JPH0212307B2 - - Google Patents

Info

Publication number
JPH0212307B2
JPH0212307B2 JP60208338A JP20833885A JPH0212307B2 JP H0212307 B2 JPH0212307 B2 JP H0212307B2 JP 60208338 A JP60208338 A JP 60208338A JP 20833885 A JP20833885 A JP 20833885A JP H0212307 B2 JPH0212307 B2 JP H0212307B2
Authority
JP
Japan
Prior art keywords
oil chamber
hydraulic
support shaft
motor
end wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60208338A
Other languages
Japanese (ja)
Other versions
JPS6272955A (en
Inventor
Eiichiro Kawahara
Kenichi Ikejiri
Koji Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP20833885A priority Critical patent/JPS6272955A/en
Publication of JPS6272955A publication Critical patent/JPS6272955A/en
Publication of JPH0212307B2 publication Critical patent/JPH0212307B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Control Of Fluid Gearings (AREA)

Description

【発明の詳細な説明】 A 発明の目的 (1) 産業上の利用分野 本発明は、車両用油圧式変速機、特に斜板式油
圧ポンプを囲繞する斜板式油圧モータのモータシ
リンダに分配端壁が設けられ、その分配端壁に
は、該分配端壁との間に油室を画成すべく基本的
に中空円筒状の支軸が固設され、その支軸内に
は、前記分配端壁に摺接する分配環を先端に有す
る固定軸が挿入されて、その固定軸により前記油
室が、該固定軸及び支軸間の環状の低圧油室と、
該支軸及び分配端壁間の高圧油室とに画成され、
前記分配端壁が、前記油圧ポンプ及び油圧モータ
間、並びに前記高圧油室及び低圧油室間での作動
油の授受を行うべく構成され、前記油圧ポンプ及
び油圧モータ間が油圧閉回路をなして連結される
形式の変速機に関する。
Detailed Description of the Invention A. Object of the Invention (1) Industrial Field of Application The present invention is directed to a hydraulic transmission for a vehicle, particularly a swash plate type hydraulic motor surrounding a swash plate type hydraulic pump. A basically hollow cylindrical support shaft is fixed to the distribution end wall to define an oil chamber between the distribution end wall and the distribution end wall. A fixed shaft having a sliding distribution ring at its tip is inserted, and the fixed shaft connects the oil chamber to an annular low-pressure oil chamber between the fixed shaft and the support shaft;
a high pressure oil chamber between the support shaft and the distribution end wall;
The distribution end wall is configured to transfer hydraulic oil between the hydraulic pump and the hydraulic motor and between the high-pressure oil chamber and the low-pressure oil chamber, and the hydraulic pump and the hydraulic motor form a hydraulic closed circuit. The present invention relates to a connected type transmission.

(2) 従来の技術 従来、斯かる油圧式変速機において低圧油室の
シールは、その低圧油室に隣接して前記支軸の内
周面と固定軸の外周面との間に介装した接触式の
弾性シール部材、例えばシールリングにより行う
ようにしていた。
(2) Prior Art Conventionally, in such hydraulic transmissions, the seal of the low pressure oil chamber was interposed between the inner circumferential surface of the support shaft and the outer circumferential surface of the fixed shaft adjacent to the low pressure oil chamber. This was done using a contact-type elastic sealing member, such as a sealing ring.

(3) 発明が解決しようとする課題 ところが斯かる油圧式変速機では、車両減速時
に油圧モータがポンプ作用を生じ、その吐出によ
り油圧ポンプがモータとして回転しようとするこ
とにより、エンジンブレーキ効果が得られるので
あるが、特に高速走行時にそのような減速作用を
生じると、前記シール部材に高回転摩擦および高
油圧が働き、該シール部材の耐久性能上好ましく
ない。
(3) Problems to be solved by the invention However, in such a hydraulic transmission, the hydraulic motor produces a pumping action when the vehicle decelerates, and the discharge causes the hydraulic pump to rotate as a motor, resulting in an engine braking effect. However, if such a deceleration effect occurs particularly during high-speed running, high rotational friction and high oil pressure will act on the seal member, which is unfavorable in terms of durability of the seal member.

そこでこのような問題を解決するために、前記
支軸および固定軸間に、少なくとも何れか一方と
の間に所定の間〓を有する非接触式シール部材を
設けることが考えられるが、その場合、車両の通
常の運転状態では問題はないのであるが、特に減
速運転時には次のような、この種油圧式変速機に
特有の問題を生じることを本発明者等は究明し
た。即、油温が上昇して作動油の粘度が低下する
と、前記間〓から漏洩する油量が増加するが、こ
のような漏洩油の増加は、前記低圧油室が低下で
ある車両の通常運転時には問題とならないもの
の、特に減速運転時には、本来高圧となるべき低
圧油室内に油圧の低下を招いてエンジンブレーキ
効果を損なうという問題を生じるのである。
In order to solve this problem, it is conceivable to provide a non-contact type sealing member between the supporting shaft and the fixed shaft, which has a predetermined distance between it and at least one of them, but in that case, The present inventors have discovered that although there is no problem under normal driving conditions of the vehicle, the following problems peculiar to this type of hydraulic transmission arise especially during deceleration driving. Specifically, when the oil temperature rises and the viscosity of the hydraulic oil decreases, the amount of oil leaking from the above-mentioned gap increases. However, this increase in leaked oil is caused by normal operation of the vehicle when the low-pressure oil chamber is low. Although this is not a problem at times, especially during deceleration operation, a problem arises in that the oil pressure in the low-pressure oil chamber, which should normally be at high pressure, decreases, impairing the engine braking effect.

本発明は上記に鑑み提案されたもので、上記問
題を全て解決し得る車両用油圧式変速機を提供す
ることを目的とする。
The present invention has been proposed in view of the above, and an object of the present invention is to provide a hydraulic transmission for a vehicle that can solve all of the above problems.

