JPH02122621A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02122621A
JPH02122621A JP27675288A JP27675288A JPH02122621A JP H02122621 A JPH02122621 A JP H02122621A JP 27675288 A JP27675288 A JP 27675288A JP 27675288 A JP27675288 A JP 27675288A JP H02122621 A JPH02122621 A JP H02122621A
Authority
JP
Japan
Prior art keywords
ohmic contact
semiconductor
semiconductor substrate
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27675288A
Other languages
Japanese (ja)
Inventor
Takeshi Takahashi
剛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27675288A priority Critical patent/JPH02122621A/en
Publication of JPH02122621A publication Critical patent/JPH02122621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form ohmic contact in a short time preventing any deterioration in characteristics from occurring in other device regions by a method wherein metal adhered on an ohmic contact forming portion of a semiconductor substrate is selectively induction-heated. CONSTITUTION:A quartz jig 82 and a plurality of semiconductor substrates 1 are set so that a principal surface of the substrate is parallel to the axial direction of an induction coil 83. With high frequency power supplied to the induction coil 83, an alternating field is generated in the axial direction of the coil, causing eddy currents in a plane parallel to the principal surface of the substrate. Therefore, eddy current is generated very efficiently on metal adhered to the substrate. Much larger eddy current is generated in the metal adhered to an ohmic contact forming portion of the semiconductor substrate 1 compared with other portions. As a result, only the metal adhered to the ohmic contact forming portion is selectively heated, and an alloy layer with the semiconductor is formed to enable ohmic contact to be obtained on the portion. In addition, other device regions are not heated so much that deterioration occurs.

Description

【発明の詳細な説明】 〔概要] 半導体装置の製造方法に係り、特にオーミック接触の形
成方法に関し。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming an ohmic contact.

多数の半導体基板を均一に加熱し、しかもオーミック接
触を形成する部分のみを選択的に昇温する方法を目的と
し。
The purpose of this method is to uniformly heat a large number of semiconductor substrates, and selectively raise the temperature of only the parts that form ohmic contact.

半導体基板のオーミック接触形成部に金属を被着し、該
半導体基板の主面に垂直に交番磁界を印加することによ
り該金属を選択的に誘導加熱し該半導体基板と反応させ
合金層を形成して、該金属2乃至6と該半導体基板lと
をオーミック接触させる工程を有する半導体装置の製造
方法により構成する。
A metal is deposited on the ohmic contact forming portion of the semiconductor substrate, and an alternating magnetic field is applied perpendicularly to the main surface of the semiconductor substrate to selectively heat the metal by induction and react with the semiconductor substrate to form an alloy layer. The semiconductor device is manufactured by a method of manufacturing a semiconductor device including a step of bringing the metals 2 to 6 into ohmic contact with the semiconductor substrate l.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法に係り、特にオーミック
接触の形成方法に関する。
The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming an ohmic contact.

半導体基板にオーミック接触を形成するには。To form an ohmic contact to a semiconductor substrate.

通常、その部分に金属を被着して加熱し半導体基板と合
金化する。この時この加熱が半導体基板のオーミック接
触部以外の素子領域に悪影響を及ぼさないことが望まれ
る。
Usually, metal is deposited on that part and heated to form an alloy with the semiconductor substrate. At this time, it is desired that this heating does not adversely affect the element regions other than the ohmic contact portions of the semiconductor substrate.

さらに、半導体基板間及び基板内でオーミック接触特性
にばらつきのないことが望まれる。
Furthermore, it is desired that there be no variation in ohmic contact characteristics between and within semiconductor substrates.

C従来の技術〕 従来、半導体基板のオーミック接触は金属を被着した半
導体基板を電気炉中で例えば化合物半導体の場合は40
0乃至500°C程度に加熱して、その金属と半導体を
合金化することにより実現されていた。ところが、この
加熱法は外部からの加熱であるため、大面積の多数の半
導体基板を同時に加熱する時は温度勾配が生じ易く、半
導体基板間。
C. Prior art] Conventionally, ohmic contact of a semiconductor substrate is made by placing a metal-coated semiconductor substrate in an electric furnace, for example, in the case of a compound semiconductor, at a temperature of 40
This was achieved by heating the metal to about 500°C to alloy the metal and semiconductor. However, since this heating method uses external heating, when a large number of large-area semiconductor substrates are heated at the same time, temperature gradients tend to occur between the semiconductor substrates.

