JPH0212257B2 - - Google Patents

Info

Publication number
JPH0212257B2
JPH0212257B2 JP17017081A JP17017081A JPH0212257B2 JP H0212257 B2 JPH0212257 B2 JP H0212257B2 JP 17017081 A JP17017081 A JP 17017081A JP 17017081 A JP17017081 A JP 17017081A JP H0212257 B2 JPH0212257 B2 JP H0212257B2
Authority
JP
Japan
Prior art keywords
weight
adca
extrusion
foam
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17017081A
Other languages
Japanese (ja)
Other versions
JPS5871933A (en
Inventor
Juichi Tsuji
Akio Fujisaki
Kazuharu Kanezaki
Takashi Kato
Toshiki Kizara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP17017081A priority Critical patent/JPS5871933A/en
Publication of JPS5871933A publication Critical patent/JPS5871933A/en
Publication of JPH0212257B2 publication Critical patent/JPH0212257B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアゾジカルボンアミド(以下、
ADCAと略する。)を発泡剤として含有する発泡
成形用ポリオレフイン組成物の改良に関するもの
である。 加熱により分解してガスを発生するいわゆる化
学発泡剤は、熱可塑性樹脂の発泡剤として広く使
用されている。なかでもADCAは、単位質量あ
たりの発生ガス量が多いこと、発生ガスが比較的
無臭であること、分解残渣が無毒、無臭、無移行
性であること、貯蔵安定性がよいこと、などのた
めに、ポリ塩化ビニル、ポリエチレン、ポリプロ
ピレンをはじめ各種熱可塑性樹脂の発泡剤として
広く使用されている。しかし、ADCAの分解温
度が約200℃と高いため、熱可塑性樹脂の発泡に
使用される時、これらの樹脂材料の軟化点よりも
発泡剤の分解温度が高いため、従来、ADCAに
発泡助剤を併用して、分解温度を低温側に調整し
て使用することが行なわれている。 このような助剤として尿素、脂肪酸金属塩、あ
るいは酸化亜鉛等が知られている。 押出成形法、ブロー成形法およびインフレーシ
ヨン成形法により、オレフイン系樹脂を発泡成形
する際、オレフイン系樹脂はポリスチレンのよう
な他の熱可塑性樹脂に比較して、溶融時の弾性が
低く、また感温比が大きいため、押出加工条件巾
が極端に狭く、成形品収率の低下要因となつてい
る。また上記発泡助剤は、ADCAの分解温度を
低下できるが、ADCAの分解速度は急速であり、
且つ分解に際して約10Kcal/Molのような高い
分解熱量を発生するので、微細で且つ均一な気泡
を有する発泡体を得ることが極めて困難であつ
た。 そこで、本発明者らはADCAのガス発生量に
は影響を与えず、分解温度を低下し、分解速度も
緩慢にし、さらに分解熱量を抑制する助剤に着目
し種々研究を重ねた結果、一般式〔Ar(SO3on
M(ただし、式中Arはアリール骨格を有する基を
示し、Mは水素原子、NH4、またはLi、Na、
K、Mg、Ca、Sr、Ba、Zn、Cd、SnおよびPb
からなる群から選ばれた金属を示し、n及びmは
整数である。)でわされる化合物(以下、アリー
ルスルホン酸塩と略する。)が、前記の発泡助剤
としての要件を満し、最適押出加工条件巾が広く
しかも微細かつ均一な気泡構造を有するポリオレ
フイン発泡体を得るのに有効であり、更に従来の
発泡助剤と比較して押出量が約2割も増大するこ
とを知見し、本発明に到達した。 すなわち、本発明は、発泡剤としてADCAを
含有するポリオレフイン組成物において、該発泡
剤1重量部にアリールスルホン酸塩の1種又は2
種以上を0.05〜2重量部の範囲で含有する発泡成
形用ポリオレフイン組成物を提供するものであ
る。本発明に使用し得るアリールスルホン酸塩と
しては、具体的にはベンゼンスルホン酸塩、ベン
ゼンジスルホン酸塩、トルエンスルホン酸塩、ト
ルエンジスルホン酸塩、キシレンスルホン酸塩、
ブチルベンゼンスルホン酸塩、ドデシルベンゼン
スルホン酸塩、ナフタレンスルホン酸塩、ナフタ
レンジスルホン酸塩等が挙げられ、なかでもドデ
シルベンゼンスルホン酸アンモニウム、ドデシル
ベンゼンスルホン酸カリウム、ドデシルベンゼン
スルホン酸亜鉛、ナフタレンスルホン酸バリウム
などが多用される。而して前記した一般式で示さ
れるアリールスルホン酸塩のMがH、NH4の他、
前記した金属の相異によつてアリールスルホン酸
塩自体の熱安定性その他得られる成形品の気泡状
態に若干の相異は認められるが、本発明の
ADCAの発泡助剤効果に関してはほゞ同様の効
果が得られる。 ポリオレフインとしては、押出成形法、ブロー
成形法、インフレーシヨン成形法等による発泡成
形に使用可能な公知のオレフイン系樹脂、例えば
ポリエチレン、ポリプロピレン、エチレン−プロ
ピレン共重合体の単独及びオレフイン系樹脂の混
合物あるいはオレフイン系樹脂を主体として、ポ
リスチレン、ゴム等の他の熱可塑性樹脂の混合物
等のいずれでも使用できる。また架橋剤によりオ
レフイン系樹脂を架橋しながら、あるいは架橋
後、発泡成形しても良い。 ポリオレフインに配合するADCAの量につい
ては0.1〜10重量部の範囲内で使用できる。本発
明で使用するアリールスルホン酸塩は、ポリエチ
レングリコール、ポリエチレングリコールモノメ
チルエーテル等のいわゆる分散剤との混合物であ
つても実用上問題ないが、アリールスルホン酸塩
の使用割合は、ADCA1重量部に対して0.05〜2
重量部、好ましくは0.2〜1重量部添加すること
により好結果が得られる。 而して添加量が0.05重量部以下になるとADCA
の分解温度低下、分解速度および分解発熱量の抑
制に効果が乏しく、また2重量部以上では発泡成
形品の気泡が不均一となり面状態が悪くなるので
好ましくない。 本発明のポリオレフイン組成物の使用に当つて
は、ADCAとアリールスルホン酸塩とをポリオ
レフインに別々にあるいは一緒に予かじめ練込み
最終的に所定割合になるように調整して使用して
も良いし、また三者を練込むことなく単なる混合
物として直接使用しても良い。また本発明のポリ
オレフイン組成物には、通常使用する顔料、酸化
防止剤、滑剤、帯電防止剤、耐候性向上剤、充填
剤等を周知の使用量の範囲内で適宜使用すること
ができ、これらの組成物は通常用いられる押出成
形法、ブロー成形法、インフレーシヨン成形法お
よび成形条件などの採用によつて発泡成形品とす
ることができる。 本発明に言う発泡助剤であるアリールスルホン