B 発明の構成 (1) 課題を解決するための手段 そして上記目的を達成するために本発明によれ
ば、斜板式油圧ポンプを囲繞する斜板式油圧モー
タのモータシリンダに分配端壁が設けられ、その
分配端壁には、該分配端壁との間に油室を画成す
べき基本的に中空円筒状の支軸が固設され、その
支軸内には、前記分配端壁に摺接する分配環を先
端に有する固定軸が挿入されて、その固定軸によ
り前記油室が、該固定軸及び支軸間の環状の低圧
油室と、該支軸及び分配端壁間の高圧油室とに画
成され、前記低圧油室に隣接して前記支軸の内周
面と前記固定軸の外周面との間にはシール部が設
けられ、前記分配端壁は、前記油圧ポンプ及び油
圧モータ間、並びに前記高圧油室及び低圧油室間
での作動油の授受を行うべく構成され、前記油圧
ポンプ及び油圧モータ間が油圧閉回路をなして連
結される車両用油圧式変速機において、前記シー
ル部は、前記固定軸及び支軸の何れか一方に一体
的に設けられると共に、その他方よりも熱膨張率
の大なる材料により、該他方との間に環状の微小
間〓を形成するように構成される。
B. Structure of the Invention (1) Means for Solving the Problems In order to achieve the above object, according to the present invention, a distribution end wall is provided on the motor cylinder of a swash plate type hydraulic motor surrounding a swash plate type hydraulic pump, A basically hollow cylindrical support shaft that defines an oil chamber between the distribution end wall and the distribution end wall is fixedly installed, and a distribution shaft that slides into the distribution end wall is installed in the support shaft. A fixed shaft having a ring at the tip is inserted, and the fixed shaft divides the oil chamber into an annular low-pressure oil chamber between the fixed shaft and the support shaft, and a high-pressure oil chamber between the support shaft and the distribution end wall. A seal portion is provided between the inner circumferential surface of the support shaft and the outer circumferential surface of the fixed shaft adjacent to the low-pressure oil chamber, and the distribution end wall is arranged between the hydraulic pump and the hydraulic motor. , and a vehicle hydraulic transmission configured to transfer hydraulic oil between the high-pressure oil chamber and the low-pressure oil chamber, and in which the hydraulic pump and the hydraulic motor are connected to form a hydraulic closed circuit, wherein the seal The part is integrally provided on either one of the fixed shaft and the support shaft, and is made of a material having a higher coefficient of thermal expansion than the other, so as to form an annular minute space between the part and the other. configured.

(2) 作用 上記構成によれば、シール部は、その相手部材
たる固定軸または支軸に対して非接触状態に保持
されるから、摩耗劣化する虞れがない上、車両の
減速運転時に発生する低圧油室内の高油圧に耐え
得る高剛性の材料で形成することが可能となる。
(2) Effect According to the above configuration, since the seal part is held in a non-contact state with respect to the fixed shaft or support shaft that is the mating member, there is no risk of wear and deterioration, and there is no risk of deterioration occurring during deceleration of the vehicle. This makes it possible to make it from a highly rigid material that can withstand the high oil pressure in the low-pressure oil chamber.

また上記シール部の熱膨張によれば、油温が上
昇して作動油の粘度が低下するにつれ、前記微小
間〓を小さくして該間〓からの作動油の漏洩量を
極力少なくすることができるから、車両の特に減
速運転時においても上記作動油の漏洩に因る低圧
油室内の油圧低下が起こらず、従つて常に良好な
エンジンブレーキ効果が得られる。
Furthermore, according to the thermal expansion of the seal portion, as the oil temperature rises and the viscosity of the hydraulic oil decreases, the minute gap can be made smaller to minimize the amount of hydraulic oil leaking from the gap. Therefore, even when the vehicle is running at deceleration, the oil pressure in the low-pressure oil chamber does not decrease due to the leakage of the hydraulic oil, and therefore, a good engine braking effect can always be obtained.

(3) 実施例 以下、図面により本発明の実施例について説明
すると、先ず本発明の第1実施例を示す第1図に
おいて、油圧式無段変速機Tと、前、後進歯車装
置Gとから車両用伝動装置が構成され、これら
T,Gはミツシヨンケース1内に収容される。
(3) Embodiments Below, embodiments of the present invention will be explained with reference to the drawings. First, in FIG. 1 showing a first embodiment of the present invention, a hydraulic continuously variable transmission T and a forward and reverse gear device G A vehicle transmission device is constructed, and these T and G are housed in a transmission case 1.

油圧式無段変速機Tは、定容量型斜板式油圧ポ
ンプPと、可変容量型油圧モータMとより構成さ
れる。
The hydraulic continuously variable transmission T includes a constant displacement swash plate hydraulic pump P and a variable displacement hydraulic motor M.

油圧ポンプPは、左側に入力軸2、右端に支軸
3を突出させたポンプシリンダ4を有し、その入
力軸2は中応部で2分され、その両部分がスプラ
イン連結筒5を介して相互に軸方向にのみ移動可
能に連結され、そしてその先端部はミツシヨンケ
ース1の左側壁を貫通して外部に突出し、そこで
エンジンクランク軸Eに付設したフライホイール
6と連結される。
The hydraulic pump P has a pump cylinder 4 with an input shaft 2 protruding from the left side and a support shaft 3 from the right end. are connected to each other so as to be movable only in the axial direction, and their distal ends penetrate the left side wall of the transmission case 1 and protrude to the outside, where they are connected to a flywheel 6 attached to the engine crankshaft E.

ポンプシリンダ4には多数の貫通段付シリンダ
孔7,7…が該シリンダ4の回転中心を囲む環状
配列に穿設され、図示例では各段付シリンダ孔7
は、左半分が大径孔7l、右半分が小径孔7rと
され、それらの段差部が受圧部が受圧面8に形成
される。上記各段付シリンダ孔7には相対向する
大小一対のポンププランジヤ9l,9rが摺合し
てそれらの間にポンプ油室7Aを画成する。画プ
ランジヤ9l,9rはそれぞれ底部を外端に向け
た有底円筒形をなし、大径ポンププランジヤ9l
の中空部には両プランジヤ9l,9rを互いに離
反方向に弾発するコイルばね11が収容され、小
径ポンププランジヤ9rの中空部には、上記ばね
11内に挿入されてその座屈を防止するばね案内
棒10の基部が嵌着される。そのばね案内棒10
はポンププランジヤ9l,9rより比重の軽い材
料により成形されている。
A large number of stepped cylinder holes 7, 7... are bored in the pump cylinder 4 in an annular arrangement surrounding the center of rotation of the cylinder 4, and in the illustrated example, each stepped cylinder hole 7
The left half is a large-diameter hole 7l, the right half is a small-diameter hole 7r, and a pressure-receiving portion is formed in the pressure-receiving surface 8 at a stepped portion thereof. A pair of large and small pump plungers 9l and 9r that face each other slides into each stepped cylinder hole 7 to define a pump oil chamber 7A therebetween. The pump plungers 9l and 9r each have a bottomed cylindrical shape with the bottom facing the outer end, and the large diameter pump plunger 9l
A coil spring 11 that springs both plungers 9l and 9r away from each other is housed in the hollow part, and a spring guide that is inserted into the spring 11 and prevents its buckling is housed in the hollow part of the small-diameter pump plunger 9r. The base of the rod 10 is fitted. The spring guide rod 10
The pump plungers 9l and 9r are made of a material having a lighter specific gravity than the pump plungers 9l and 9r.

