JPH02121765A - Production of ingot for rolling - Google Patents

Production of ingot for rolling

Info

Publication number
JPH02121765A
JPH02121765A JP27086388A JP27086388A JPH02121765A JP H02121765 A JPH02121765 A JP H02121765A JP 27086388 A JP27086388 A JP 27086388A JP 27086388 A JP27086388 A JP 27086388A JP H02121765 A JPH02121765 A JP H02121765A
Authority
JP
Japan
Prior art keywords
molten steel
pool
mold
ratio
steel ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27086388A
Other languages
Japanese (ja)
Inventor
Seiji Nabeshima
誠司 鍋島
Yutaka Shinjo
新庄 豊
Kenji Saito
健志 斎藤
Tsutomu Nozaki
野崎 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27086388A priority Critical patent/JPH02121765A/en
Publication of JPH02121765A publication Critical patent/JPH02121765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve the quality of a material to be rolled by finding a molten steel pool inclined angle so as to eliminate spotting segregation from the specific characteristic charts and producing molten steel in a fixed type mold so as to become this molten steel pool inclined angle. CONSTITUTION:The characteristic chart showing relation of the molten steel pool inclined angle and dendritic primary arm inclined angle to surface of a steel ingot with ratio of the molten steel pool depth to the mold radius, is drawn. Further, the characteristic chart showing the spotting segregation developing range in the ingot in the relational figure of the ratio of the molten steel pool depth to the mold radius with the ratio of the distance from the ingot surface to the mold radius, is drawn. The molten pool inclined angle is found so as to eliminate the spotting segregation from both of the inclined angle having more than the desirable dendritic primary arm inclined angle and the ratio of the distance from the ingot surface to the mold radius, which is inclined to the roll quality assurance range without any spotting segregation, in the above characteristic charts. Then, the molten steel is produced in the fixed type mold so as to become the molten steel pool inclined angle.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ESR法による圧延用ロールに用いる鋼塊の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a steel ingot used for rolling rolls by the ESR method.

〈従来の技術〉 ESR法による圧延用ロール鋼塊製造方法では、操業条
件すなわち電圧、i流、極性、スラグ種類。
<Conventional technology> In the method of manufacturing roll steel ingots for rolling using the ESR method, operating conditions, namely voltage, i-flow, polarity, and slag type.

スラグ量、インゴット寸法、フィルレシオ(=電極径/
モールド径)、溶解速度等により、溶鋼プール形状(深
さ)をコントロールし、鋼塊の表面品質、内部品質を良
好にすることが行われている。
Slag amount, ingot dimensions, fill ratio (=electrode diameter/
The shape (depth) of the molten steel pool is controlled by controlling the mold diameter), melting rate, etc., to improve the surface quality and internal quality of the steel ingot.

しかし、現状の操業法では溶鋼プール形状を内部品質面
から浅くしているため、圧延用ロール鋼塊の製造におい
ては鋼塊の表層部でのデンドライト一次アームが鋼塊表
面に対して低角度となるため、ロール製品になった時、
ロール表面にデンドライト一次アーム模様が粗く残存し
、その硬度差からデンドライト模様が被圧延材に転写さ
れるという問題がある。
However, in the current operation method, the shape of the molten steel pool is made shallow in terms of internal quality, so when manufacturing roll steel ingots for rolling, the primary dendrite arms in the surface layer of the steel ingot are at a low angle to the surface of the steel ingot. Therefore, when it becomes a roll product,
There is a problem in that a rough dendrite primary arm pattern remains on the roll surface, and the dendrite pattern is transferred to the rolled material due to the difference in hardness.

第3図にESI?法による鋼塊の凝固過程を示す。ESI in Figure 3? This figure shows the solidification process of a steel ingot using the method.

−Cにデンドライト成長方向は、溶鋼プール内の流動の
影響を受けなければ凝固界面に対して垂直に近い方向に
成長する。よって、溶鋼プール形状を深くすれば第3図
(a)に示すようにデンドライト成長方向は鋼塊表面に
対して傾角Q1が大きくなり、また溶鋼プール形状を浅
(すれば第3図(b)に示すようにデンドライト成長方
向は鋼塊表面に対する傾角は小さくなる。よって、デン
ドライト一次アーム傾角を鋼塊表面に対して高角度にす
るには溶鋼プール形状を深くする必要がある。
-C, the dendrite growth direction is nearly perpendicular to the solidification interface unless influenced by the flow in the molten steel pool. Therefore, if the shape of the molten steel pool is made deeper, the inclination Q1 of the dendrite growth direction with respect to the steel ingot surface becomes larger as shown in Figure 3(a), and if the shape of the molten steel pool is made shallower (as shown in Figure 3(b)) As shown in , the inclination angle of the dendrite growth direction with respect to the steel ingot surface becomes small. Therefore, in order to make the dendrite primary arm inclination angle high with respect to the steel ingot surface, it is necessary to deepen the molten steel pool shape.