酸塩とADCAをポリオレフインに添加してなる
発泡成形用ポリオレフイン組成物は従来の発泡助
剤との組み合わせより、最適押出加工条件巾が広
く、押出量が約2割増大する。また微細かつ均一
な気泡構造を有し、更に表面美麗なポリオレフイ
ン発泡体を得ることができる。 以下、本発明を実施例により更に説明する。 実施例 1 ポリプロピレンペレツト(商品名、三井東圧化
学(株)製、BJS−M)(M.I.、1.5)75重量部、高密
度ポリエチレンペレツト(M.I.、0.3)25重量部
にドデシルベンゼンスルホン酸アンモニウム:ポ
リエチレングリコールモノメチルエーテル(分子
量約200)=1:1重量部の混合物(商品名、勝田
化工(株)製、TCV−711p)0.2重量部を上記ペレツ
トにまぶし、ADCAを0.17重量部添加した。該混
合物を65m/mφ押出機(スクリユー回転数
40rpm)にて表1のように押出条件を変化させ、
発泡成形した。それぞれの押出条件で得られた発
泡体(厚み約1.5m/m巾約380m/m)は表2の
ように押出機のシリンダー設定温度を20℃も変化
させても均一な微細気泡構造を保持するというよ
うに最適押出加工条件巾が広く、しかも下記比較
例より気泡径がさらに小さくなつた。また押出量
も下記比較例より約2割多い結果となつた。 実施例 2 実施例1において、TCV−711pの添加量を0.2
重量部から0.1重量部に変更した以外は全く同様
にして、表1のように押出条件を変化させ、表2
に示すような押出結果となつた。 実施例 3、4 実施例1において、TCV−711pの代りに、ド
デシルベンゼンスルホン酸カリウム:ポリエチレ
ングリコール(分子量約200)=1:1重量部の混
合物(実施例3)およびナフタレンスルホン酸バ
リウム:ポリエチレングリコール(分子量約200)
=1:1重量部の混合物(実施例4)を0.1重量
部使用する以外は、全く同様にして発泡成形し
夫々を実施例3および4とした。押出条件を表
1、押出結果を表2に示した。 実施例 5 実施例2において、さらにドデシルベンゼンス
ルホン酸亜鉛:ポリエチレングリコールモノメチ
ルエーテル=1:1重量部の混合物を0.1重量部
添加する以外は実施例1と全く同様にして表1の
ように押出条件を変化させ発泡成形した。押出結
果は表2に示す通りであつた。 比較例 1、2 実施例1で使用したポリプロピレンペレツトと
高密度ポリエチレンペレツトを同量使用し、実施
例で使用したのと同一のポリエチレングリコール
モノメチルエーテルあるいはポリエチレングリコ
ール0.1重量部をペレツトにまぶし、ADCAを
0.17重量部添加した。該混合物を実施例1と全く
同様に押出条件を表1のように変化させ、発泡成
形した。表2のように得られた発泡体は気泡が大
きく面状態が不良であつた。 比較例 3、4、5 実施例1で使用したポリプロピレンペレツトと
高密度ポリエチレンペレツトを同量使用し、実施
例で使用したのと同一のポリエチレングリコール
0.1重量部をペレツトにまぶし、尿素(比較例
3)、活性亜鉛華(商品名、界化学工業ZINCA
#20)(比較例4)およびステアリン酸アルミニ
ウム(比較例5)0.1重量部とADCA0.17重量部
を添加配合した。混合物を実施例1と全く同様に
して、表1のように押出条件を変化させ、発泡成
形し各々を比較例3、4および5とし、表2のよ
うに、比較例3、4では気泡の荒れた発泡体であ
つた。また比較例5では押出機のシリンダー設定
温度をさらに10℃高くすると、気泡が大きくなる
というように最適押出加工条件巾が狭かつた。 比較例 6 実施例1で使用したポリプロピレンペレツトと
高密度ポリエチレンペレツトを同量使用し、実施
例で使用したのと同一のポリエチレングリコール
0.1重量部をペレツトにまぶし、ナフタレンスル
ホン酸バリウム2.0重量部とADCA0.17重量部を
添加配合した。実施例1と全く同様にして、表1
のように押出条件を変化させ発泡成形した。 表2のように得られた発泡体の気泡は、同一押
出温度下で微細から粗大までというように不均一
であり、面状態も不良であつた。
The present invention relates to azodicarbonamide (hereinafter referred to as
Abbreviated as ADCA. ) as a blowing agent. So-called chemical blowing agents that decompose upon heating to generate gas are widely used as blowing agents for thermoplastic resins. Among these, ADCA is used because it generates a large amount of gas per unit mass, the gas generated is relatively odorless, the decomposition residue is non-toxic, odorless, and non-migratory, and it has good storage stability. It is widely used as a blowing agent for various thermoplastic resins, including polyvinyl chloride, polyethylene, and polypropylene. However, ADCA has a high decomposition temperature of approximately 200°C, so when it is used for foaming thermoplastic resins, the decomposition temperature of the blowing agent is higher than the softening point of these resin materials, so ADCA has traditionally been combined with foaming aids. The decomposition temperature is adjusted to a low temperature side by using the decomposition temperature in combination with the decomposition temperature. Urea, fatty acid metal salts, zinc oxide, and the like are known as such auxiliaries. When foam-molding olefin resins by extrusion molding, blow molding, or inflation molding, olefin resins have lower elasticity when melted than other thermoplastic resins such as polystyrene, and Because the temperature sensitivity ratio is large, the range of extrusion processing conditions is extremely narrow, which is a factor in reducing the yield of molded products. In addition, the above foaming aid can lower the decomposition temperature of ADCA, but the decomposition rate of ADCA is rapid;