一方、油圧モータMは、ポンプシリンダ4を囲
繞する。それと同心のモータシリンダ12を有
し、このモータシリンダ12には多数の貫通シリ
ンダ孔13,13…が該シリンダ12の回転中心
を囲む環状配列に穿設され、またその右端には分
配端壁12aが一体に形成される。上記各孔13
には相向する同径一対のモータプランジヤ14
l,14rが摺合してそれらの間にモータ油室1
3Aを画成する。更にモータシリンダ12の左、
右両端面には中空の出力軸16および基本的に円
筒状の支軸17がそれぞれボルト15により固着
され、その出力軸16は外周面をベアリング18
を介してミツシヨンケース1の左端壁に支持さ
れ、その内周面ではベアリング19,20を介し
て前記入力軸2を支持する。また支軸17は外周
面をベアリンク21を介してミツシヨンケース1
の右端壁に支持される。モータシリンダ12はそ
の内側でポンプシリンダ4の支軸3をベアリング
22を介して支持し、そしてその支軸3端面と分
配端壁12aとを密接させる。支軸3の端部外周
にはモータシリンダ12の内周面に接するシール
リング23が嵌装される。
On the other hand, the hydraulic motor M surrounds the pump cylinder 4. It has a motor cylinder 12 concentric therewith, in which a number of through cylinder holes 13, 13... are bored in an annular arrangement surrounding the center of rotation of the cylinder 12, and at its right end there is a distribution end wall 12a. are integrally formed. Each hole 13 above
has a pair of motor plungers 14 of the same diameter facing each other.
l and 14r slide together and the motor oil chamber 1 is formed between them.
Define 3A. Furthermore, the left side of the motor cylinder 12,
A hollow output shaft 16 and a basically cylindrical support shaft 17 are fixed to both right end faces by bolts 15, respectively, and the output shaft 16 has a bearing 18 on its outer peripheral surface.
The input shaft 2 is supported on the left end wall of the transmission case 1 via bearings 19 and 20 on its inner peripheral surface. In addition, the support shaft 17 connects the outer peripheral surface of the transmission case 1 to the transmission case 1 via the bear link 21.
is supported on the right end wall of the The motor cylinder 12 supports the support shaft 3 of the pump cylinder 4 via a bearing 22 inside thereof, and brings the end surface of the support shaft 3 into close contact with the distribution end wall 12a. A seal ring 23 is fitted onto the outer periphery of the end of the support shaft 3 so as to be in contact with the inner peripheral surface of the motor cylinder 12 .

またモータシリンダ12の内側には左方のポン
ププランジヤ9l群および右方のポンププランジ
ヤ9r群の各外端にそれらの軸線に対しそれぞれ
一定角度傾斜して当接する対称的配置の左右一対
のポンプ斜板24l,24rがスラストおよびラ
ジアルベアリング25l,26l;25r,26
rを介して支持される。而して各ポンプ斜板24
l,24rはモータシリンダ12との相対回転時
に、前記コイルばね11と協働して各ポンププラ
ンジヤ9l,9r群に往復運動を与えて吸入およ
び吐出行程を繰返させることができる。
Further, inside the motor cylinder 12, there are a pair of left and right pump ramps arranged symmetrically and in contact with the outer ends of the left pump plunger group 9l and the right pump plunger group 9r at a fixed angle with respect to their respective axes. Plates 24l, 24r are thrust and radial bearings 25l, 26l; 25r, 26
Supported via r. Therefore, each pump swash plate 24
When rotating relative to the motor cylinder 12, the pump plungers 9l and 24r cooperate with the coil spring 11 to give reciprocating motion to each pump plunger group 9l and 9r, thereby repeating suction and discharge strokes.

また油圧モータMにおいて、左方のモータプラ
ンジヤ14l群および右方のモータプランジヤr
群の各外端にそれぞれ当接する左右一対のモータ
斜板27l,27rが対称的に配置される。これ
らモータ斜板27l,17rをスラストおよびラ
ジアルベアリング28l,29l;28r,29
rを介してそれぞれ支持する斜板枠31l,31
rはモータシリンダ12の回転軸線と直交する軸
線をもつトラニオン軸(図示せず)をそれぞれ一
体に有し、それらの軸は、ミツシヨンケース1に
回転自在に支持されると共に、連動装置(図示せ
ず)を介して互いに連動連結される。而して両モ
ータ斜板27l,27rは、各モータプランジヤ
14l,14r群に対し垂直となる直立位置から
図示の最大傾斜位置へ対称的に傾動でき、そして
それらの傾斜位置でモータシリンダ12が回転す
るとき、各モータプランジヤ14l,14r群に
順次往復動を与えて膨張および収縮行程を繰返さ
せることができ、それらモータプランジヤ14
l,14rの摺動ストロークはモータ斜板27
l,27rの傾斜角度により決定される。
In addition, in the hydraulic motor M, the left motor plunger 14l group and the right motor plunger r
A pair of left and right motor swash plates 27l and 27r are arranged symmetrically, abutting each outer end of the group. These motor swash plates 27l, 17r are connected to thrust and radial bearings 28l, 29l; 28r, 29
The swash plate frames 31l and 31 are respectively supported via r.
r each integrally has a trunnion shaft (not shown) having an axis perpendicular to the rotational axis of the motor cylinder 12, and these shafts are rotatably supported by the transmission case 1 and connected to an interlocking device (not shown). (not shown). Thus, both motor swash plates 27l, 27r can tilt symmetrically from an upright position perpendicular to each motor plunger group 14l, 14r to the maximum tilted position shown, and the motor cylinder 12 rotates in these tilted positions. At this time, the motor plungers 14l and 14r can be sequentially reciprocated to repeat the expansion and contraction strokes, and the motor plungers 14
The sliding stroke of l and 14r is the motor swash plate 27.
It is determined by the inclination angle of l and 27r.

