリ
コール、1.4−7’タンジオール等が使用される。
Examples of the low molecular weight diol (C) to be reacted with the isocyanate group remaining after the polycarbonate polyol (A) and organic diisocyanate (B) are reacted include diethylene glycol, triethylene glycol, propylene glycol, 1.4-7'tanediol, etc. used.

本発明のポリカーボネートポリウレタンの分子量はポリ
スチレン換算の重量平均分子量で5万以上であることが
望ましい。分子量が5万以下である場合は磁性層の強度
が不十分であり、連続再生耐久性が劣化する。
The molecular weight of the polycarbonate polyurethane of the present invention is preferably 50,000 or more in weight average molecular weight in terms of polystyrene. If the molecular weight is less than 50,000, the strength of the magnetic layer will be insufficient and the continuous reproduction durability will deteriorate.

本発明において使用される結合剤としては上記のポリカ
ーボネートポリウレタンの他に、通常磁性体の結合剤と
して使用されるものを混合して使用してもよく、具体的
にはポリエステルポリウレタン、ポリエーテルポリウレ
タン、塩化ビニル−酢酸ビニル系共重合体、エポキシ系
樹脂、繊維素系樹脂、ポリエステル系樹脂、アクリル系
樹脂、ゴム系樹脂、ポリイソシアネート化合物等が挙げ
られる。
In addition to the above-mentioned polycarbonate polyurethane, the binder used in the present invention may be a mixture of those commonly used as binders for magnetic materials, and specifically, polyester polyurethane, polyether polyurethane, Examples include vinyl chloride-vinyl acetate copolymers, epoxy resins, cellulose resins, polyester resins, acrylic resins, rubber resins, and polyisocyanate compounds.

結合剤は、磁性体100重量部に対し、通常10〜50
重量部使用する。
The binder is usually used in an amount of 10 to 50 parts by weight per 100 parts by weight of the magnetic material.
Use parts by weight.

また、磁性層中には、磁性体及び結合剤の他に、必要に
応じて、酸化アルミニウム微粒子や酸化クロム微粒子等
の研磨材、各種脂肪酸や脂肪酸エステル等の潤滑剤、導
電性カーボンブラック等の導電性付与剤等を含有させる
ことができる。
In addition to the magnetic material and binder, the magnetic layer may contain abrasives such as aluminum oxide fine particles and chromium oxide fine particles, lubricants such as various fatty acids and fatty acid esters, and conductive carbon black, etc., as necessary. A conductivity imparting agent and the like can be contained.

研磨剤は、磁性体100重量部に対して1〜20重量部
、好ましくは1〜10重量部使用することが、連続再生
耐久性向上の点から望ましい。
It is desirable to use the abrasive in an amount of 1 to 20 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the magnetic material, from the viewpoint of improving continuous reproduction durability.

潤滑剤は、磁性体100重量部に対して1〜10重量部
含有させることが好ましい。1重量部より少ないと潤滑
剤としての効果が十分発揮されず、10重量部より多い
と潤滑剤のブリードアウト等が起き易い。
The lubricant is preferably contained in 1 to 10 parts by weight per 100 parts by weight of the magnetic material. If it is less than 1 part by weight, the effect as a lubricant will not be sufficiently exhibited, and if it is more than 10 parts by weight, the lubricant is likely to bleed out.

導電性付与剤は、磁性体100重量部に対して1〜10
重量部含有させることが好ましい。1重量部より少ない
と磁気記録媒体の表面電気抵抗が大きくなる傾向があり
、10重量部より多いと連続再生耐久性が悪(なる傾向
がある。
The conductivity imparting agent is used in an amount of 1 to 10 parts by weight per 100 parts by weight of the magnetic material.
It is preferable to contain it in parts by weight. If it is less than 1 part by weight, the surface electrical resistance of the magnetic recording medium tends to increase, and if it is more than 10 parts by weight, continuous reproduction durability tends to be poor.

