JPH02121738A - Manufacture of titanium alloy spring - Google Patents

Manufacture of titanium alloy spring

Info

Publication number
JPH02121738A
JPH02121738A JP27403488A JP27403488A JPH02121738A JP H02121738 A JPH02121738 A JP H02121738A JP 27403488 A JP27403488 A JP 27403488A JP 27403488 A JP27403488 A JP 27403488A JP H02121738 A JPH02121738 A JP H02121738A
Authority
JP
Japan
Prior art keywords
titanium alloy
spring
alloy spring
wax
springs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27403488A
Other languages
Japanese (ja)
Inventor
Toru Kurisu
徹 栗栖
Kiyomi Takakura
高椋 清美
Seiji Terauchi
政治 寺内
Yasuo Yukitake
雪竹 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP27403488A priority Critical patent/JPH02121738A/en
Publication of JPH02121738A publication Critical patent/JPH02121738A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a titanium alloy from receiving creep deformation by enclosing the titanium alloy spring with molten material in a coating state or in an embedded state and age-hardening the spring in the state where the molten material is hardened to reinforce the spring. CONSTITUTION:Age hardening heat treatment is performed to the titanium alloy spring and it is left for about half an hour in the atmosphere as it is and cooled down to the normal temperature. Molten wax 5 is prepared in a wax tank 4 provided with a heater 3, a cooled titanium alloy spring 1 is dipped into the molten wax 5 to stick the wax 5 to the surface of the titanium alloy spring 1 and taken out into the atmosphere to harden the wax. While the titanium spring 1 is reinforced this reinforcing film 5A it is left in the atmosphere for 10-20 hours and age-hardened. Since the spring is reinforced, it is not deformed by creep for this treated time. Thereafter, the reinforcing film 5A is heated and removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチタン合金ばねの製造法に関し、特に時効処理
中のクリープ変形を確実に防止し得るようにした方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing titanium alloy springs, and more particularly to a method for reliably preventing creep deformation during aging treatment.

〔従来技術〕[Prior art]

自動車用エンジンの動弁系のパルプスプリングとして一
般に用いられている鋼製のパルプスプリングでは、その
固有振動数を十分高め且つ軽量化することが難しいので
、エンジンの高回転域ではバルブスプリングの追従性の
遅れからサージング現象が起り、エンジンの回転限界を
十分に高めることが難しい。このサージング防止技術と
して、例えば実開昭50−113708号公報にはバル
ブステムの上端部にカムとステム間に介在し且つパルプ
スプリングの上端部外側を囲むキャップを設け、キャッ
プの筒部の内周面とバルブスプリング上端部外周部間に
弾性体を介設し、この弾性体によりサージング防止を図
るようにしたものが記載されている。
With steel pulp springs, which are generally used as pulp springs in the valve train of automobile engines, it is difficult to sufficiently increase their natural frequency and reduce their weight, so the followability of the valve spring in the high speed range of the engine is difficult. This delay causes a surging phenomenon, making it difficult to sufficiently increase the engine's rotational limit. As this surging prevention technology, for example, Japanese Utility Model Application Publication No. 50-113708 discloses that a cap is provided at the upper end of the valve stem, interposed between the cam and the stem, and surrounding the outside of the upper end of the pulp spring. It is described that an elastic body is interposed between the surface and the outer periphery of the upper end of the valve spring, and the elastic body is used to prevent surging.

ところで、軽量化の可能なばねとしては、中空ばね、異
径断面ばね、異コイル径ばね及びチタン合金ばねなどが
知られている。これらの各種のばねのうち、チタン合金
ばねは比剛性と比強度が高いことからパルプスプリング
として最も有望視されているが、チタン合金ばねの製造
の際、所定のばね形状に成形後に時効加熱処理を施して
から常温下に時効硬化させる過程で自重によりクリープ
変形を起しやすいので、量産に適さず製造コストを低減
することが難しい。
By the way, hollow springs, springs with different diameter cross sections, springs with different coil diameters, titanium alloy springs, etc. are known as springs that can be made lighter. Among these various springs, titanium alloy springs are considered the most promising as pulp springs due to their high specific stiffness and specific strength, but when manufacturing titanium alloy springs, aging heat treatment is required after forming them into a predetermined spring shape. During the aging-hardening process at room temperature, creep deformation is likely to occur due to its own weight, making it unsuitable for mass production and difficult to reduce manufacturing costs.