油圧ポンプPと油圧モータMとの間には次のよ
うにして油圧閉回路が形成される。即ちモータシ
リンダ12の支軸17に分配端壁12aが臨む油
室38が形成され、その油室38に、分配端壁1
2aにそれぞれ穿設した多数の連結ポート39,
39…と各一つの吐出ポート41および吸入ポー
ト42とが開口し、吐出ポート41の開口端はモ
ータシリンダ12の回転中心線上に、連結ポート
39,39…の開口端は吐出ポート41を囲む同
一円上に、また吸入ポート42は連結ポート39
群の外側にそれぞれ位置する。ミツシヨンケース
1に位置決めピン43を介して位置決め固定され
た固定軸44は支軸17の外端より油室38に突
入し、その突入端部に分配環45がモータシリン
ダ12の回転中心に対し一定量偏心して取付けら
れる。この分配環45は分配端壁12aに摺接し
て油室38を、固定軸44及び支軸17間の環状
の高圧油室38hと、該支軸17と分配端壁12
a間の低圧油室38lとに区分し、その高圧油室
38hを介して前記吐出ポート41と膨張行程の
モータ油室13Aに連なる連結ポート39とが連
通し、低圧油室38lを介して吸入ポート42と
収縮行程のモータ油室13Aに連なる連絡ポート
39とが連通する。一方、分配端壁12aに当接
するポンプシリンダ4の支軸3端面には、各ポン
プ油室7Aに連なる多数の連絡ポート47,47
…が開口し、それらポートのうち、吐出行程のポ
ンプ油室7Aに連なるものが前記吐出ポート41
に、また吸入行程のポンプ油室7Aに連なるもの
が前記吸入ポート42にそれぞれ連通するように
なつている。
A hydraulic closed circuit is formed between the hydraulic pump P and the hydraulic motor M as follows. That is, an oil chamber 38 is formed in the support shaft 17 of the motor cylinder 12, and the distribution end wall 12a faces the oil chamber 38.
A large number of connection ports 39 each bored in 2a,
39..., one discharge port 41 and one suction port 42 are open, the open end of the discharge port 41 is on the rotation center line of the motor cylinder 12, and the open ends of the connection ports 39, 39... are on the same line surrounding the discharge port 41. On a circle, and the suction port 42 is connected to the connection port 39
Each is located on the outside of the group. A fixed shaft 44 that is positioned and fixed to the transmission case 1 via a positioning pin 43 projects into the oil chamber 38 from the outer end of the support shaft 17, and a distribution ring 45 is attached to the projecting end with respect to the center of rotation of the motor cylinder 12. Mounted eccentrically by a certain amount. This distribution ring 45 is in sliding contact with the distribution end wall 12a to form an oil chamber 38, an annular high pressure oil chamber 38h between the fixed shaft 44 and the support shaft 17, and an annular high pressure oil chamber 38h between the support shaft 17 and the distribution end wall 12.
The discharge port 41 communicates with a connection port 39 connected to the motor oil chamber 13A in the expansion stroke through the high pressure oil chamber 38h, and the suction The port 42 communicates with a communication port 39 connected to the motor oil chamber 13A in the contraction stroke. On the other hand, on the end surface of the support shaft 3 of the pump cylinder 4 that contacts the distribution end wall 12a, there are many communication ports 47, 47 connected to each pump oil chamber 7A.
... are opened, and among these ports, the one connected to the pump oil chamber 7A in the discharge stroke is the discharge port 41.
Additionally, those connected to the pump oil chamber 7A in the suction stroke are connected to the suction port 42, respectively.

上記構成において、エンジンクランク軸Eの回
転により入力軸2を介してポンプシリンダ4が回
転されると、ポンププランジヤ9l,9rの吐出
行程によりポンプ油室7Aで生成される高圧油は
吐出ポート41から高圧油室38hへ、さらにそ
れと連通状態の連結ポート39を経て膨張行程の
モータ油室13Aに流入してその油室に臨む対向
プランジヤ14l,14rに推力を与え、一方、
収縮行程のモータプランジヤ14l,14rによ
り排出される作動油は低圧油室38lに連通する
連絡ポート39および吸入ポート42を介して吸
入行程のポンププ油室7Aに還流する。この間、
吐出行程のポンププランジヤ9l,9rがポンプ
斜板24l,24rを介してモータシリンダ12
に与える反動トルクと、膨張行程のモータプラン
ジヤ14l,14rがモータ斜板27l,27r
から受ける反動トルクとの和によりモータシリン
ダ12が回転され、その出力軸16から出力され
る。
In the above configuration, when the pump cylinder 4 is rotated via the input shaft 2 due to the rotation of the engine crankshaft E, the high pressure oil generated in the pump oil chamber 7A due to the discharge stroke of the pump plungers 9l and 9r is discharged from the discharge port 41. It flows into the high-pressure oil chamber 38h and further through the connection port 39 in communication with the motor oil chamber 13A in the expansion stroke, giving thrust to the opposed plungers 14l and 14r facing the oil chamber.
The hydraulic oil discharged by the motor plungers 14l, 14r in the contraction stroke returns to the pump oil chamber 7A in the suction stroke via the communication port 39 communicating with the low pressure oil chamber 38l and the suction port 42. During this time,
The pump plungers 9l and 9r in the discharge stroke are connected to the motor cylinder 12 via the pump swash plates 24l and 24r.
The reaction torque applied to the motor plungers 14l, 14r during the expansion stroke
The motor cylinder 12 is rotated by the sum of the reaction torque received from the motor cylinder 12, and an output is output from its output shaft 16.

この場合、ポンプシリンダ4に対するモータシ
リンダ12の変速比は次式によつて与えられる。
In this case, the gear ratio of the motor cylinder 12 to the pump cylinder 4 is given by the following equation.

変速比=ポンプシリンダ4の回転数/モ
ータシリンダ12の回転数=1+油圧モータMの容量/
油圧ポンプPの容量 上式より明らかなように、油圧モータMの容量
を零から最大値まで変えれば、変速比を1から或
る必要な値まで変えることができ、そして油圧モ
ータMの容量は対向モータプランジヤ14l,1
4rのストロークにより決定されるので、両モー
タ斜板27l,27rを前述のように直立位置か
ら最大斜角まで傾動させることにより上記変速作
用を無段階に得ることができる。
Speed ratio = rotation speed of pump cylinder 4 / rotation speed of motor cylinder 12 = 1 + capacity of hydraulic motor M /
Capacity of Hydraulic Pump P As is clear from the above equation, if the capacity of hydraulic motor M is changed from zero to the maximum value, the gear ratio can be changed from 1 to a certain required value, and the capacity of hydraulic motor M is Opposed motor plunger 14l, 1
Since the stroke is determined by the stroke of 4r, the above-mentioned speed change action can be obtained steplessly by tilting both motor swash plates 27l and 27r from the upright position to the maximum oblique angle as described above.