さらには半導体基板内でオーミック接触特性にばらつき
が生じていた。
Furthermore, variations in ohmic contact characteristics occurred within the semiconductor substrate.

さらに、加熱によりオーミック接触部以外の素子領域で
も変化が生じて半導体の緒特性が劣化するといった問題
があった。
Furthermore, there is a problem in that heating causes changes in device regions other than the ohmic contact portions, resulting in deterioration of semiconductor characteristics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、多数の半導体基板を均一に加熱して特性にば
らつきのないオーミック接触を形成し。
The present invention uniformly heats a large number of semiconductor substrates to form ohmic contacts with uniform characteristics.

しかもオーミック接触を形成する部分のみを選択的に昇
温加熱して他の素子領域には影響を及ぼさない加熱方法
を提供することを目的とする。
Moreover, it is an object of the present invention to provide a heating method that selectively heats only the portion where ohmic contact is to be formed, without affecting other device regions.

〔課題を解決するための手段〕[Means to solve the problem]

第1図はオーミック接触形成用加熱装置、第2図及び第
3図は実施例I及び■である。これらの図及び図中の符
号を参照しながら上記課題を解決するための手段につい
て説明する。
FIG. 1 shows a heating device for forming ohmic contact, and FIGS. 2 and 3 show Examples I and 2. Means for solving the above problem will be explained with reference to these figures and the reference numerals in the figures.

上記課題は、半導体基FiIのオーミック接触形成部に
金属2乃至6を被着し、該半導体基板lの主面に垂直に
交番磁界を印加することにより該金属2乃至6を選択的
に誘導加熱し該半導体基板lと反応させ合金層を形成し
て、該金属2乃至6と該半導体基板lとをオーミック接
触させる工程を有する半導体装置の製造方法によって解
決される。
The above problem is achieved by depositing the metals 2 to 6 on the ohmic contact forming portion of the semiconductor substrate FiI, and selectively induction heating the metals 2 to 6 by applying an alternating magnetic field perpendicular to the main surface of the semiconductor substrate l. This problem is solved by a method of manufacturing a semiconductor device, which includes a step of reacting with the semiconductor substrate 1 to form an alloy layer to bring the metals 2 to 6 into ohmic contact with the semiconductor substrate 1.

〔作用〕[Effect]

本発明では高周波誘導加熱によりオーミック接触形成部
の金属を選択的に加熱するようにしている。
In the present invention, the metal of the ohmic contact forming portion is selectively heated by high-frequency induction heating.

第4図に高周波誘導加熱の原理を示す。導体板に板面垂
直方向の交番磁界が印加されると、板面内にその磁界を
打ち消す方向のうず電流が流れる。
Figure 4 shows the principle of high-frequency induction heating. When an alternating magnetic field is applied to a conductor plate in a direction perpendicular to the plate surface, eddy currents flow within the plate plane in a direction that cancels out the magnetic field.

このうず電流により導体板は加熱される。The conductor plate is heated by this eddy current.

第5図に高周波誘導加熱炉炉心部の概念図を示す。炉心
管となる石英管81の周囲に誘導コイル83が巻かれ、
そのコイルに高周波電力が供給される。炉心では誘導コ
イルの軸方向に交番磁界が発生し、炉心の置かれた導体
は加熱される。
FIG. 5 shows a conceptual diagram of the core of a high-frequency induction heating furnace. An induction coil 83 is wound around a quartz tube 81 serving as a furnace core tube.
High frequency power is supplied to the coil. In the reactor core, an alternating magnetic field is generated in the axial direction of the induction coil, and the conductors placed in the reactor core are heated.

第1図は高周波誘導加熱によるオーミック接触形成用加
熱装置を示す。石英治具82に複数の半導体基板lをセ
ットし、基板の主面が誘導コイル83の軸方向と平行に
なるようにする。誘導コイル83に高周波電力が供給さ
れると、コイルの軸方向に交番磁界が発生し、基板の主
面に平行な面内でうず電流が発生する。それゆえ、基板
に被着された金属には極めて効果的にうず電流が発生す
る。
FIG. 1 shows a heating device for forming an ohmic contact using high-frequency induction heating. A plurality of semiconductor substrates l are set on a quartz jig 82 so that the main surfaces of the substrates are parallel to the axial direction of the induction coil 83. When high frequency power is supplied to the induction coil 83, an alternating magnetic field is generated in the axial direction of the coil, and an eddy current is generated in a plane parallel to the main surface of the substrate. Therefore, eddy currents are generated very effectively in the metal deposited on the substrate.