上記チタン合金ばねを製造する際の上記クリープ変形を
防止する技術としては、水平な回転シャフトにチタン合
金ばねを外装して回転シャフトでばねを回転させ乍ら時
効硬化させる技術が知られている。
As a technique for preventing the above-mentioned creep deformation when manufacturing the above-mentioned titanium alloy spring, a technique is known in which a titanium alloy spring is mounted on a horizontal rotating shaft and the spring is aged and hardened while being rotated by the rotating shaft.

〔発明が解決しようとする課題] 上記のように、チタン合金ばねの製造に際し、チタン合
金ばねを水平姿勢に保持して回転させ乍ら時効硬化させ
ることにより、クリープ変形を防止することが可能であ
るが、時効硬化には少なくとも5〜10時間要するので
、このように長時間に亙ってばねを回転させ乍らバルブ
スプリングなどを量産する為にはその回転装置の設備コ
ストが多大となり、製造コストが非常に高価になるとい
う問題がある。
[Problems to be Solved by the Invention] As described above, when manufacturing titanium alloy springs, it is possible to prevent creep deformation by age hardening the titanium alloy spring while holding it in a horizontal position and rotating it. However, age hardening takes at least 5 to 10 hours, so if you want to rotate a spring for such a long time and mass produce valve springs, etc., the equipment cost for the rotating equipment will be large, and the manufacturing process will be slow. The problem is that the cost is very high.

本発明の目的は、時効硬化の際のクリープ変形を確実に
防止できるチタン合金ばねの製造法であって、量産に適
し且つ低コストのチタン合金ばねの製造法を提供するこ
とである。
An object of the present invention is to provide a method for manufacturing a titanium alloy spring that can reliably prevent creep deformation during age hardening, which is suitable for mass production and at a low cost.

〔課題を解決するための手段] 本発明に係るチタン合金ばねの製造法は、所定形状に成
形後のチタン合金ばねを時効加熱処理し、次に上記ばね
を溶融状態の包み込み材料でコーティング状又は埋設状
に包み込み、次に包み込み材料を固化させてばねを補強
した状態でばねを時効硬化させ、上記ばねの時効完了後
包み込み材料を除去するものである。
[Means for Solving the Problems] The method for manufacturing a titanium alloy spring according to the present invention includes subjecting a titanium alloy spring formed into a predetermined shape to an aging heat treatment, and then coating or coating the spring with a molten wrapping material. The spring is wrapped in an embedded state, and then the wrapping material is solidified to strengthen the spring, and the spring is age-hardened. After the spring is aged, the wrapping material is removed.

〔作用] 本発明に係るチタン合金ばねの製造法においては、所定
形状に成形後のチタン合金ばねを時効加熱処理し、次に
上記ばねを溶融状態の包み込み材料でコーティング状又
は埋設状に包み込み、次に包み込み材料を固化させてば
ねを補強した状態でばねを時効硬化させる。従って、時
効硬化の際にチタン合金ばねは固化した包み込み材料で
十分に補強した状態に保持されてクリープ変形を起さな
い。
[Function] In the method for manufacturing a titanium alloy spring according to the present invention, a titanium alloy spring formed into a predetermined shape is subjected to an aging heat treatment, and then the spring is wrapped in a molten wrapping material in a coating or embedded manner, The spring is then age hardened with the encasing material solidified and the spring reinforced. Therefore, during age hardening, the titanium alloy spring remains sufficiently reinforced by the solidified enveloping material to prevent creep deformation.

〔発明の効果〕〔Effect of the invention〕

本発明に係るチタン合金ばねの製造法によれば、以上説
明したように、チタン合金ばねをコーティング状又は埋
設状に包み込んで固化させた包み込み材料でチタン合金
ばねを補強した状態で時効硬化させるので、時効硬化の
際のクリープ変形を確実に防止することが出来る。
According to the method for manufacturing a titanium alloy spring according to the present invention, as explained above, the titanium alloy spring is age-hardened while being reinforced with a wrapping material that is wrapped in a coating or embedded shape and solidified. , it is possible to reliably prevent creep deformation during age hardening.