固定軸44は中空に形成されており、その側壁
には、高、低圧油室38h,38l間を連通し得
る短絡ポート51が穿設され、そのポート51を
開閉する円筒状のクラツチ弁52が固定軸44の
中空部に回転自在に嵌合される。クラツチ弁52
は先端部側壁に制御溝53を、また基端部に図示
しないクラツチ制御装置に連なる回動板54をそ
れぞれ備え、その回動板54の回動操作により制
御溝53を短絡ポート51に合致させて短絡ポー
ト51を全開したときクラツチ・オフ状態・制御
溝53を短絡ポート51の位置からずらせて短絡
ポート51を全閉りしたときクラツチ・オン状態
(図示状態)、短絡ポート51を半開したとき半ク
ラツチ状態が得られる。即ち、クラツチ・オフ状
態では吐出ポート41から高圧油室38hに吐出
される作動油が短絡ポート51を通して低圧油室
38l、したがつて吸入ポート42に直ちに短絡
して油圧モータMを不作動にし、またクラツチ・
オン状態では上記のような作動油の短絡が阻止さ
れ、油圧ポンプPからモータMへの作動油の循環
作用が生起し、通常の伝動が行われる。
The fixed shaft 44 is formed hollow, and a short-circuit port 51 that can communicate between the high and low pressure oil chambers 38h and 38l is bored in its side wall, and a cylindrical clutch valve 52 is provided to open and close the port 51. It is rotatably fitted into the hollow part of the fixed shaft 44. clutch valve 52
is provided with a control groove 53 on the side wall of the distal end, and a rotating plate 54 connected to a clutch control device (not shown) on the proximal end, and by rotating the rotating plate 54, the control groove 53 is aligned with the shorting port 51. When the shorting port 51 is fully opened, the clutch is in the off state. When the shorting port 51 is fully closed by shifting the control groove 53 from the position of the shorting port 51, the clutch is on (as shown), and when the shorting port 51 is half open. A half-clutch condition is obtained. That is, in the clutch-off state, the hydraulic oil discharged from the discharge port 41 to the high-pressure oil chamber 38h passes through the short-circuit port 51 to the low-pressure oil chamber 38l, and therefore immediately short-circuits to the suction port 42, rendering the hydraulic motor M inoperable. Also, Kuratsuchi
In the on state, the short circuit of the hydraulic oil as described above is prevented, the hydraulic oil circulates from the hydraulic pump P to the motor M, and normal transmission occurs.

クラツチ弁52には、パイロツト弁55により
操作される油圧サーボモータ57が内蔵され、そ
のサーボピストン58の先端部はクラツチ弁52
の内径より小径の弁杆58aに形成されて高圧油
室38hに突入し、その先端に吐出ポート41に
対する閉塞弁59が首振り可能に付設されてい
る。而してサーボピストン58の左動により閉塞
弁59を分配端壁12aに密着させれば吐出ポー
ト41を閉じることができる。この閉塞はモータ
斜板27l,27rを直立状態にして変速比を
1:1に制御したとき行うもので、これによりポ
ンププランジヤ9l,9rを油圧的にロツクして
ポンプシリンダ4からポンププランジヤ9l,9
r群およびポンプ斜板24l,24rを介してモ
ータシリンダ12を機械的に駆動することがで
き、その結果、モータプランジヤ14l,14r
のモータ斜板27l,27rに与える推力が消失
し、その推力による各部ベアリングの負荷が取り
除かれる。
A hydraulic servo motor 57 operated by a pilot valve 55 is built into the clutch valve 52, and the tip of the servo piston 58 is connected to the clutch valve 52.
The valve stem 58a is formed into a valve stem 58a having a smaller diameter than the inner diameter of the valve stem 58a, and protrudes into the high pressure oil chamber 38h.A closing valve 59 for the discharge port 41 is swingably attached to the tip of the valve stem 58a. The discharge port 41 can be closed by moving the servo piston 58 to the left to bring the closing valve 59 into close contact with the distribution end wall 12a. This blockage is performed when the motor swash plates 27l and 27r are placed in an upright position and the gear ratio is controlled to 1:1.This causes the pump plungers 9l and 9r to be hydraulically locked and the pump plungers 9l and 9r to be moved from the pump cylinder 4 to the pump plunger 9l and 9r. 9
The motor cylinder 12 can be mechanically driven via the r group and the pump swash plates 24l, 24r, so that the motor plungers 14l, 14r
The thrust applied to the motor swash plates 27l and 27r disappears, and the load on the bearings of each part due to the thrust is removed.

第2図を併せて参照して、低圧油室38lのシ
ールを果すために、該低圧油室38lに隣接して
固定軸44の外周面には、シール部60が設けら
れる。このシール部60は、リング状に形成され
たものを、固定軸44の外周面に固着して成るも
のであり、固着構造としては嵌合、接着、圧着の
いずれであつてもよく、またメツキや溶射によつ
てシール部60を形成してもよい。しかもこのシ
ール部60の外面と支軸17の内面との間には環
状の微小間隙61が形成される。
Referring also to FIG. 2, a seal portion 60 is provided on the outer peripheral surface of the fixed shaft 44 adjacent to the low pressure oil chamber 38l in order to seal the low pressure oil chamber 38l. This seal part 60 is formed by fixing a ring-shaped part to the outer circumferential surface of the fixed shaft 44, and the fixing structure may be any of fitting, adhesion, and pressure bonding, or it may be plated. The seal portion 60 may also be formed by thermal spraying. Furthermore, a small annular gap 61 is formed between the outer surface of the seal portion 60 and the inner surface of the support shaft 17.

ところで、同心状に配置された2つの部材間か
らの流体漏出量Qは、一般的に次式で与えられ
る。
Incidentally, the amount of fluid leakage Q between two concentrically arranged members is generally given by the following equation.

Q=πdh3/12μ・ΔP/l ここで、符号dは内方の部材の直径、符号hは内
外両部材間の間隔、符号ΔPはシールすべき部分
の圧力差、符号lはシール構造を施した部分の長
さ、符号μは流体粘度である。
Q=πdh 3 /12μ・ΔP/l Here, code d is the diameter of the inner member, code h is the distance between the inner and outer members, code ΔP is the pressure difference between the parts to be sealed, and code l is the seal structure. The length of the applied portion, sign μ, is the fluid viscosity.

上記式から明らかなように、作動油の油温が上
昇して粘度μが低下すると、漏出量Qが増大する
ものであり、この漏出量Qを低減するには、間隔
hを小さくすることが望まれる。
As is clear from the above equation, when the temperature of the hydraulic oil increases and the viscosity μ decreases, the leakage amount Q increases, and in order to reduce this leakage amount Q, it is necessary to reduce the interval h. desired.