ところで、うず電流の大きさは電気抵抗の大きさに逆比
例する。金属の表面抵抗は10−07口のオーダである
のに対し、オーミック接触形成部の半導体はn型あるい
はp型の高濃度ドーピングであってもたかだか1O−3
Ω/口のオーダ、他の部分は通常10”07口以上であ
る。それゆえ。
By the way, the magnitude of eddy current is inversely proportional to the magnitude of electrical resistance. The surface resistance of metal is on the order of 10-07, whereas the semiconductor in the ohmic contact formation part has a resistance of at most 10-3 even if heavily doped with n-type or p-type.
On the order of Ω/mouth, other parts are usually 10"07 mouths or more. Therefore.

半導体基板1のオーミック接触形成部に被着した金属の
中では他の部分に比較して圧倒的に大きいうず電流が発
生する。
An overwhelmingly large eddy current is generated in the metal deposited on the ohmic contact forming portion of the semiconductor substrate 1 compared to other parts.

その結果、オーミック接触形成部に被着した金属のみが
選択的に加熱され、その部分に半導体との合金層が形成
されオーミック接触が得られる。
As a result, only the metal deposited on the ohmic contact forming portion is selectively heated, and an alloy layer with the semiconductor is formed in that portion, thereby obtaining ohmic contact.

しかも、他の素子領域は劣化するほど加熱されない。Moreover, other element regions are not heated to the extent that they deteriorate.

誘導コイルの径と巻き数は誘導加熱する複数の半導体基
板1に−様な磁界がかかるように選択することにより、
複数の半導体基板Iのオーミック接触形成部に被着した
金属を、同時にしかも均一に加熱することができる。そ
の結果、基板間さらには基板内で特性ばらつきのないオ
ーミック接触を得ることができる。
By selecting the diameter and number of turns of the induction coil so that a -like magnetic field is applied to the plurality of semiconductor substrates 1 to be heated by induction,
The metal deposited on the ohmic contact forming portions of the plurality of semiconductor substrates I can be heated simultaneously and uniformly. As a result, it is possible to obtain ohmic contact without variation in characteristics between the substrates or even within the substrate.

〔実施例〕〔Example〕

以下本発明の実施例について説明する。 Examples of the present invention will be described below.

第2図は実施例Iで、BT(バイポーラトランジスタ)
、HBT(ヘテロジャンクション・バイポーラトランジ
スタ)、HET(ホットエレクトロントランジスタ)な
どのバイポーラ型トランジスタにおける実施例である。
Figure 2 shows Example I, which is a BT (bipolar transistor)
, HBT (heterojunction bipolar transistor), HET (hot electron transistor), and other bipolar transistors.

半導体基板l上にコレクタ22.ベース32゜エミッタ
42がこの順に形成され、コレクタ22上に金属2.ベ
ース32上に金属3.エミッタ42上に金属4が被着さ
れている。金属2乃至4は金(Au)を主体とするもの
で厚さは3000人程度7ある。
A collector 22. is formed on the semiconductor substrate l. A base 32° emitter 42 is formed in this order, and a metal 2. metal 3. on the base 32; A metal 4 is deposited on the emitter 42. Metals 2 to 4 are mainly made of gold (Au) and have a thickness of about 3000 mm.

このような半導体基板を第1図に示すように石英治具8
2に納めて石英管81内に配置する。不活性ガスを導入
して石英管81内を清浄化した後。
Such a semiconductor substrate is placed in a quartz jig 8 as shown in FIG.
2 and placed inside the quartz tube 81. After the inside of the quartz tube 81 is cleaned by introducing an inert gas.

不活性ガス中あるいは減圧水素中で誘導コイル83に高
周波電力を加える。
High frequency power is applied to the induction coil 83 in inert gas or reduced pressure hydrogen.