加えて、包み込み材料としてワックスや合成樹脂材料を
用いることも可能であり、これらを用いてチタン合金ば
ねをコーティング状に包み込む場合には、非常に簡単且
つ安価な設備でもって行なえるので量産に適し安価に実
施出来るし、ワックスを用いてチタン合金ばねを埋設状
に包み込む場合にも、比較的簡単且つ安価な設備でもっ
て実施可能である。
In addition, it is also possible to use wax or synthetic resin materials as wrapping materials, and when using these materials to wrap titanium alloy springs in a coating, it can be done with very simple and inexpensive equipment, making it suitable for mass production. It can be carried out at low cost, and even when the titanium alloy spring is embedded in wax, it can be carried out with relatively simple and inexpensive equipment.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を引用しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

〈第1実施例〉(第1図(a)〜(d)参照)本実施例
は、自動車用エンジンの動弁機構のパルプスプリングと
して用いるチタン合金ばねを製造するのに本発明を適用
した場合の実施例である。
<First Example> (See Figures 1 (a) to (d)) In this example, the present invention is applied to manufacture a titanium alloy spring used as a pulp spring for a valve mechanism of an automobile engine. This is an example.

上記チタン合金ばねの素材としては、例えば重量%で3
%のA1と2.5%の■とを含んだチタン合金を用い、
次のような第1工程〜第6エ程を踏んでチタン合金ばね
を製造する。
For example, the material of the titanium alloy spring is 3% by weight.
Using a titanium alloy containing % A1 and 2.5% ■,
A titanium alloy spring is manufactured through the following first to sixth steps.

第1工程において、上記チタン合金材料からなる所定の
太さの線材を既存周知の方法により、所定のばね形状に
成形加工する。
In the first step, a wire rod of a predetermined thickness made of the titanium alloy material is formed into a predetermined spring shape by a known method.

次に、第2工程において、第1図(a)に示すように、
上記成形により得られたチタン合金ばね1を加熱炉2内
に収容し、容体化処理つまり時効加熱処理として700
〜800°Cの温度に加熱し5分間以上保持する。
Next, in the second step, as shown in FIG. 1(a),
The titanium alloy spring 1 obtained by the above molding is housed in a heating furnace 2, and subjected to a compacting treatment, that is, an aging heat treatment, for 700 min.
Heat to a temperature of ~800°C and hold for at least 5 minutes.

次に、第3工程において、上記容体化処理されたチタン
合金ばね1を加熱炉2から取出し、大気中に約30分間
放置して常温程度まで冷却する。
Next, in the third step, the titanium alloy spring 1 subjected to the container treatment is taken out from the heating furnace 2, and left in the atmosphere for about 30 minutes to cool to about room temperature.

次に、第4工程において、第1図(b)に示すように、
ヒータ3を備えたワンクス槽4内にワックス5を溶融状
態(温度的40〜80°C)にして準備し、上記冷却さ
れたチタン合金ばね1を溶融ワックス5中に浸漬してチ
タン合金ばね1の表面に約0.5卸厚さにワックス5を
付着させる。
Next, in the fourth step, as shown in FIG. 1(b),
Wax 5 is prepared in a molten state (at a temperature of 40 to 80°C) in a Wanks tank 4 equipped with a heater 3, and the cooled titanium alloy spring 1 is immersed in the molten wax 5 to form the titanium alloy spring 1. Wax 5 is applied to the surface to a thickness of about 0.5 mm.