In addition, since a high decomposition heat of about 10 Kcal/Mol is generated during decomposition, it has been extremely difficult to obtain a foam having fine and uniform cells. Therefore, the present inventors focused on an auxiliary agent that lowers the decomposition temperature, slows down the decomposition rate, and suppresses the amount of heat of decomposition without affecting the amount of gas generated by ADCA. Formula [Ar(SO 3 ) o ] n
M (wherein Ar represents a group having an aryl skeleton, M is a hydrogen atom, NH 4 , or Li, Na,
K, Mg, Ca, Sr, Ba, Zn, Cd, Sn and Pb
represents a metal selected from the group consisting of, n and m are integers. ) (hereinafter abbreviated as aryl sulfonate) satisfies the above requirements as a foaming aid, has a wide range of optimal extrusion processing conditions, and has a fine and uniform cell structure. The present invention was achieved based on the findings that the foaming agent is effective in obtaining foaming foams and that the extrusion rate is increased by about 20% compared to conventional foaming aids. That is, the present invention provides a polyolefin composition containing ADCA as a blowing agent, in which one or two aryl sulfonates are added to 1 part by weight of the blowing agent.
The object of the present invention is to provide a polyolefin composition for foam molding containing 0.05 to 2 parts by weight of at least one of the following. Examples of the arylsulfonate that can be used in the present invention include benzenesulfonate, benzene disulfonate, toluenesulfonate, toluene disulfonate, xylene sulfonate,
Examples include butylbenzenesulfonate, dodecylbenzenesulfonate, naphthalenesulfonate, naphthalene disulfonate, among others, ammonium dodecylbenzenesulfonate, potassium dodecylbenzenesulfonate, zinc dodecylbenzenesulfonate, barium naphthalenesulfonate. etc. are often used. Therefore, M of the arylsulfonate represented by the above general formula is H, NH4 , and
Although there are some differences in the thermal stability of the aryl sulfonate itself and in the bubble state of the resulting molded product due to the above-mentioned differences in metals, the present invention
Regarding the foaming aid effect of ADCA, almost the same effect can be obtained. Examples of the polyolefin include known olefin resins that can be used for foam molding by extrusion molding, blow molding, inflation molding, etc., such as polyethylene, polypropylene, ethylene-propylene copolymers alone and mixtures of olefin resins. Alternatively, any mixture of olefin resin as a main component and other thermoplastic resins such as polystyrene and rubber can be used. Further, foam molding may be carried out while or after crosslinking the olefin resin with a crosslinking agent. The amount of ADCA added to the polyolefin can be within the range of 0.1 to 10 parts by weight. The aryl sulfonate used in the present invention may be used as a mixture with a so-called dispersant such as polyethylene glycol or polyethylene glycol monomethyl ether without causing any practical problems, but the ratio of the aryl sulfonate used is based on 1 part by weight of ADCA. te 0.05~2