金属2乃至4に大きなうず電流が流れ、それに接するコ
レクタ22.ベース32.エミッタ42にも若干のうず
電流が流れ、短時間のうちに昇温して金属2乃至4はそ
れに接する半導体と反応して合金層を形成し、オーミッ
ク接触21,31゜41が得られる。
A large eddy current flows through the metals 2 to 4, and the collector 22. Base 32. A slight eddy current also flows through the emitter 42, and the temperature rises in a short period of time, causing the metals 2 to 4 to react with the semiconductor in contact with them to form an alloy layer, resulting in ohmic contact 21, 31.degree. 41.

第3図は実施例■で、MESFET、HEMTなどの電
界効果トランジスタにおける実施例であり、HEMTを
例として説明する。
FIG. 3 shows Example 2, which is an example of field effect transistors such as MESFET and HEMT, and will be explained using HEMT as an example.

電子供給層11の形成された半導体基板lにソース52
.ドレイン62が形成され、ソース52上に金属5.ド
レイン62上に金属6が被着される。金属5.6は金(
Au)を主体とするもので厚さは3000人程度7ある
A source 52 is provided on the semiconductor substrate l on which the electron supply layer 11 is formed.
.. A drain 62 is formed and a metal 5. Metal 6 is deposited on drain 62 . Metal 5.6 is gold (
It is mainly made of Au) and has a thickness of about 3,000 mm.

実施例1と同様にしてこの半導体基板を誘導加熱するこ
とにより、ソース52にオーミック接触51、ドレイン
62にオーミック接触61が形成される。
By induction heating this semiconductor substrate in the same manner as in Example 1, an ohmic contact 51 is formed at the source 52 and an ohmic contact 61 is formed at the drain 62.

ゲート7はショットキー電極で、タングステンシリサイ
ド等の高融点金属を使用する。あるいはソース52及び
ドレイン62のオーミック接触51及び61を形成して
後1例えばアルミニウム(AI)を被着して形成する。
The gate 7 is a Schottky electrode made of high melting point metal such as tungsten silicide. Alternatively, after forming the ohmic contacts 51 and 61 of the source 52 and drain 62, for example, aluminum (AI) is deposited.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に2本発明によれば、半導体基板lのオ
ーミック接触形成部に被着した金属を選択的に誘導加熱
することにより、短時間でオーミック接触を形成し、し
かも他の素子領域には全く特性劣化を引き起こさないよ
うにすることができる。
As explained above, according to the present invention, ohmic contact can be formed in a short time by selectively inductively heating the metal deposited on the ohmic contact forming part of the semiconductor substrate l, and moreover, it can be applied to other element regions. can be prevented from causing any characteristic deterioration.

さらに、複数の半導体基板を同時にしかも均一に加熱す
ることにより、基板間さらには基板内で特性ばらつきの
ないオーミック接触を形成することができる。
Furthermore, by heating a plurality of semiconductor substrates simultaneously and uniformly, it is possible to form ohmic contact between the substrates and even within the substrates without variations in characteristics.

本発明は熱に弱い化合物半導体にオーミック電極を形成
する場合に特に大きな効果を奏する。
The present invention is particularly effective when forming ohmic electrodes on heat-sensitive compound semiconductors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はオーミック接触形成用加熱装置。 第2図は及び第3図は実施例■及び実施例■。 第4図は高周波誘導加熱の原理。 第5図は高周波誘導加熱炉炉心部の概念図。 である0図において。 lは半導体基板。 11は電子供給層。 2乃至6は金属。 21.31,41゜ 51゜ ■はオーミック接 触 22はコレクタ。 32はベース。 42はエミッタ。 52はソース。 62はドレイン。 7はゲート 81は石英管。 82は石英治具。 83は誘導コイル 。。。。。 。。。。。d−−83,tt*コイルオー
ミ、771!^−形量、出β0整1iI第 1 図 実施例I 第 2 ロ 9ミ絶イク一」■ 久を戊界 山n)成語4rraりへの脚、1里 第4 図
Figure 1 shows a heating device for forming ohmic contacts. Figures 2 and 3 show Example 2 and Example 2. Figure 4 shows the principle of high frequency induction heating. Figure 5 is a conceptual diagram of the core of a high-frequency induction heating furnace. In figure 0, which is l is a semiconductor substrate. 11 is an electron supply layer. 2 to 6 are metal. 21.31,41゜51゜■ is ohmic contact 22 is collector. 32 is the base. 42 is the emitter. 52 is the sauce. 62 is the drain. 7, gate 81 is a quartz tube. 82 is a quartz jig. 83 is an induction coil. . . . . . . . . . d--83,tt*coil ohmi, 771! ^-Shape quantity, output β0 adjustment 1iI Fig. 1 Example I Fig. 2 9 Mi absolute orgasm”■ Long time at Bokaizan