次に、第5工程において、第1図(C)に示すように、
上記溶融ワックス5中からチタン合金ばね1を大気中へ
取出してチタン合金ばね1の全面に付着しているワック
ス5を固定させ、チタン合金ばね1の全表面に約0.5
 mmの厚さの補強膜5Aを形成し、この補強膜5Aに
てチタン合金ばね1を補強した状態で大気中に約10〜
20時間放置して時効硬化処理する。上記のように、チ
タン合金ばね1の表面に約0.5 mmの膜厚の固化さ
れたワックス5の補強膜5Aを形成した状態で時効硬化
処理するので、チタン合金ばね1は補強膜5Aで補強さ
れて剛性が高くなるので時効硬化処理中にクリープ変形
することがない。
Next, in the fifth step, as shown in FIG. 1(C),
The titanium alloy spring 1 is taken out into the atmosphere from the molten wax 5, and the wax 5 adhering to the entire surface of the titanium alloy spring 1 is fixed, so that the entire surface of the titanium alloy spring 1 has about 0.5
A reinforcing film 5A with a thickness of mm is formed, and the titanium alloy spring 1 is reinforced with this reinforcing film 5A and exposed to the atmosphere for about 10 to 10 minutes.
Leave to stand for 20 hours for age hardening treatment. As mentioned above, since the age hardening treatment is performed with the reinforcing film 5A of solidified wax 5 having a film thickness of about 0.5 mm formed on the surface of the titanium alloy spring 1, the titanium alloy spring 1 is treated with the reinforcing film 5A. Since it is reinforced and has high rigidity, it will not undergo creep deformation during age hardening treatment.

但し、補強膜5Aを形成するのに、溶融状態のワックス
5をチタン合金ばね1の表面に噴霧や塗布にて付着させ
て固化させてもよいが、均一な膜厚の補強膜5Aを形成
することが望ましい。また、補強膜5Aの厚さは約0.
5 mmより大きくてもよい。
However, to form the reinforcing film 5A, the wax 5 in a molten state may be applied to the surface of the titanium alloy spring 1 by spraying or coating and then solidified, but the reinforcing film 5A with a uniform thickness may be formed. This is desirable. Further, the thickness of the reinforcing film 5A is approximately 0.
It may be larger than 5 mm.

次に、第6エ程において、第1図(d)に示すように、
補強膜5Aのついたチタン合金ばね1をヒータ6付きの
低温加熱炉7内に収容して約100°Cに過熱し、補強
膜5Aを形成しているワックス5を溶融させてチタン合
金ばね1の表面から除去する。但し、この場合必要に応
じてエアブロ−により溶融ワックス5を飛散させてもよ
い。上記ワックス5の除去方法としては、熱風を吹きつ
ける方法や熱湯をかける方法なども採用し得る。
Next, in the sixth step, as shown in FIG. 1(d),
The titanium alloy spring 1 with the reinforcing film 5A is placed in a low-temperature heating furnace 7 equipped with a heater 6 and heated to about 100°C, and the wax 5 forming the reinforcing film 5A is melted to form the titanium alloy spring 1. removed from the surface. However, in this case, the molten wax 5 may be scattered by air blowing if necessary. As a method for removing the wax 5, a method of blowing hot air or a method of pouring hot water may also be adopted.

尚、上記ワックス5の材料としては、パラフィンやマイ
クロワックスを用いるものとする。
Note that paraffin or microwax is used as the material for the wax 5.

上記実施例に係るチタン合金ばねの製造法によれば、簡
単な方法で時効硬化処理時のチタン合金ばね1のクリー
プ変形を確実に防止できる。しかも、ワックス槽4及び
低温加熱炉7及びワックス5などの簡単かつ安価な設備
や材料でクリープ変形を防止できる。加えて、長時間か
かる時効硬化処理中は何らの処理も必要としないので、
この製造法はチタン合金ばね1を量産するのに適してい
る。
According to the method for manufacturing a titanium alloy spring according to the above embodiment, creep deformation of the titanium alloy spring 1 during age hardening treatment can be reliably prevented by a simple method. Moreover, creep deformation can be prevented using simple and inexpensive equipment and materials such as the wax tank 4, the low-temperature heating furnace 7, and the wax 5. In addition, no treatment is required during the long-term age hardening process, so
This manufacturing method is suitable for mass-producing the titanium alloy spring 1.

く第2実施例〉(第2図(a)〜(e)参照)本実施例
は、第1実施例と同様、自動車用エンジンの動弁機構の
バルブスプリングとしてのチタン合金ばねを製造するの
に本発明を適用した場合の実施例であり、前記同様のチ
タン合金材料の線材を用い、次の第1工程〜第7エ程を
踏んでチタン合金ばね1を製造する。
Second Example (See Figures 2(a) to (e)) Similar to the first example, this example is for manufacturing a titanium alloy spring as a valve spring for a valve mechanism of an automobile engine. This is an example in which the present invention is applied to a titanium alloy spring 1 using a wire rod made of the same titanium alloy material as described above and performing the following first to seventh steps.