Good results are obtained by adding 0.2 to 1 part by weight, preferably 0.2 to 1 part by weight. Therefore, if the amount added is less than 0.05 parts by weight, ADCA
It is not effective in lowering the decomposition temperature, decomposition rate, and decomposition heat value, and if it exceeds 2 parts by weight, the bubbles in the foamed molded product become uneven and the surface condition deteriorates, which is not preferable. When using the polyolefin composition of the present invention, ADCA and aryl sulfonate may be kneaded into the polyolefin separately or together in advance and adjusted to a predetermined ratio before use. However, they may also be used directly as a simple mixture without kneading the three components. In addition, commonly used pigments, antioxidants, lubricants, antistatic agents, weather resistance improvers, fillers, etc. can be appropriately used in the polyolefin composition of the present invention within well-known amounts. The composition can be made into a foam molded article by employing commonly used extrusion molding methods, blow molding methods, inflation molding methods, and molding conditions. The polyolefin composition for foam molding prepared by adding the foaming aids aryl sulfonate and ADCA to polyolefin according to the present invention has a wider range of optimal extrusion processing conditions and a higher throughput than the combination with conventional foaming aids. It increases by about 20%. Furthermore, a polyolefin foam having a fine and uniform cell structure and a beautiful surface can be obtained. The present invention will be further explained below with reference to Examples. Example 1 Dodecylbenzenesulfonic acid was added to 75 parts by weight of polypropylene pellets (trade name, manufactured by Mitsui Toatsu Chemical Co., Ltd., BJS-M) (MI, 1.5), 25 parts by weight of high-density polyethylene pellets (MI, 0.3). 0.2 parts by weight of a mixture of ammonium: polyethylene glycol monomethyl ether (molecular weight approximately 200) = 1:1 parts by weight (trade name, manufactured by Katsuta Kako Co., Ltd., TCV-711p) was sprinkled on the above pellets, and 0.17 parts by weight of ADCA was added. . The mixture was passed through a 65m/mφ extruder (screw rotation speed
40 rpm) by changing the extrusion conditions as shown in Table 1.
Foam molded. As shown in Table 2, the foam obtained under each extrusion condition (thickness: approx. 1.5m/width: approx. 380m/m) maintains a uniform microcellular structure even when the cylinder temperature of the extruder is changed by as much as 20℃. As shown, the range of optimal extrusion processing conditions was wide, and the cell diameter was even smaller than that of the comparative example below. Moreover, the extrusion amount was about 20% larger than that of the comparative example below. Example 2 In Example 1, the amount of TCV-711p added was 0.2