そこで、本発明に従えば、シール部60が、支
軸17より熱膨張率の大なる材料により形成され
る。そうすると、油温が上昇したときに、シール
部60が支軸17よりも大きな割合で径方向に膨
張し、微小間隙61が小さくなる。これにより漏
出量Qの低減が可能となる。なお、微小間隙61
は、必要なエンジンブレーキの効果に応じて設定
される。
Therefore, according to the present invention, the seal portion 60 is formed of a material having a higher coefficient of thermal expansion than the support shaft 17. Then, when the oil temperature rises, the seal portion 60 expands in the radial direction at a larger rate than the support shaft 17, and the minute gap 61 becomes smaller. This makes it possible to reduce the amount of leakage Q. Note that the minute gap 61
is set depending on the required engine braking effect.

再び第1図を参照して、前、後進歯車装置G
は、出力軸16に固設された一対の駆動歯車79
,792を有し、一方の駆動歯車792に噛合す
る被動歯車801と、他方の駆動歯車792に中間
歯車81を介して噛合する被動歯車802とが、
出力軸16と平行にしてミツシヨンケース1に回
転自在に支承された副軸78に回転自在に設けら
れる。両被動歯車811,812は各対向部に駆動
クラツチ歯輪821,822を一体に有し、それら
の間に副軸78に固設した被動クラツチ歯輪83
が配設され、このクラツチ歯輪83はそれに常時
係合する環状のクラツチ部材84を介してクラツ
チ歯輪821または822と選択的に連結すること
ができる。
Referring again to FIG. 1, the forward and reverse gear devices G
is a pair of drive gears 79 fixed to the output shaft 16
1 , 79 2 , and a driven gear 80 1 that meshes with one driving gear 79 2 and a driven gear 80 2 that meshes with the other driving gear 79 2 via an intermediate gear 81.
It is rotatably provided on a subshaft 78 that is parallel to the output shaft 16 and rotatably supported by the transmission case 1 . Both driven gears 81 1 , 81 2 integrally have drive clutch gears 82 1 , 82 2 at opposing portions, and a driven clutch gear 83 fixed to the subshaft 78 between them.
The clutch gear 83 can be selectively connected to the clutch gear 82 1 or 82 2 via an annular clutch member 84 that is constantly engaged therewith.

さらに副軸78には、図示しない差動装置に連
結した歯車(図示せず)が設けられており、クラ
ツチ部材84の動作に応じて前記差動装置が車両
の前進方向および後進方向に切換えて駆動され
る。
Further, the countershaft 78 is provided with a gear (not shown) connected to a differential device (not shown), and the differential device is switched between the forward direction and the reverse direction of the vehicle in accordance with the operation of the clutch member 84. Driven.

次にこの実施例の作用について説明すると、シ
ール部60は、支軸17に接触しないので、車両
の高速走行時に減速作用を生じても、シール部6
0に高回転摩擦および高圧が作用することはな
く、耐久性能を向上することができる。しかも、
シール部60と支軸17との間の微小間隙61
は、充分なエンジンブレーキ効果が得られるよう
に設定されるので、非接触式であつても充分なエ
ンジンブレーキを得ることができる。
Next, the operation of this embodiment will be explained. Since the seal portion 60 does not contact the support shaft 17, even if a deceleration effect occurs when the vehicle is running at high speed, the seal portion 60
Since high rotational friction and high pressure do not act on the 0, durability performance can be improved. Moreover,
Minute gap 61 between seal portion 60 and support shaft 17
is set so as to obtain a sufficient engine braking effect, so that even if it is a non-contact type, sufficient engine braking can be obtained.

また作動油の油温が上昇したときを想定する
と、微小間隙61がより小さくなることにより、
作動油の粘度低下にも拘らず、充分なシール機能
が得られ、したがつてエンジンブレーキ効果の低
下が防止される。
Also, assuming that the temperature of the hydraulic oil increases, the minute gap 61 becomes smaller,
Despite the decrease in the viscosity of the hydraulic oil, a sufficient sealing function is obtained, thus preventing a decrease in the engine braking effect.

第3図は本発明の第2実施例を示すものであ
り、上述の実施例とは逆に、固定軸44よりも熱
膨張率の大なる材料により形成されたシール部6
2が固定軸44の外周面との間に微小間隙63を
形成して支軸17の内面に設けられる。
FIG. 3 shows a second embodiment of the present invention, in which, contrary to the above-mentioned embodiments, the seal portion 6 is made of a material with a larger coefficient of thermal expansion than the fixed shaft 44.
2 is provided on the inner surface of the support shaft 17 with a minute gap 63 formed between it and the outer peripheral surface of the fixed shaft 44 .

第4図、第5図および第6図は、本発明の第
3、第4および第5実施例をそれぞれ示すもので
あり、第3実施例では固定軸44に設けたシール
部64の外周に複数の環状溝65が設けられ、第
4実施例では自定軸44に設けたシール部60に
対向する部分で支軸17の内面に複数の環状溝6
6が設けられ、第5実施例では固定軸44に設け
たシール部67に複数の環状突部68が設けられ
るとともに、それらの環状突部68に対応して支
軸17の内面に複数の環状溝67が設けられる。
4, 5, and 6 show third, fourth, and fifth embodiments of the present invention, respectively. In the third embodiment, the seal portion 64 provided on the fixed shaft 44 has a A plurality of annular grooves 65 are provided, and in the fourth embodiment, a plurality of annular grooves 65 are provided on the inner surface of the support shaft 17 at a portion facing the seal portion 60 provided on the self-determining shaft 44.
In the fifth embodiment, a plurality of annular protrusions 68 are provided on the seal portion 67 provided on the fixed shaft 44, and a plurality of annular protrusions 68 are provided on the inner surface of the support shaft 17 corresponding to the annular protrusions 68. A groove 67 is provided.

このような第3〜第5実施例では、作動油の流
動抵抗が大となり、作動油の漏出がより一層低減
される。
In such third to fifth embodiments, the flow resistance of the hydraulic oil becomes large, and the leakage of the hydraulic oil is further reduced.

第7図は本発明の第6実施例を示すものであ
り、固定軸44は支軸17よりも熱膨張率の大な
る材料で形成され、この固定軸44には、支軸1
7の内面との間に環状の微小間〓70を形成すべ
く、半径方向外方に突出したシール部71が一体
的に設けられる。
FIG. 7 shows a sixth embodiment of the present invention, in which a fixed shaft 44 is made of a material having a larger thermal expansion coefficient than that of the supporting shaft 17.
A seal portion 71 protruding outward in the radial direction is integrally provided to form an annular minute gap 70 between the seal portion 70 and the inner surface of the seal portion 7 .