第1工程〜第3工程については、前記第1実施例と同様
なので説明を省略する。
The first to third steps are the same as those in the first embodiment, so their explanation will be omitted.

第4工程において、第2図(b)に示すように、ヒータ
3を備えたワックス槽4内にワックス5を溶融状態(約
40〜80°C)にして準備し、時効加熱処理後常温ま
で冷却されたチタン合金ばね1をワックス槽4内の溶融
ワックス5中に浸漬する。
In the fourth step, as shown in FIG. 2(b), wax 5 is prepared in a molten state (approximately 40 to 80°C) in a wax tank 4 equipped with a heater 3, and heated to room temperature after aging heat treatment. The cooled titanium alloy spring 1 is immersed in molten wax 5 in a wax bath 4.

次に、第5工程において、第2図(C)に示すように、
ワックス槽4のワックス5中にチタン合金ばね1を浸漬
した状態で、ヒータ3を停止し大気中へ放熱させること
によりワックス5を冷却して固化させ、チタン合金ばね
1を固化したワックス5中に埋設状に包み込み、チタン
合金ばね1をこのワックス5で補強し、このように固化
したフックス5でチタン合金ばねlを補強した状態でチ
タン合金ばね1を約10〜20時間好ましくは約24時
間常温に放置して時効硬化処理する。上記のように、時
効硬化の際、チタン合金ばね1は固化したワックス5中
に埋設されて補強されているので、時効硬化中にクリー
プ変形することがない。
Next, in the fifth step, as shown in FIG. 2(C),
With the titanium alloy spring 1 immersed in the wax 5 in the wax tank 4, the heater 3 is stopped and heat is radiated into the atmosphere to cool and solidify the wax 5, and the titanium alloy spring 1 is immersed in the solidified wax 5. The titanium alloy spring 1 is wrapped in an embedded state, reinforced with the wax 5, and the titanium alloy spring 1 is reinforced with the solidified Fuchs 5, and the titanium alloy spring 1 is kept at room temperature for about 10 to 20 hours, preferably about 24 hours. Leave it for an age hardening treatment. As described above, during age hardening, the titanium alloy spring 1 is embedded and reinforced in the solidified wax 5, so that it does not undergo creep deformation during age hardening.

次に、第6エ程において、第2図(d)に示すように、
ワックス槽4のヒータ3を作動させてワックス5を溶融
状態にしてから、チタン合金ばね1を大気中へ取出す。
Next, in the sixth step, as shown in FIG. 2(d),
After the heater 3 of the wax tank 4 is operated to melt the wax 5, the titanium alloy spring 1 is taken out into the atmosphere.

次に、第7エ程において、チタン合金ばね1を洗浄槽8
に収容し、ノズル9からトリクレン又は灯油又はヘキサ
ンなどの溶剤10をチタン合金ばね1に噴射することに
より、溶剤10でばね1の表面に付着しているワックス
5を溶して除去する。
Next, in the seventh step, the titanium alloy spring 1 is removed from the cleaning tank 8.
By spraying a solvent 10 such as trichloride, kerosene, or hexane onto the titanium alloy spring 1 from a nozzle 9, the wax 5 adhering to the surface of the spring 1 is melted and removed by the solvent 10.

この第7エ程は第6エ程の後ばね1の表面のワックス5
が固化しないうちに行なうと、ワックス5を効率よ(除
去することが出来る。
This seventh process is performed after the sixth process by waxing the surface of the spring 1.
If this is done before the wax has solidified, the wax 5 can be removed efficiently.

この実施例のチタン合金ばねの製造法によれば、第1実
施例の場合と同様にチタン合金ばね1の時効硬化処理時
のクリープ変形を確実に防止でき、簡単かつ安価な設備
でクリープ変形を防止できる。
According to the manufacturing method of the titanium alloy spring of this embodiment, as in the case of the first embodiment, creep deformation during the age hardening treatment of the titanium alloy spring 1 can be reliably prevented, and creep deformation can be prevented using simple and inexpensive equipment. It can be prevented.