溶鋼プール形状を深くする操業法としては、投入電力を
高めて溶解速度を大幅に増加させ鋼塊内部の凝固を遅(
する方法がある。しかし、溶解速度の無謀な増加は鋼塊
の内部品’ff(フレソケル偏析1組織の緻密化)の悪
化につながる。このような問題を解決する方法として、
特公昭63〜35348号公報に開示された「圧延ロー
ルの製造方法」では、移動式の冷却鋳型を用い冷却鋳型
を出た後、鋼塊の表面に保温材を巻装したり誘導加熱す
ることにより、冷却鋳型下の鋼塊表面における冷却速度
を400°C/hr以下にしてプール形状を深くしてい
る。
An operating method to deepen the shape of the molten steel pool is to increase the input power to significantly increase the melting rate and slow down the solidification inside the steel ingot.
There is a way to do it. However, a reckless increase in the dissolution rate leads to deterioration of the internal parts 'ff (densification of the Fresokel segregation 1 structure) of the steel ingot. As a way to solve such problems,
In the "Method for manufacturing rolling rolls" disclosed in Japanese Patent Publication No. 63-35348, a movable cooling mold is used, and after the steel ingot leaves the cooling mold, the surface of the steel ingot is wrapped with a heat insulating material or subjected to induction heating. As a result, the cooling rate on the surface of the steel ingot under the cooling mold is set to 400°C/hr or less to make the pool shape deep.

しかし、このような方法をとるためには冷却鋳型の移動
が不可欠となり、当社固定式の鋳型では鋼塊下部表面の
冷却速度をコントロールし、緩冷却にすることは難しい
However, in order to use this method, it is essential to move the cooling mold, and with our fixed mold, it is difficult to control the cooling rate of the lower surface of the steel ingot and achieve gradual cooling.

〈発明が解決しようとする課題〉 本発明は、従来の圧延用ロール鋼塊製造技術ではデンド
ライト一次アーム頭角が小さく、ロール表面にデンドラ
イト一次アーム模様が残るという問題に鑑み、鋳型固定
式のESR法で、ロール有効径の内部品質を保証し、か
つ鋼塊表層部のデンドライトを鋼塊表面に対し、所望の
角度例えば45°以上の角度で成長させた圧延用ロール
鋼塊の製造方法を提供するためになされたものである。
<Problems to be Solved by the Invention> In view of the problem that in conventional rolling roll steel ingot manufacturing technology, the dendrite primary arm head angle is small and a dendrite primary arm pattern remains on the roll surface, the present invention has developed a mold-fixed ESR method. To provide a method for manufacturing a roll steel ingot for rolling, which guarantees the internal quality of the effective diameter of the roll and allows dendrites in the surface layer of the steel ingot to grow at a desired angle, for example, at an angle of 45° or more with respect to the surface of the steel ingot. It was made for the purpose of