The extrusion conditions were changed as shown in Table 1, except that part by weight was changed to 0.1 part by weight, and the extrusion conditions were changed as shown in Table 2.
The extrusion result was as shown in . Examples 3 and 4 In Example 1, instead of TCV-711p, a mixture of potassium dodecylbenzenesulfonate: polyethylene glycol (molecular weight about 200) = 1:1 parts by weight (Example 3) and barium naphthalenesulfonate: polyethylene Glycol (molecular weight approximately 200)
EXAMPLES 3 and 4 were foam-molded in exactly the same manner except that 0.1 part by weight of the 1:1 part by weight mixture (Example 4) was used. Table 1 shows the extrusion conditions, and Table 2 shows the extrusion results. Example 5 Example 2 was carried out in exactly the same manner as in Example 1, except that 0.1 part by weight of a mixture of zinc dodecylbenzenesulfonate: polyethylene glycol monomethyl ether = 1:1 part by weight was added, and the extrusion conditions were as shown in Table 1. Foam molding was performed by changing the The extrusion results were as shown in Table 2. Comparative Examples 1 and 2 The same amounts of polypropylene pellets and high-density polyethylene pellets used in Example 1 were used, and the pellets were sprinkled with 0.1 part by weight of the same polyethylene glycol monomethyl ether or polyethylene glycol used in Example. ADCA
0.17 parts by weight was added. The mixture was foam-molded in exactly the same manner as in Example 1, with the extrusion conditions changed as shown in Table 1. As shown in Table 2, the obtained foam had large cells and a poor surface condition. Comparative Examples 3, 4, 5 The same amounts of polypropylene pellets and high-density polyethylene pellets used in Example 1 were used, and the same polyethylene glycol as used in Example was used.
Sprinkle 0.1 part by weight on the pellets, and apply urea (Comparative Example 3) and activated zinc white (trade name, KAI Kagaku Kogyo ZINCA).
#20) (Comparative Example 4) and 0.1 part by weight of aluminum stearate (Comparative Example 5) and 0.17 part by weight of ADCA were added and blended. The mixture was foam-molded in exactly the same manner as in Example 1, changing the extrusion conditions as shown in Table 1, and was used as Comparative Examples 3, 4, and 5. As shown in Table 2, in Comparative Examples 3 and 4, the foam was It was rough foam. Furthermore, in Comparative Example 5, when the cylinder temperature of the extruder was further increased by 10°C, the range of optimal extrusion processing conditions was narrowed, as the bubbles became larger. Comparative Example 6 The same amount of polypropylene pellets and high-density polyethylene pellets used in Example 1 were used, and the same polyethylene glycol as used in Example was used.
0.1 part by weight was sprinkled on pellets, and 2.0 parts by weight of barium naphthalene sulfonate and 0.17 parts by weight of ADCA were added and blended. In exactly the same manner as in Example 1, Table 1
Foam molding was carried out by changing the extrusion conditions as shown below. As shown in Table 2, the cells of the obtained foam were non-uniform, ranging from fine to coarse, and the surface condition was poor under the same extrusion temperature.