しかも、ワックス槽4を大型化するだけで量産に対応し
得る。特に、時効硬化処理中チタン合金ばね1は固化し
たワックス5中に埋設状に保持されるので、外界の温度
の影響を受けずにチタン合金ばね1の形状を確実に保持
できる。
Moreover, mass production can be supported simply by increasing the size of the wax tank 4. In particular, since the titanium alloy spring 1 is held embedded in the solidified wax 5 during the age hardening treatment, the shape of the titanium alloy spring 1 can be reliably maintained without being affected by the external temperature.

く第3実施例〉(第3図(a)〜(d)参照)本実施例
は、第1実施例と同様、自動車用エンジンの動弁機構の
バルブスプリングとしてのチタン合金ばねを製造するの
に本発明を適用した場合の実施例であり、前記同様のチ
タン合金材料を用い、次の第1工程〜第6エ程を踏んで
チタン合金ばねを製造する。
Third Embodiment (See Figures 3(a) to 3(d)) Similar to the first embodiment, this embodiment is for manufacturing a titanium alloy spring as a valve spring for a valve mechanism of an automobile engine. This is an example in which the present invention is applied to a titanium alloy spring using the same titanium alloy material as described above and performing the following first to sixth steps.

第1工程〜第3工程については、前記第1実施例と同様
なので説明を省略する。
The first to third steps are the same as those in the first embodiment, so their explanation will be omitted.

第4工程において、第3図(b)に示すように、チタン
合金ばね1にノズル11から溶融状態の合成樹脂12(
アクリル樹脂又はエポキシ樹脂など)を噴出してばねl
の全表面に約0.3Mの厚さでコーティングする。
In the fourth step, as shown in FIG. 3(b), a molten synthetic resin 12 (
Spray out acrylic resin, epoxy resin, etc.
Coat the entire surface to a thickness of about 0.3M.

次に、第5工程において、第3図(C)に示すように、
チタン合金ばね1の表面の合成樹脂12を大気中で乾燥
させることにより固化させ、チタン合金ばねlの表面に
約0.3(財)厚の補強膜12Aを形成し、この補強膜
12Aでチタン合金ばね1を補強した状態で大気中に約
10〜20時間放置して時効硬化処理する。
Next, in the fifth step, as shown in FIG. 3(C),
The synthetic resin 12 on the surface of the titanium alloy spring 1 is dried in the atmosphere to solidify it, and a reinforcing film 12A with a thickness of approximately 0.3 is formed on the surface of the titanium alloy spring 1. The reinforced alloy spring 1 is left in the atmosphere for about 10 to 20 hours to undergo age hardening treatment.

上記ばね1は固化した合成樹脂製の補強膜12Aで補強
されて剛性が高くなるので時効硬化処理中にクリープ変
形することがない。
The spring 1 is reinforced with a reinforcing film 12A made of solidified synthetic resin and has increased rigidity, so that it will not undergo creep deformation during the age hardening process.

次に、第6エ程において、第3図(d)に示すように、
チタン合金ばね1を洗浄槽8に収容し、ノズル9からば
ねlの全体にアセトンやシンナなどの溶剤IOを噴出し
て補強膜12Aを溶解させて除去する。但し、ばね1を
溶剤10中に浸漬することにより補強膜12Aを除去し
てもよい。
Next, in the sixth step, as shown in FIG. 3(d),
The titanium alloy spring 1 is placed in a cleaning tank 8, and a solvent IO such as acetone or thinner is jetted over the entire spring 1 from a nozzle 9 to dissolve and remove the reinforcing film 12A. However, the reinforcing film 12A may be removed by immersing the spring 1 in the solvent 10.

この実施例のチタン合金ばねの製造法によれば、特別の
設備を何ら用いずに極めて簡単な機器を用いてクリープ
変形を確実に防止でき、前記第1実施例と同様の理由に
より特に量産に適している。
According to the manufacturing method of the titanium alloy spring of this embodiment, creep deformation can be reliably prevented using extremely simple equipment without using any special equipment, and for the same reason as the first embodiment, it is particularly suitable for mass production. Are suitable.