〈課題を解決するための手段〉 本発明は、■鋳型固定式ESR法による圧延用ロール鋼
塊製造に際して、 鋼塊表面に対する溶鋼プール傾角Qrとデンドライト一
次アーム傾角Q2及びモールド半径に対する溶鋼プール
深さ比との関係を示す特性図(第1図)、モールド半径
に対する溶鋼プール深さ比とモールド半径に対する鋼塊
表面からの距離の比との関係図に鋼塊におけるフレッケ
ル偏析発生領域を表示した特性図(第2図)、とによっ
て所望のデンドライト一次アーム頭角以上の傾角、フレ
ッケル偏析のないロール品質保証領域にあるモールド半
径に対する鋼塊表面からの距離の比、との両者からフレ
ンケル偏析のないような溶鋼プール1131角を見い出
して、その?8j121ブール傾角となるように溶鋼を
固定式鋳型内で溶製することを特徴とするESR法によ
る圧延用ロール鋼塊の製造方法で、■前項■において、
テン1′ライトー次アーム頭角が45°以」二、ロール
品質保証領域がモールド半径に対する鋼塊表面からの距
離の比が25%の場合に、溶鋼プール傾角Qrが15〜
25°になるように溶製する圧延用ロール鋼塊の製造方
法である。
<Means for Solving the Problems> The present invention provides the following features: (1) When manufacturing roll steel ingots for rolling by fixed mold ESR method, the molten steel pool inclination Qr with respect to the steel ingot surface, the dendrite primary arm inclination Q2, and the molten steel pool depth with respect to the mold radius Characteristic diagram (Figure 1) showing the relationship between the ratio and the ratio of the depth of the molten steel pool to the mold radius and the ratio of the distance from the steel ingot surface to the mold radius. (Fig. 2), the inclination angle is greater than the desired dendrite primary arm head angle, and the ratio of the distance from the steel ingot surface to the mold radius in the roll quality assurance area free of freckel segregation. Find the 1131 corner of the molten steel pool, and find out what? 8j121 A method for manufacturing a roll steel ingot for rolling by the ESR method, which is characterized by melting molten steel in a fixed mold so as to have a boule inclination angle, and in the previous item ■,
2. When the ratio of the distance from the steel ingot surface to the mold radius in the roll quality assurance area is 25%, the molten steel pool inclination Qr is 15~
This is a method for manufacturing a roll steel ingot for rolling which is melted so as to have an angle of 25°.

〈作 用〉 鋼塊直径500 mm以上の鋼塊において、鋼塊表面に
対するプール傾角Qrとデンドライト一次アーム顛角Q
1及びモールド半径に対するプール)7さ比との関係を
鋳型固定式ESI?法装置において調査し、第1図及び
第3図のような関係があるとの知見を得た。
<Function> For steel ingots with a diameter of 500 mm or more, pool inclination Qr and dendrite primary arm angle Q with respect to the steel ingot surface
1 and pool to mold radius) 7) Relationship between mold fixed type ESI? We conducted an investigation using a legal device and found that there is a relationship as shown in Figures 1 and 3.

すなわち、−Cにデンドライト一次アーム(以下一次ア
ーム)6は熱流束の方向に成長するものであるが、溶鋼
プール4内の流動の影響によって一次アームは鋼塊軸方
向に平行になるように成長する傾向になる(第3図参照
)。
That is, in -C, the dendrite primary arms (hereinafter referred to as primary arms) 6 grow in the direction of heat flux, but due to the influence of the flow in the molten steel pool 4, the primary arms grow parallel to the axial direction of the steel ingot. (See Figure 3).

またプール傾角Qrとモールド半径に対するプール深さ
比との間には第1rJ(+11に示す関係があり、プー
ル深さを深くすることによりプール1頃角Q。
Furthermore, there is a relationship between the pool inclination angle Qr and the ratio of the pool depth to the mold radius as shown in 1 rJ (+11), and by increasing the pool depth, the angle Q around the pool 1 is increased.

は小さくなり、モールド半径に対するプール深さ比はぼ
2.1以上ではプール傾角はほぼ15°となりあまり変
化しない。
becomes small, and when the ratio of pool depth to mold radius is approximately 2.1 or more, the pool inclination angle becomes approximately 15° and does not change much.

一方、プール傾角Qrと一次アーム1頃角Q1 との間
には第1図(a)、第1図(C)から70≦Q r +
 Q +≦90、又はQP+QIζ90の関係があるこ
とが判った。
On the other hand, from FIGS. 1(a) and 1(C), there is a relationship between the pool inclination angle Qr and the primary arm 1 angle Q1: 70≦Q r +
It was found that there is a relationship of Q+≦90, or QP+QIζ90.

ここで一次アーム傾角Q1を例えば45°以上にするに
はプールIIJI角Qrを25′以下にすることによっ
て目的を達成できる。
In order to make the primary arm inclination angle Q1 45 degrees or more, for example, the purpose can be achieved by making the pool IIJI angle Qr 25' or less.