【表】【table】

【表】【table】

【表】 なお、表2の欄中、気泡径は以下のように分類
した。微小(60μ以下)、小(60〜100μ)、中
(100〜200μ)、大(200〜400μ)および粗大
(400μ以上)。
[Table] In the column of Table 2, the bubble diameters were classified as follows. Fine (less than 60μ), small (60-100μ), medium (100-200μ), large (200-400μ) and coarse (more than 400μ).

Claims (1)

【特許請求の範囲】 1 発泡剤としてアゾジカルボンアミドを含有す
るポリオレフイン組成物において、該発泡剤1重
量部に対し、一般式〔Ar(SO3onM(ただし、式
中Arはアリール骨格を有する基を示し、Mは水
素原子、NH4、またはLi、Na、K、Mg、Ca、
Sr、Ba、Zn、Cd、SnおよびPbからなる群から
選ばれた金属を示し、n及びmは整数である。) で表わされる化合物の1種又は2種以上を0.05〜
2重量部の範囲で含有することを特徴とする発泡
成形用ポリオレフイン組成物。
[Scope of Claims] 1. In a polyolefin composition containing azodicarbonamide as a blowing agent, the general formula [Ar(SO 3 ) o ] n M (wherein Ar is aryl) is added to 1 part by weight of the blowing agent. Represents a group having a skeleton, M is a hydrogen atom, NH 4 , or Li, Na, K, Mg, Ca,
It represents a metal selected from the group consisting of Sr, Ba, Zn, Cd, Sn and Pb, where n and m are integers. ) One or more compounds represented by 0.05 to
A polyolefin composition for foam molding, characterized in that it contains within a range of 2 parts by weight.
JP17017081A 1981-10-26 1981-10-26 Expansion molding polyolefin composition Granted JPS5871933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17017081A JPS5871933A (en) 1981-10-26 1981-10-26 Expansion molding polyolefin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17017081A JPS5871933A (en) 1981-10-26 1981-10-26 Expansion molding polyolefin composition

Publications (2)

Publication Number Publication Date
JPS5871933A JPS5871933A (en) 1983-04-28
JPH0212257B2 true JPH0212257B2 (en) 1990-03-19

Family

ID=15899979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17017081A Granted JPS5871933A (en) 1981-10-26 1981-10-26 Expansion molding polyolefin composition

Country Status (1)

Country Link
JP (1) JPS5871933A (en)

Also Published As

Publication number Publication date
JPS5871933A (en) 1983-04-28

Similar Documents

Publication Publication Date Title
JPH0238100B2 (en)
JPS60243131A (en) Manufacture of independently foamed olefin polymer foam
EP0041167B1 (en) Expandable polyolefin compositions and polyolefin foam preparation process
JP3548632B2 (en) Polypropylene resin composition, foam and production method thereof
US4632942A (en) Resin composition for masterbatch of foaming agent
US4431575A (en) Foamable polyolefin resin composition
EP0219548B1 (en) Polyolefin foam compositions having improved dimensional stability utilizing certain unsaturated nitrogen-containing compounds andprocess for making same
JPS5840326A (en) Foamable polyolefin resin composition
US4894395A (en) Expandable polyolefin compositions and polyolefin foam preparation process
JPS6245256B2 (en)
EP0079080B1 (en) Foamable electroconductive polyolefin resin compositions
JPH0212257B2 (en)
JPS6367494B2 (en)
US3798188A (en) Expandable polymeric composition
JPH0449863B2 (en)
JPS60110733A (en) Expandable polyolefin resin composition
JPH0231087B2 (en) HATSUHOSHASHUTSUSEIKEIYOHORIPUROPIRENSEIKEIZAIRYO
JPS6183237A (en) Preparation of polyolefin foam
JPH0310658B2 (en)
JPS5911611B2 (en) polyolefin resin foam
JPS6065008A (en) Crosslinkable/expandable ethylene/propylene/butene copolymer
JPS6245255B2 (en)
JPS6239640A (en) Production of olefin resin foam
JPH0680787A (en) Foaming agent masterbatch composition for injection molding and its production
JPH0116650B2 (en)