尚、前記第1実施例〜第3実施例は、全体がチタン合金
材料製のばね1を対象としているが、第4図〜第7図に
示すようなチタン合金材料と鋼材料とを複合化してなる
チタン合金ばねIA〜IDの製造にも本発明を適用する
ことが出来る。これらのチタン合金ばねIA〜IDは全
てバルブスプリングに使用する為のもので、動弁機構の
カムに近い方の上端側を軽量化する為にばねIA−ID
の上端側でチタン合金材料が多く、ばねIA〜IDの下
端側で鋼材料が多くなるように構成し、ばねIA〜ID
の上端側の可動部の軽量化を図りつっばねIA〜IDの
固有振動数を高め、比剛性が高く減衰性の高いチタン合
金材料によりサージングの減衰を図ったものである。
Although the first to third embodiments are directed to the spring 1 made entirely of titanium alloy material, it is possible to combine the titanium alloy material and steel material as shown in FIGS. 4 to 7. The present invention can also be applied to the production of titanium alloy springs IA to ID. These titanium alloy springs IA-ID are all for use in valve springs, and springs IA-ID are used to reduce the weight of the upper end of the valve mechanism near the cam.
The upper end side has more titanium alloy material, and the lower end side of springs IA~ID has more steel material, and springs IA~ID
The movable part on the upper end side is made lighter, the natural frequency of the springs IA to ID is increased, and surging is damped using a titanium alloy material with high specific rigidity and high damping performance.

第4図のチタン合金ばねIAは、下端側程徐々に断面が
減少する外周側のチタン合金線材20と下端側程徐々に
断面が増加する内周側の鋼線材21との接合面を円筒面
状に形成し、両者を拡散接合にて接合させたものである
The titanium alloy spring IA shown in FIG. 4 has a cylindrical joint surface between a titanium alloy wire 20 on the outer circumferential side whose cross section gradually decreases toward the lower end and a steel wire rod 21 on the inner circumferential side whose cross section gradually increases toward the lower end. The two are bonded together by diffusion bonding.

第5図のチタン合金ばねIBは、下端側程徐々に太くな
る鋼線材23をチタン合金線材22の中心部に埋設状に
組込んだもので、線材の製造段階においてこのような構
造にする。
The titanium alloy spring IB shown in FIG. 5 has a steel wire rod 23 that is gradually thicker toward the lower end embedded in the center of a titanium alloy wire rod 22, and has such a structure at the manufacturing stage of the wire rod.

第6図のチタン合金ばねICは、下端側程徐々に太くな
る鋼線材25をチタン合金線材24の下端側部分に埋設
状に一体的に組込んだものである。
In the titanium alloy spring IC shown in FIG. 6, a steel wire rod 25 that gradually becomes thicker toward the lower end is embedded and integrated into the lower end portion of the titanium alloy wire rod 24.

第7図のチタン合金ばねIDは、下端側程徐々に本数が
増加する鋼製ワイヤ27をチタン合金線材26の中心部
に埋設状に一体的に組込んだものである。
In the titanium alloy spring ID shown in FIG. 7, steel wires 27 whose number gradually increases toward the lower end are integrally embedded in the center of a titanium alloy wire 26.

但し、上記第4図〜第7図の構造のチタン合金ばねIA
〜IDは、鋼線材21・23・25や鋼製ワイヤ27で
十分な剛性が得られる場合には、クリープ変形防止の為
のワックスや合成樹脂による補強を省略できる可能性も
ある。
However, titanium alloy spring IA with the structure shown in FIGS. 4 to 7 above
~ID, if sufficient rigidity can be obtained with the steel wires 21, 23, 25 and the steel wire 27, there is a possibility that reinforcement with wax or synthetic resin to prevent creep deformation can be omitted.