一方、フレッケル偏析などの内部品質はプール深さを深
くすることによって悪化し、この傾向はモールド半径が
500mm以上になると特に顕著であるが、第2図にモ
ールド半径に対するプール深さ比とフレッケル偏析が発
生する領域の鋼塊表面からのモールド半径に対する最小
割合の関係を示した。ブリキ用ロールとしての品質保証
領域を鋼塊表面からの比を25%とすれば、フレッケル
偏析発生領域から、モールド半径に対するプール深さ比
は2.1以下にする必要がある。よって、プール傾角Q
rは15°以上にする必要がある。
On the other hand, internal quality such as freckel segregation deteriorates as the pool depth deepens, and this tendency is particularly noticeable when the mold radius exceeds 500 mm. The relationship between the minimum ratio of the area where this occurs to the mold radius from the steel ingot surface is shown. If the ratio of the quality assurance area as a tinplate roll from the surface of the steel ingot is 25%, the ratio of the pool depth to the mold radius from the area where freckel segregation occurs needs to be 2.1 or less. Therefore, the pool inclination Q
r needs to be 15° or more.

以上より、溶鋼プールの凝固界面角度を鋼塊表面に対し
15〜25°となるようなプール形状とすれば鋼塊表層
部のデンドライトを鋼塊表面に対し、45°以上の角度
で成長させるとともにロール有効径+7.の鋼塊表層部
の内部品質を保証できることが明らかである。
From the above, if the pool shape is such that the solidification interface angle of the molten steel pool is 15 to 25 degrees to the steel ingot surface, the dendrites on the surface layer of the steel ingot will grow at an angle of 45 degrees or more to the steel ingot surface. Roll effective diameter +7. It is clear that the internal quality of the surface layer of the steel ingot can be guaranteed.

〈実施例〉 以下に本発明による具体的な実施例を示す。直径850
III11の冷却固定sh型を使用して、0.9重量%
(以下%と略ず)、C−5%Cr鋼をエレクトロスラグ
再溶解し、得られる鋼塊の一次アーム)噴角Qrの目標
角度を50°以上とし、またモールド半径に対する鋼塊
表面からの保証すべき肉j¥比を25%とした0以上の
仕様を満足すべき溶鋼プール傾角Qrは第1図および第
2図から15〜21”に制御する必要がある。?88プ
ール(噴角Qrは溶解速度によって変化するが、15〜
21%にするための溶解速度は1000kg/hrであ
る。スラグ組成は40%CaFt30%Atzoff−
30%CaOを使用し、プール形状を61! E’2す
るため溶解中Fe−3を添加した。その結果、プール深
さは750mm、 プール頭角は20@ となり、一次
アームの成長方向は目標角度50°を上回る55°が得
られた。また、ロール有効径厚の鋼塊表層部の内部品質
も、フレッケル偏析がなく良好なものが得られた。
<Examples> Specific examples according to the present invention will be shown below. Diameter 850
0.9% by weight using III11 cooling fixed sh type
(hereinafter abbreviated as %), the primary arm of the steel ingot obtained by electroslag remelting of C-5%Cr steel) The target angle of the injection angle Qr is set to be 50° or more, and the angle from the steel ingot surface to the mold radius is From Figures 1 and 2, the molten steel pool inclination Qr that satisfies the specification of 0 or more with the guaranteed meat j\ ratio of 25% needs to be controlled to 15 to 21''. Qr changes depending on the dissolution rate, but 15~
The dissolution rate to achieve 21% is 1000 kg/hr. The slag composition is 40%CaFt30%Atzoff-
Using 30% CaO, the pool shape is 61! Fe-3 was added during dissolution for E'2. As a result, the pool depth was 750 mm, the pool head angle was 20@, and the primary arm growth direction was 55°, which exceeds the target angle of 50°. In addition, the internal quality of the surface layer of the steel ingot with the roll effective diameter thickness was also good, with no freckel segregation.