第8図は本発明の第7実施例を示すものであ
り、第1実施例と同様のシール部60に加えて、
支軸17および固定軸44間には軸受72が介装
され、この軸受72により支軸17のたわみが防
止される。
FIG. 8 shows a seventh embodiment of the present invention, in which, in addition to the seal portion 60 similar to the first embodiment,
A bearing 72 is interposed between the support shaft 17 and the fixed shaft 44, and the bearing 72 prevents the support shaft 17 from deflecting.

第9図は本発明の第8実施例を示すものであ
り、二層構造したシール部73が固定軸44の外
面に設けられる。すなわち、シール部73は、支
軸17よりも熱膨張率の大なる内輪部分74と、
支軸17および内輪部分74よりも熱膨張率の大
なる外輪部分75とを、一体に結合して成るもの
であり、外輪部分76の厚みの調節により、支軸
17およびシール部73間の微小間〓76の変化
量を調節可能である。
FIG. 9 shows an eighth embodiment of the present invention, in which a seal portion 73 having a two-layer structure is provided on the outer surface of the fixed shaft 44. As shown in FIG. That is, the seal portion 73 includes an inner ring portion 74 having a larger coefficient of thermal expansion than the support shaft 17;
The support shaft 17 and an outer ring portion 75 having a higher coefficient of thermal expansion than the inner ring portion 74 are integrally joined together, and by adjusting the thickness of the outer ring portion 76, a minute gap between the support shaft 17 and the seal portion 73 is formed. The amount of change in the interval 76 can be adjusted.

C 発明の効果 以上のように本発明によれば、斜板式油圧ポン
プを囲繞する斜板式油圧モータのモータシリンダ
に分配端壁が設けられ、その分配端壁には、該分
配端壁との間に油室を画成すべく基本的に中空円
筒状の支軸が固設され、その支軸内には、前記分
配端壁に摺接する分配環を先端に有する固定軸が
挿入されて、その固定軸により前記油室が、該固
定軸及び支軸間の環状の低圧油室と、該支軸及び
分配端壁間の高圧油室とに画成され、前記低圧油
室に隣接して前記支軸の内周面と前記固定軸の外
周面との間にはシール部が設けられ、前記分配端
壁は、前記油圧ポンプ及び油圧モータ間、並びに
前記高圧油室及び低圧油室間での作動油の授受を
行うべく構成され、前記油圧ポンプ及び油圧モー
タ間が油圧閉回路をなして連結される車両用油圧
式変速機において、前記シール部は、前記固定軸
及び支軸の何れか一方に一体的に設けられると共
に、その他方との間に環状の微小間〓を形成する
ように構成されるので、上記シール部は、その相
手部材たる固定軸または支軸に対して非接触状態
に保持されるために、摩耗劣化する虞れがない
上、車両の減速運転時に発生する低圧油室内に高
油圧に耐え得る高剛性の材料で形成することが可
能となり、従つて該シール部の耐久性向上に大い
に寄与し得る。
C. Effects of the Invention As described above, according to the present invention, the motor cylinder of the swash plate type hydraulic motor surrounding the swash plate type hydraulic pump is provided with a distribution end wall, and the distribution end wall has a gap between the distribution end wall and the distribution end wall. A basically hollow cylindrical support shaft is fixed to define an oil chamber, and a fixed shaft having a distribution ring at its tip that slides in contact with the distribution end wall is inserted into the support shaft to fix the oil chamber. The oil chamber is defined by the shaft into an annular low-pressure oil chamber between the fixed shaft and the support shaft, and a high-pressure oil chamber between the support shaft and the distribution end wall, and the support is adjacent to the low-pressure oil chamber. A sealing portion is provided between the inner circumferential surface of the shaft and the outer circumferential surface of the fixed shaft, and the distributing end wall is configured to prevent operation between the hydraulic pump and the hydraulic motor, and between the high-pressure oil chamber and the low-pressure oil chamber. In a vehicle hydraulic transmission configured to transfer oil and in which the hydraulic pump and the hydraulic motor are connected to form a hydraulic closed circuit, the seal portion is attached to either the fixed shaft or the support shaft. Since it is provided integrally and is configured to form a small annular gap with the other part, the seal part is held in a non-contact state with respect to the fixed shaft or support shaft that is its counterpart member. As a result, there is no risk of wear and deterioration, and the seal part can be made of a highly rigid material that can withstand high oil pressure in the low-pressure oil chamber that occurs when the vehicle is decelerating, thus improving the durability of the seal part. It can greatly contribute to improvement.

また特に、固定軸及び支軸の一方に設けられる
上記シール部は、その固定軸及び支軸の他方より
も熱膨張率の大きな材料で形成されるので、油温
が上昇して作動油の粘度が低下するにつれ、前記
微小間〓を小さくして該間〓からの作動油の漏洩
量を極力少なくすることができ、従つて車両の特
に減速運転時においても上記作動油の漏洩に因る
低圧油室内の油圧低下が起こらず、常に良好なエ
ンジンブレーキ効果を得ることができる。
In particular, the seal portion provided on one of the fixed shaft and the supporting shaft is made of a material with a higher coefficient of thermal expansion than the other of the fixed shaft and the supporting shaft, so the oil temperature increases and the viscosity of the hydraulic fluid increases. As the pressure decreases, the minute gap can be made smaller to minimize the amount of hydraulic oil leaking from the gap. Therefore, even when the vehicle is decelerating, the low pressure caused by the hydraulic oil leakage can be reduced. A good engine braking effect can always be obtained without causing a drop in the oil pressure in the oil chamber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の第1実施例を示
すものであり、第1図は車両用伝動装置の縦断側
面図、第2図は第1図の要部拡大断面図、第3
図、第4図、第5図、第6図、第7図、第8図お
よび第9図は本発明の第2、第3、第4、第5、
第6、第7および第8実施例の第2図に対応した
断面図である。 12……モータシリンダ、12a……分配端
壁、17……支軸、38……油室、38h……高
圧油室、38l……低圧油室、44……固定軸、
45……分配環、60,62,64,67,7
1,73……シール部、61,63,70,76
……微小間〓、M……斜板式油圧モータ、P……
斜板式油圧ポンプ。
1 and 2 show a first embodiment of the present invention, FIG. 1 is a longitudinal sectional side view of a vehicle transmission, FIG. 2 is an enlarged sectional view of the main part of FIG. 1, and FIG.
4, 5, 6, 7, 8 and 9 are the second, third, fourth, fifth,
FIG. 2 is a sectional view corresponding to FIG. 2 of the sixth, seventh and eighth embodiments; 12... Motor cylinder, 12a... Distribution end wall, 17... Support shaft, 38... Oil chamber, 38h... High pressure oil chamber, 38l... Low pressure oil chamber, 44... Fixed shaft,
45...Distribution ring, 60, 62, 64, 67, 7
1, 73... Seal part, 61, 63, 70, 76
...Micrometer, M...Swash plate type hydraulic motor, P...
Swash plate hydraulic pump.