【図面の簡単な説明】 図面は本発明の実施例に係るもので、第1図(a)〜(
d)は夫々第1実施例のチタン合金ばねの製造法の各工
程を説明する工程説明図、第2図(a)〜(e)は夫々
第2実施例のチタン合金ばね製造法の各工程を説明する
工程説明図、第3図(a)〜(d)は夫々第3実施例の
チタン合金ばね製造法の各工程を説明する工程説明図、
第4図〜第7図は夫々変形例に係るチタン合金ばねの断
面図である。 第4図 1・IA・IB・IC−ID・・チタン合金ばね、5・
・ワックス、  5A・・補強膜、  12・・合成樹
脂、  12A・・補強膜。 特 許 出 願 人 マツダ株式会社 (a) (b) (C) (d) (a) (b) 第2図 (c) (C) ■ (d) (d) (e)
[Brief Description of the Drawings] The drawings relate to embodiments of the present invention, and include FIGS.
d) is a process explanatory diagram illustrating each step of the titanium alloy spring manufacturing method of the first embodiment, and FIGS. 2(a) to (e) are process diagrams of the titanium alloy spring manufacturing method of the second embodiment, respectively. FIGS. 3(a) to 3(d) are process explanatory diagrams illustrating each process of the titanium alloy spring manufacturing method of the third embodiment, respectively.
4 to 7 are cross-sectional views of titanium alloy springs according to modified examples, respectively. Fig. 4 1・IA・IB・IC-ID・・Titanium alloy spring, 5・
・Wax, 5A...Reinforcement film, 12...Synthetic resin, 12A...Reinforcement film. Patent applicant Mazda Motor Corporation (a) (b) (C) (d) (a) (b) Figure 2 (c) (C) ■ (d) (d) (e)

Claims (1)

【特許請求の範囲】[Claims] (1)所定形状に成形後のチタン合金ばねを時効加熱処
理し、次に上記ばねを溶融状態の包み込み材料でコーテ
ィング状又は埋設状に包み込み、次に包み込み材料を固
化させてばねを補強した状態でばねを時効硬化させ、上
記ばねの時効完了後包み込み材料を除去することを特徴
とするチタン合金ばねの製造法。
(1) A titanium alloy spring that has been formed into a predetermined shape is subjected to aging heat treatment, then the spring is wrapped in a molten wrapping material in a coating or embedded manner, and then the wrapping material is solidified to reinforce the spring. A method for manufacturing a titanium alloy spring, comprising aging hardening the spring, and removing the encasing material after the aging of the spring is completed.
JP27403488A 1988-10-29 1988-10-29 Manufacture of titanium alloy spring Pending JPH02121738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27403488A JPH02121738A (en) 1988-10-29 1988-10-29 Manufacture of titanium alloy spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27403488A JPH02121738A (en) 1988-10-29 1988-10-29 Manufacture of titanium alloy spring

Publications (1)

Publication Number Publication Date
JPH02121738A true JPH02121738A (en) 1990-05-09

Family

ID=17536042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27403488A Pending JPH02121738A (en) 1988-10-29 1988-10-29 Manufacture of titanium alloy spring

Country Status (1)

Country Link
JP (1) JPH02121738A (en)

Similar Documents

Publication Publication Date Title
US4811778A (en) Method of manufacturing a metal article by the lost wax casting process
US4650620A (en) Filament winding of articles of complex shape
CN106470781B (en) The improved method for manufacturing through lost-wax casting the shell mold with blade element for producing aircraft turbine engine
JP2012524856A (en) Piston for internal combustion engine and method and apparatus for its manufacture
DE10209347A1 (en) Manufacturing method for turbine wheel runner, involves forming coupling part between shaft and turbine wheel by casting shaft edge with casting alloy composed of tin and aluminum intermetallic compound
CN108081636A (en) The production method of composite material spring
JPH02121738A (en) Manufacture of titanium alloy spring
CN106042777B (en) A kind of casting technique of rear axle hub connector
US3066365A (en) Destructible reinforced sand core for metal casting
JPH0661773B2 (en) Molded article manufacturing method, molded article and reinforcing member thereof
JPS63268551A (en) Light alloy casting
GB2151514A (en) Fibre-reinforced composite material and method of producing the material
JP2842082B2 (en) Vanishing model for precision casting
JP4040991B2 (en) Polyamide resin molded body with core material and method for producing the same
JP3574303B2 (en) Manufacturing method and slurry coating device for precision casting mold
JP2004255802A (en) Core material-containing polyamide resin molded product and its manufacturing method
JPH04133807A (en) Pneumatic tire
JPS63215940A (en) Preparation of sample for micro observation of painted film section
JPS59207225A (en) Preparation of rubber lug wheel
JPS60250851A (en) Production of casting mold
JPH0484653A (en) Manufacture of integral shape of ring gear and fly wheel
GB2379628A (en) Investment casting
JPH03270912A (en) Low-melting point core structure
JPS6178552A (en) Production of aluminum parts having bolting part
JPH0831369B2 (en) Manufacturing method of superconducting magnet