〈発明の効果〉 本発明によると、モールド径500m以上の鋳型固定式
エレクトロスラグリメルテイング法で、鋼塊表層部のデ
ンドライトを鋼塊表面に対し、所望の角度例えば45’
以上の角度で成長させることができ、かつロール有効径
J¥の鋼塊表層部の内部品質を保証できる鋼塊を得るこ
とができる。この鋼塊で製造された圧延用ロールは、被
圧延材にデンドライト模様を転写することはなく、被圧
延材の品質を従来より良好にできた。
<Effects of the Invention> According to the present invention, in a mold-fixed electroslag melting method with a mold diameter of 500 m or more, dendrites in the surface layer of a steel ingot are formed at a desired angle, for example, 45' with respect to the surface of the steel ingot.
It is possible to obtain a steel ingot that can be grown at the above angle and that can guarantee the internal quality of the steel ingot surface layer with a roll effective diameter of J¥. A rolling roll manufactured from this steel ingot did not transfer the dendrite pattern to the rolled material, and the quality of the rolled material was improved compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は、プール傾角Qrと一次アーム頭角Qr
との関係を示す特性図、第1図(b)は、プール傾角Q
rとモールド半径に対するプール深さ比との関係を示ず
特+’)図、第1図(0)は、Qr、Q。 深さり、半径「との関係を示す特性図、第2図は、モー
ルド半径に対するプール深さ比とモールド半径に対する
鋼塊表面からの距yiI[の比との関係図に鋼塊におけ
るフレンゲル偏析発生領域を表示した特性図、第3図は
、溶鋼プール凝固界面と一次アーム成長方向との関係を
示す模式図である。 l・・・消耗電極、      2・・・熔融スラグ、
3・・・固定水冷鋳型、   4・・・溶鋼プール、5
・・・水冷定盤、 6・・・デンドライト一次アーム、 7・・・溶鋼プール凝固界面、 Qr・・・ブーJしく噴角、 Ql・・・デンドライト一次アーム頭角。
Figure 1 (a) shows the pool inclination Qr and the primary arm head angle Qr.
Figure 1 (b) is a characteristic diagram showing the relationship between the pool inclination angle Q
Figure 1 (0) shows the relationship between r and pool depth ratio to mold radius. Figure 2 shows the relationship between the pool depth ratio to the mold radius and the ratio of the distance yiI from the steel ingot surface to the mold radius, showing the occurrence of Frengel segregation in the steel ingot. The characteristic diagram showing the regions, FIG. 3, is a schematic diagram showing the relationship between the molten steel pool solidification interface and the primary arm growth direction. l...consumable electrode, 2...molten slag,
3... Fixed water-cooled mold, 4... Molten steel pool, 5
...Water-cooled surface plate, 6...Dendrite primary arm, 7... Molten steel pool solidification interface, Qr...Boo J squirt angle, Ql...Dendrite primary arm head angle.

Claims (1)

【特許請求の範囲】 1、鋳型固定式ESR法による圧延用ロール鋼塊製造に
際して、 鋼塊表面に対する溶鋼プール傾角(Q_r)とデンドラ
イト一次アーム傾角(Q_1)及びモールド半径に対す
る溶鋼プール深さ比との関係を示す特性図(第1図)、
モールド半径に対する溶鋼プール深さ比とモールド半径
に対する鋼塊表面からの距離の比との関係図に鋼塊にお
けるフレッケル偏析発生領域を表示した特性図(第2図
)、とによって所望のデンドライト一次アーム傾角以上
の傾角、フレッケル偏析のないロール品質保証領域にあ
るモールド半径に対する鋼塊表面からの距離の比、との
両者からフレッケル偏析のないような溶鋼プール傾角を
見い出して、その溶鋼プール傾角となるように溶鋼を固
定式鋳型内で溶製することを特徴とするESR法による
圧延用ロール鋼塊の製造方法。 2、請求項1において、デンドライト一次アーム傾角が
45°以上、ロール品質保証領域がモールド半径に対す
る鋼塊表面からの距離の比が25%の場合に、溶鋼プー
ル傾角Q_rが15〜25°になるように溶製する圧延
用ロール鋼塊の製造方法。
[Claims] 1. When manufacturing roll steel ingots for rolling by fixed mold ESR method, the molten steel pool inclination angle (Q_r) with respect to the steel ingot surface, the dendrite primary arm inclination angle (Q_1), and the molten steel pool depth ratio with respect to the mold radius. A characteristic diagram (Fig. 1) showing the relationship between
A characteristic diagram (Fig. 2) showing the area where freckel segregation occurs in a steel ingot is shown in the relationship between the depth ratio of the molten steel pool to the mold radius and the ratio of the distance from the steel ingot surface to the mold radius (Fig. 2). Find the molten steel pool inclination angle that does not cause freckle segregation from both the inclination angle that is greater than the inclination angle, and the ratio of the distance from the steel ingot surface to the mold radius in the roll quality assurance area without freckel segregation, and use that molten steel pool inclination angle. A method for producing a roll steel ingot for rolling using the ESR method, which is characterized by melting molten steel in a fixed mold. 2. In claim 1, when the dendrite primary arm inclination angle is 45 degrees or more and the ratio of the distance of the roll quality assurance area from the steel ingot surface to the mold radius is 25%, the molten steel pool inclination angle Q_r is 15 to 25 degrees. A method for manufacturing roll steel ingots for rolling.
JP27086388A 1988-10-28 1988-10-28 Production of ingot for rolling Pending JPH02121765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27086388A JPH02121765A (en) 1988-10-28 1988-10-28 Production of ingot for rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27086388A JPH02121765A (en) 1988-10-28 1988-10-28 Production of ingot for rolling