本発明においては、磁性層の厚さを0.4〜1.0μm
とする必要がある。磁性層が0.4μmより薄い場合は
磁性層の強度が不十分なために連続走行耐久性が劣化す
る。1.0μmより厚い場合は、長波長記録の場合の出
力電圧の増加に対して、短波長記録の場合には出力電圧
が増加しないため両者の差が大きくなり、デジタル記録
の場合、長波長記録と短波長記録とが隣接した場合に出
力波形が歪み、ピークが本来あるべき位置から大きくず
れてしまうため、大容量・高密度の媒体としての使用に
適さない。
In the present invention, the thickness of the magnetic layer is 0.4 to 1.0 μm.
It is necessary to do so. If the magnetic layer is thinner than 0.4 μm, the strength of the magnetic layer is insufficient and the continuous running durability deteriorates. If it is thicker than 1.0 μm, the difference between the two becomes large because the output voltage does not increase for short wavelength recording while the output voltage increases for long wavelength recording, and in the case of digital recording, the output voltage increases for long wavelength recording. When the output waveform and short wavelength recording are adjacent to each other, the output waveform is distorted and the peak deviates significantly from its original position, making it unsuitable for use as a large-capacity, high-density medium.

また、磁性層の残留磁束密度は800ガウス以上とする
必要がある。800ガウス未満の場合は出力電圧が小さ
くなり、正確な記録の読み出しが行なえなくなる。
Further, the residual magnetic flux density of the magnetic layer needs to be 800 Gauss or more. If it is less than 800 Gauss, the output voltage will be small and accurate reading of records will not be possible.

さらに、磁性層の保磁力は800〜1100Oeの範囲
であることが必要である。磁性層の保磁力が800 O
eより小さい場合は短波長信号を記録した際の出力電圧
が小さく、1100 Oeより大きい場合は消去特性が
悪くなり、重ね書きをした場合に既に記録されていた信
号が残留して、再度信号を読み出す際に後から記録した
信号を正しく読取れないといった問題が生じる。
Furthermore, the coercive force of the magnetic layer needs to be in the range of 800 to 1100 Oe. The coercive force of the magnetic layer is 800 O
If it is smaller than 1100 Oe, the output voltage when recording a short wavelength signal will be small, and if it is larger than 1100 Oe, the erasing characteristics will be poor, and if overwriting is performed, the already recorded signal will remain and it will be difficult to record the signal again. When reading, a problem arises in that signals recorded later cannot be read correctly.

本発明において、非磁性支持体としては、ポリエチレン
テレフタレートなどのポリエステル類、ポリエチレン、
ポリプロピレンなどのポリオレフィン類、ポリカーボネ
ート、ポリフェニレンサルファイド、ポリイミドなどの
プラスチックが通常用いられるが、用途に応じて、非磁
性金属、セラミック、紙等を用いても良い。
In the present invention, as the non-magnetic support, polyesters such as polyethylene terephthalate, polyethylene,
Plastics such as polyolefins such as polypropylene, polycarbonate, polyphenylene sulfide, and polyimide are usually used, but non-magnetic metals, ceramics, paper, etc. may also be used depending on the purpose.

本発明の磁気記録媒体は、例えば、上記結合剤、磁性体
、及び必要に応じて研磨剤、潤滑剤、導電性付与剤等を
、メチルエチルケトン、イソブチルケトン、シクロヘキ
サノン、トルエン等の有機溶媒とともにボールミル、サ
ンドミル、二本ロール等の混合分散機を用いて混合、分
散して塗料状の6n気組成物を得た後、該塗料状組成物
を非磁性支持体上に塗布し、乾燥、加熱硬化処理するこ
とによって製造することができる。
The magnetic recording medium of the present invention can be produced by, for example, combining the binder, the magnetic material, and, if necessary, an abrasive, a lubricant, a conductivity imparting agent, etc., together with an organic solvent such as methyl ethyl ketone, isobutyl ketone, cyclohexanone, or toluene, by ball milling. After mixing and dispersing using a mixing and dispersing machine such as a sand mill or two rolls to obtain a paint-like 6N composition, the paint-like composition is applied onto a non-magnetic support, dried, and heat-cured. It can be manufactured by

〔実施例〕〔Example〕

以下、実施例を用いて本発明の詳細な説明するが、本発
明はその要旨を越えない限り、実施例により限定される
ものではない。
Hereinafter, the present invention will be described in detail using Examples, but the present invention is not limited by the Examples unless the gist thereof is exceeded.