Claims (1)

【特許請求の範囲】[Claims]  半導体基板(1)のオーミック接触形成部に金属(2
乃至6)を被着し、該半導体基板(1)の主面に垂直に
交番磁界を印加することにより該金属(2乃至6)を選
択的に誘導加熱し該半導体基板(1)と反応させ合金層
を形成して、該金属(2乃至6)と該半導体基板(1)
とをオーミック接触させる工程を有することを特徴とす
る半導体装置の製造方法。
A metal (2) is placed on the ohmic contact forming part of the semiconductor substrate (1)
By applying an alternating magnetic field perpendicular to the main surface of the semiconductor substrate (1), the metals (2 to 6) are selectively induction heated and reacted with the semiconductor substrate (1). Forming an alloy layer, the metals (2 to 6) and the semiconductor substrate (1)
1. A method for manufacturing a semiconductor device, comprising the step of bringing the two into ohmic contact.
JP27675288A 1988-11-01 1988-11-01 Manufacture of semiconductor device Pending JPH02122621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27675288A JPH02122621A (en) 1988-11-01 1988-11-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27675288A JPH02122621A (en) 1988-11-01 1988-11-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02122621A true JPH02122621A (en) 1990-05-10

Family

ID=17573849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27675288A Pending JPH02122621A (en) 1988-11-01 1988-11-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02122621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014610A3 (en) * 1999-08-25 2001-05-10 Nanogate Gmbh Method for modifying coating materials
US8707896B2 (en) 2009-03-27 2014-04-29 Koninklijke Philips N.V. Apparatus and method for manufacturing an integrated circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014610A3 (en) * 1999-08-25 2001-05-10 Nanogate Gmbh Method for modifying coating materials
US8707896B2 (en) 2009-03-27 2014-04-29 Koninklijke Philips N.V. Apparatus and method for manufacturing an integrated circuit
US9305821B2 (en) 2009-03-27 2016-04-05 Koninklijke Philips N.V. Apparatus and method for manufacturing an integrated circuit

Similar Documents

Publication Publication Date Title
US6242719B1 (en) Multiple-layered ceramic heater
US2842831A (en) Manufacture of semiconductor devices
US3484313A (en) Method of manufacturing semiconductor devices
EP1271620B1 (en) Method and apparatus for heat treatment of semiconductor films
US2820932A (en) Contact structure
JP6037083B2 (en) Manufacturing method of semiconductor device
US2913642A (en) Method and apparatus for making semi-conductor devices
CN109712877A (en) Ohm contact electrode, HEMT device and preparation method
KR930004711B1 (en) Ohmic electrode and its forming method
CN111128709A (en) Preparation method of Cu-based GaN HEMT gold-free ohmic contact electrode
US3071854A (en) Method of producing a broad area low resistance contact to a silicon semiconductor body
JPH02122621A (en) Manufacture of semiconductor device
US3220380A (en) Deposition chamber including heater element enveloped by a quartz workholder
US6191485B1 (en) Semiconductor device
CN111128710A (en) Preparation method of GaN HEMT gold-free low-roughness ohmic contact electrode
GB1010698A (en) Soldering connecting wires to semiconductor bodies
JP2008205415A (en) Electrostatic chuck
US2845375A (en) Method for making fused junction semiconductor devices
JP3474406B2 (en) Silicon heating element and semiconductor manufacturing apparatus using the same
US3018539A (en) Diffused base transistor and method of making same
JPS5846167B2 (en) Manufacturing method of semiconductor device
JP3325179B2 (en) Manufacturing method of circuit breaker electrode
JPH02246322A (en) Vapor growth equipment
JPS63306623A (en) Method of sintering semiconductor device
JPH0279434A (en) Heat treatment method for semiconductor substrate and its device