Publications (1)

Publication Number Publication Date
JPH02121765A true JPH02121765A (en) 1990-05-09

Family

ID=17492024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27086388A Pending JPH02121765A (en) 1988-10-28 1988-10-28 Production of ingot for rolling

Country Status (1)

Country Link
JP (1) JPH02121765A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090353A1 (en) * 2009-02-09 2010-08-12 新日本製鐵株式会社 Titanium slab for hot-rolling, and smelting method and rolling method therefor
JP2014043620A (en) * 2012-08-28 2014-03-13 Nippon Steel & Sumitomo Metal METHOD OF MANUFACTURING INGOT OF Ni-BASED SUPERALLOY
JP6261756B1 (en) * 2016-07-29 2018-01-17 三菱製鋼株式会社 Heat-resistant casting

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090353A1 (en) * 2009-02-09 2010-08-12 新日本製鐵株式会社 Titanium slab for hot-rolling, and smelting method and rolling method therefor
KR101238144B1 (en) * 2009-02-09 2013-02-28 도호 티타늄 가부시키가이샤 Titanium slab for hot-rolling, and smelting method and rolling method therefor
JP5220115B2 (en) * 2009-02-09 2013-06-26 新日鐵住金株式会社 Titanium slab for hot rolling, its melting method and rolling method
EA020258B1 (en) * 2009-02-09 2014-09-30 Ниппон Стил Корпорейшн Titanium slab for hot rolling, and method of producing and method of rolling the same
US9719154B2 (en) 2009-02-09 2017-08-01 Nippon Steel & Sumitomo Metal Corporation Titanium slab for hot rolling, and method of producing and method of rolling the same
JP2014043620A (en) * 2012-08-28 2014-03-13 Nippon Steel & Sumitomo Metal METHOD OF MANUFACTURING INGOT OF Ni-BASED SUPERALLOY
JP6261756B1 (en) * 2016-07-29 2018-01-17 三菱製鋼株式会社 Heat-resistant casting
WO2018020692A1 (en) * 2016-07-29 2018-02-01 三菱製鋼株式会社 Heat-resistant casting

Similar Documents

Publication Publication Date Title
CN109877288B (en) Control process method for central equiaxial crystal rate of oriented silicon steel casting blank
US4108694A (en) Continuously cast slabs for producing grain-oriented electrical steel sheets having excellent magnetic properties
CN103526038A (en) Electroslag remelting production method of high-strength high-plasticity TWIP (Twinning Induced Plasticity) steel
JP6611331B2 (en) Continuous casting method of slab made of titanium or titanium alloy
JPH02121765A (en) Production of ingot for rolling
JPH05214458A (en) Method for melting titanium alloy ingot by var process
CN116287807A (en) Preparation method of short-process alloy forging
JP4540516B2 (en) Work roll manufacturing method
CN110484742B (en) Method for preparing Fe-W intermediate alloy by electron beam melting and high purification
CN109338223B (en) Process method for improving surface quality and performance of silicon steel product
JP3084850B2 (en) Ingot drawing type electroslag melting method
JPS6333167A (en) Dropping type casting method
JP3110565B2 (en) Method of manufacturing working roll for cold rolling
JPH05345934A (en) Electrode for remelting electroslag and production of alloy using the electrode
CN118308599A (en) Feeding method for vacuum consumable remelting and smelting method for vacuum consumable ingot
JPS6228056A (en) Continuous casting method
JP2000094101A (en) Continuously cast slab, continuous casting method thereof and production of thick steel plate
JP2022076856A (en) Ingot of pure titanium or titanium alloy
JPS6335348B2 (en)
JPS619554A (en) Forged steel roll for cold rolling
JPH01136939A (en) Manufacture of ni-based super alloy having excellent hot workability
WO2023142422A1 (en) Electroslag remelting device of single-inlet multi-outlet type water-cooled crystallizer and method for electroslag remelting
JPS63183760A (en) Method for continuously casting multiple kinds of steel slab
KR100538057B1 (en) Casting mold for large stainless steel ingot casting
JPH0297625A (en) Production of ingot by consumable electrode-type arc melting and electrode therefor