実施例1 磁性粉末          100重量部針状co−
rFetox 保磁力 960 Oe 長軸径  0.5  μm ポリカーボネートポリウレタンエラストマー12.9重
量部 1.6−ヘキサンジオールとホスゲンの脱塩酸縮合によ
って得られたポリカーボネートポリオ−ルとMDIとを
反応させ、反応生成物中の残存イソシアネート基に1.
4−ブタンジオール、ジエチレングリコール、トリエチ
レングリコールを反応させて得られたポリウレタンエラ
ストマー;重量平均分子it(ポリスチレン換算)  
11万塩化ビニル−酢酸ビニル系共重合体 15.7重量部 ポリイソシアネート化合物   5.9重量部燐酸エス
テル系分散剤     4重量部研磨剤(酸化アルミニ
ウム粉末)1.5重量部ステアリン酸エステル    
 8重量部導電性カーボンブラック   10重量部メ
チルエチルゲント、シクロヘキサノン等の有機溶剤の混
合物   390重量部上記組成物をサンドミルを用い
て混合分散し、75μmqさのポリエチレンテレフタレ
ートフィルム上に均一に塗布し、乾燥後、カレンダー処
理を施して直径3.5インチのドーナツ状に打抜き、磁
気ディスクを得た。磁性層の厚さは0.64μmであっ
た。
Example 1 Magnetic powder 100 parts by weight acicular co-
rFetox Coercive force 960 Oe Major axis diameter 0.5 μm Polycarbonate polyurethane elastomer 12.9 parts by weight A polycarbonate polyol obtained by dehydrochloric acid condensation of 1.6-hexanediol and phosgene is reacted with MDI to form a reaction product. 1. to the remaining isocyanate groups in the
Polyurethane elastomer obtained by reacting 4-butanediol, diethylene glycol, and triethylene glycol; weight average molecule it (polystyrene equivalent)
110,000 parts by weight Vinyl chloride-vinyl acetate copolymer 15.7 parts by weight Polyisocyanate compound 5.9 parts by weight Phosphoric ester dispersant 4 parts by weight Abrasive (aluminum oxide powder) 1.5 parts by weight Stearate ester
8 parts by weight Conductive carbon black 10 parts by weight A mixture of organic solvents such as methyl ethyl chloride and cyclohexanone 390 parts The above composition was mixed and dispersed using a sand mill, uniformly coated on a 75 μm square polyethylene terephthalate film, and dried. Thereafter, it was calendered and punched into a donut shape with a diameter of 3.5 inches to obtain a magnetic disk. The thickness of the magnetic layer was 0.64 μm.

得られた磁気ディスクの保磁力・残留磁束密度は振動試
料式磁力計で測定し、磁性層の厚さは触針式表面粗さ計
で測定した。
The coercive force and residual magnetic flux density of the obtained magnetic disk were measured using a vibrating sample type magnetometer, and the thickness of the magnetic layer was measured using a stylus type surface roughness meter.

また、ヘッドギャップ0.9μmのフェライトヘッドを
用いて、300rpmで回転させて、半径24.7鰭の
位置で記録・再生を行なったときのD50と短波長記録
の出力電圧を第1表に示す。
Table 1 also shows the D50 and short wavelength recording output voltage when recording and reproducing were performed at a position with a radius of 24.7 fins using a ferrite head with a head gap of 0.9 μm, rotating at 300 rpm. .

なお、D50とは、出力が、長波長信号を記録した際の
再生出力の50%になる記録密度を表わしたもので、装
置として実現可能な最大記録密度の目安となる。D50
が25kbpi以上であれば、従来より高密度な記録を
行なうのに適しているといえる。また、出力電圧はアン
プノイズに比して十分に大きくなければならず、2■以
上であることが望ましい。
Note that D50 represents the recording density at which the output becomes 50% of the reproduced output when recording a long wavelength signal, and is a measure of the maximum recording density that can be realized as an apparatus. D50
If it is 25 kbpi or more, it can be said that it is suitable for recording at a higher density than before. Further, the output voltage must be sufficiently large compared to the amplifier noise, and is preferably 2 .mu. or more.

また、同様の条件での連続再生耐久性試験結果及び、磁
性層とヘッドとの摩擦による回転トルクの値とを第1表
に示す。
Further, Table 1 shows the results of continuous reproduction durability tests under similar conditions and the values of rotational torque due to friction between the magnetic layer and the head.

連続再生耐久性試験は温度45゛C1相対湿度80%の
環境に7時間保持し、5時間かけて温度5℃、相対湿度
50%の環境とし、この環境を7時間保持し、さらに5
時間かけて最初の環境に戻すという合計24時間を1サ
イクルとする、周期的環境変化のもとで行なったもので
あり、第1表中、○は100時間経過後も出力の低下や
媒体上の傷の発生が認められなかったことを示し、×は
100時間経過迄に出力の低下や媒体上の傷の発生が認
められたことを示す。
The continuous playback durability test was performed by holding an environment at a temperature of 45°C and a relative humidity of 80% for 7 hours, then increasing the temperature to an environment of 5°C and a relative humidity of 50% for 5 hours, maintaining this environment for 7 hours, and then holding the environment for 5 hours.
The test was carried out under periodic environmental changes, with one cycle of a total of 24 hours returning to the initial environment over time. Indicates that no scratches were observed, and × indicates that a decrease in output or the occurrence of scratches on the medium was observed before 100 hours had elapsed.