Claims (1)

【特許請求の範囲】[Claims] 1 斜板式油圧ポンプPの囲繞する斜板式油圧モ
ータMのモータシリンダ12に分配端壁12aが
設けられ、その分配端壁12aには、該分配端壁
12aとの間に油室38を画成すべく基本的に中
空円筒状の支軸17が固設され、その支軸17内
には、前記分配端壁12aに摺接する分配環45
を先端に有する固定軸44が挿入されて、その固
定軸44により前記油室38が、該固定軸44及
び支軸17間の環状の低圧油室38lと、該支軸
17及び分配端壁12a間の高圧油室38hとに
画成され、前記低圧油室38lに隣接して前記支
軸17の内周面と前記固定軸44の外周面との間
にはシール部60,62,64,67,71,7
3が設けられ、前記分配端壁12aは、前記油圧
ポンプP及び油圧モータM間、並びに前記高圧油
室38h及び低圧油室38l間での作動油の授受
を行うべく構成され、前記油圧ポンプP及び油圧
モータM間が油圧閉回路をなして連結される車両
用油圧式変速機において、前記シール部60,6
2,64,67,71,73は、前記固定軸44
及び支軸17の何れか一方に一体的に設けられる
と共に、その他方よりも熱膨張率の大なる材料に
より、該他方との間に環状の微小間〓61,6
3,70,76を形成するように構成されたこと
を特徴とする、車両用油圧式変速機。
1. The motor cylinder 12 of the swash plate hydraulic motor M surrounding the swash plate hydraulic pump P is provided with a distribution end wall 12a, and an oil chamber 38 is defined between the distribution end wall 12a and the distribution end wall 12a. A basically hollow cylindrical support shaft 17 is fixed therein, and within the support shaft 17 is a distribution ring 45 that is in sliding contact with the distribution end wall 12a.
A fixed shaft 44 having a tip end thereof is inserted, and the fixed shaft 44 divides the oil chamber 38 into an annular low pressure oil chamber 38l between the fixed shaft 44 and the support shaft 17, and between the support shaft 17 and the distribution end wall 12a. Adjacent to the low pressure oil chamber 38l, seal portions 60, 62, 64, 67,71,7
3, the distribution end wall 12a is configured to transfer hydraulic oil between the hydraulic pump P and the hydraulic motor M, and between the high pressure oil chamber 38h and the low pressure oil chamber 38l, In a vehicle hydraulic transmission in which a hydraulic motor M and a hydraulic motor M are connected to form a hydraulic closed circuit, the seal portions 60, 6
2, 64, 67, 71, 73 are the fixed shafts 44
and the support shaft 17, and are made of a material having a larger coefficient of thermal expansion than the other, and there is an annular minute space 61, 6 between the support shaft 17 and the support shaft 17.
A hydraulic transmission for a vehicle, characterized in that it is configured to form 3, 70, and 76.
JP20833885A 1985-09-20 1985-09-20 Hydraulic speed change gear for vehicle Granted JPS6272955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20833885A JPS6272955A (en) 1985-09-20 1985-09-20 Hydraulic speed change gear for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20833885A JPS6272955A (en) 1985-09-20 1985-09-20 Hydraulic speed change gear for vehicle

Publications (2)

Publication Number Publication Date
JPS6272955A JPS6272955A (en) 1987-04-03
JPH0212307B2 true JPH0212307B2 (en) 1990-03-19

Family

ID=16554616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20833885A Granted JPS6272955A (en) 1985-09-20 1985-09-20 Hydraulic speed change gear for vehicle

Country Status (1)

Country Link
JP (1) JPS6272955A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019836A (en) * 2002-06-18 2004-01-22 Yanmar Co Ltd Hydraulic continuously variable transmission and power transmission apparatus
JP2004019835A (en) * 2002-06-18 2004-01-22 Yanmar Co Ltd Hydraulic continuously variable transmission and power transmission apparatus
JP4591953B2 (en) * 2004-10-07 2010-12-01 ヤンマー株式会社 Work vehicle
DE102008008236A1 (en) * 2008-02-08 2009-08-13 Markus Liebherr International Ag Hydrostatic power split transmission
JP4958943B2 (en) * 2009-05-15 2012-06-20 ヤンマー株式会社 Work vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506041A (en) * 1972-11-30 1975-01-22
JPS5776357A (en) * 1980-10-31 1982-05-13 Honda Motor Co Ltd Hydraulic stepless transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506041A (en) * 1972-11-30 1975-01-22
JPS5776357A (en) * 1980-10-31 1982-05-13 Honda Motor Co Ltd Hydraulic stepless transmission

Also Published As

Publication number Publication date
JPS6272955A (en) 1987-04-03

Similar Documents

Publication Publication Date Title
US4864823A (en) Hydraulically operated continuously variable transmission
EP0279695B1 (en) Hydrostatically operated continuously variable transmission
EP1519042A1 (en) Swash plate type hydraulic pump or motor
US4893548A (en) Hydraulically operated swash-type apparatus
RU2147702C1 (en) Stepless hydrostatic transmission with ratio changer drive members arranged inside output shaft
JPH0321754B2 (en)
US5575151A (en) Swash plate type hydraulic actuator with variable eccentricities
US4914914A (en) Hydrostatically operated continuously variable transmission
JPH0756340B2 (en) Controller for hydrostatic continuously variable transmission
JP2920772B2 (en) Hydrostatic continuously variable transmission
JPH0212307B2 (en)
EP0234631B1 (en) Hydromotor
JPH03163252A (en) Static hydraulic type continuously variable transmission
EP0267752A1 (en) Hydrostatically operated continuously variable transmission
EP0273633A1 (en) Hydraulically operated continuously variable transmission
JPH0289867A (en) Hydraulic continuously variable transmission
JPS61274167A (en) Speed change controller for static hydraulic type continuously variable transmission
JPS61153053A (en) Speed-change controller for static hydraulic type continuously variable transmission
JPH0314100B2 (en)
JPH10122332A (en) Continuously variable transmission
JP2782348B2 (en) Hydrostatic continuously variable transmission
JPH0743018B2 (en) A clutch valve device for a hydrostatic continuously variable transmission.
JPS6248971A (en) Swash plate type hydraulic device
JP2704866B2 (en) Variable displacement swash plate hydraulic system
JPH0155826B2 (en)