実施例2 磁性層の厚さを0.41μmとしたこと以外は実施例1
と同様にして磁気ディスクを得た。結果を第1表に示す
Example 2 Example 1 except that the thickness of the magnetic layer was 0.41 μm.
A magnetic disk was obtained in the same manner. The results are shown in Table 1.

実施例3 ポリウレタンエラストマー中の構成成分である有機ジイ
ソシアネートとしてTDIを使用し、ポリウレタンエラ
ストマーの重量平均分子量が8万であること以外は実施
例1と同様にして磁気ディスクを得た。結果を第1表に
示す。
Example 3 A magnetic disk was obtained in the same manner as in Example 1, except that TDI was used as the organic diisocyanate that was a component in the polyurethane elastomer, and the weight average molecular weight of the polyurethane elastomer was 80,000. The results are shown in Table 1.

比較例1 磁性粉末を保磁力670 Oe、長軸径0.7μmの針
状Co−rFe20.とし、磁性層の厚さを1.62μ
mとしたこと以外は実施例1と同様にして磁気ディスク
を得た。結果を第1表に示す。
Comparative Example 1 Magnetic powder was made of acicular Co-rFe20. and the thickness of the magnetic layer is 1.62μ
A magnetic disk was obtained in the same manner as in Example 1 except that m was used. The results are shown in Table 1.

比較例2 磁性粉末を、保磁カフ30 Oe、長軸径0.8μmの
針状CO−γFe2O3にしたこと以外は実施例1と同
様にして磁気ディスクを得た。結果を第1表に示す。
Comparative Example 2 A magnetic disk was obtained in the same manner as in Example 1, except that the magnetic powder was acicular CO-γFe2O3 with a coercive cuff of 30 Oe and a major axis diameter of 0.8 μm. The results are shown in Table 1.

比較例3 磁性層の厚さを0.54μmにしたこと以外は比較例2
と同様にして磁気ディスクを得た。結果を第1表に示す
Comparative Example 3 Comparative Example 2 except that the thickness of the magnetic layer was 0.54 μm
A magnetic disk was obtained in the same manner. The results are shown in Table 1.

比較例4 磁性層の厚さを1.22μmにしたこと以外は実施例1
と同様にして磁気ディスクを得た。結果を第1表に示す
Comparative Example 4 Example 1 except that the thickness of the magnetic layer was 1.22 μm.
A magnetic disk was obtained in the same manner. The results are shown in Table 1.

比較例5 ポリウレタンエラストマー中の構成成分であるポリカー
ボネートポリオールのかわりに1,4−ブタンジオール
とアジピン酸との縮合によって得られるポリエステルポ
リオールを使用したこと以外は実施例1と同様にして磁
気ディスクを得た。
Comparative Example 5 A magnetic disk was obtained in the same manner as in Example 1, except that a polyester polyol obtained by condensation of 1,4-butanediol and adipic acid was used instead of the polycarbonate polyol, which is a component in the polyurethane elastomer. Ta.

結果を第1表に示す。The results are shown in Table 1.

第1表から明らかなように、比較例1.2.3のように
磁性層の保磁力が800 Oeより低い場合は短波長信
号を記録した場合の出力電圧が小さい。さらに、比較例
4のように保磁力、最大残留磁束密度ともに実施例と同
等であっても、磁性層の厚さが1.0μmより厚くなる
と出力電圧は十分であるが、D50が悪くなる。
As is clear from Table 1, when the coercive force of the magnetic layer is lower than 800 Oe as in Comparative Examples 1.2.3, the output voltage is small when short wavelength signals are recorded. Further, even if the coercive force and the maximum residual magnetic flux density are the same as those of the example as in Comparative Example 4, when the thickness of the magnetic layer becomes thicker than 1.0 μm, the output voltage is sufficient but the D50 becomes worse.

また、比較例5のようにポリエステルポリウレタンを使
用してポリカーボネートポリウレタンを使用しなかった
場合は回転トルクが高く、また連続再生耐久性も悪く、
試験途中で磁性層がはく離してしまった。
In addition, when polyester polyurethane was used and polycarbonate polyurethane was not used as in Comparative Example 5, the rotational torque was high and the continuous regeneration durability was poor.
The magnetic layer peeled off during the test.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の磁気記録媒体より、より短波長
での記録が行なえるため高密度記録が可能で、記録容量
も大きく、さらに連続再生耐久性と走行安定性に優れた
磁気記録媒体を得ることができる。
According to the present invention, a magnetic recording medium enables recording at a shorter wavelength than conventional magnetic recording media, enables high-density recording, has a large recording capacity, and has excellent continuous playback durability and running stability. can be obtained.

手続補正書 (自発) 事件の表示 昭和63年特許願第27 61、 発明の名称 補正をする者 理 〒10 東京都千代田区丸の内二丁目5番2号 三菱 (ほか1名) 補正の内容 (1)  明細書の第11頁第13行に「メチルエチル
ケント」とあるを「メチルエチルケトン」と訂正する。
Procedural amendment (voluntary) Indication of the case Patent Application No. 27 61 of 1988, Reason for amending the name of the invention Mitsubishi (and 1 other person) 2-5-2 Marunouchi, Chiyoda-ku, Tokyo 10 Contents of the amendment (1) ) In the specification, page 11, line 13, "methyl ethyl kent" is corrected to "methyl ethyl ketone."

Claims (1)

【特許請求の範囲】[Claims] (1)非磁性支持体上にコバルト含有磁性酸化鉄及び結
合剤を含む磁性層を設けてなる磁気記録媒体であって、 結合剤がポリカーボネートポリウレタンを含有し、磁性
層の厚さが0.4〜1.0μmであり、磁性層の残留磁
束密度が800ガウス以上、かつ磁性層の保磁力が80
0〜1100Oeの範囲であることを特徴とする磁気記
録媒体。
(1) A magnetic recording medium comprising a magnetic layer containing cobalt-containing magnetic iron oxide and a binder on a non-magnetic support, the binder containing polycarbonate polyurethane, and the thickness of the magnetic layer being 0.4 ~1.0μm, the residual magnetic flux density of the magnetic layer is 800 Gauss or more, and the coercive force of the magnetic layer is 80
A magnetic recording medium characterized in that it has a magnetic field strength in the range of 0 to 1100 Oe.
JP27816188A 1988-11-02 1988-11-02 Magnetic recording media Expired - Lifetime JP3170784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27816188A JP3170784B2 (en) 1988-11-02 1988-11-02 Magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27816188A JP3170784B2 (en) 1988-11-02 1988-11-02 Magnetic recording media

Publications (2)

Publication Number Publication Date
JPH02123518A true JPH02123518A (en) 1990-05-11
JP3170784B2 JP3170784B2 (en) 2001-05-28

Family

ID=17593437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27816188A Expired - Lifetime JP3170784B2 (en) 1988-11-02 1988-11-02 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP3170784B2 (en)

Also Published As

Publication number Publication date
JP3170784B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
JPH01102729A (en) Magnetic recording carrier
US7115331B2 (en) Magnetic recording medium having narrow pulse width characteristics
JPS6139223A (en) Magnetic recording medium
JPH0650563B2 (en) Magnetic recording medium
JPS60160022A (en) Magnetic recording medium
JP4335998B2 (en) Magnetic recording medium and magnetic recording / reproducing method
JP3170784B2 (en) Magnetic recording media
JP2701382B2 (en) Magnetic recording media
JP2006147140A (en) Backside coating formulation for magnetic recording tape having residual compressibility
US20040191570A1 (en) Magnetic recording media having increased high density broadband signal-to-noise ratio
JP2623734B2 (en) Magnetic recording media
JPS61289522A (en) Magnetic recording medium
JP2004103217A (en) Magnetic recording medium
US20040253482A1 (en) Dual-layer magnetic medium with nonhalogenated binder system
JPH04248120A (en) Magnetic recording medium
JPH01276423A (en) Disk-shaped magnetic recording medium
JP2907340B2 (en) Magnetic recording media
JP2722532B2 (en) Magnetic recording media
JP2651749B2 (en) Magnetic recording media
JP2001325714A (en) Discoid magnetic recording medium
US20040191573A1 (en) Magnetic recording media exhibiting decreased tape dropout performance
JP2001325712A (en) Discoid magnetic recording medium
JP2002092852A (en) Magnetic recording medium
JPH0463525B2 (en)
JP2002133636A (en) Magnetic disk

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8