JPH02121575A - Contour emphasizing circuit - Google Patents

Contour emphasizing circuit

Info

Publication number
JPH02121575A
JPH02121575A JP63274802A JP27480288A JPH02121575A JP H02121575 A JPH02121575 A JP H02121575A JP 63274802 A JP63274802 A JP 63274802A JP 27480288 A JP27480288 A JP 27480288A JP H02121575 A JPH02121575 A JP H02121575A
Authority
JP
Japan
Prior art keywords
circuit
signal
video signal
amplifier
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63274802A
Other languages
Japanese (ja)
Inventor
Morihisa Usami
守央 宇佐美
Masaharu Tokuhara
徳原 正春
Naomi Terasawa
寺沢 直巳
Choichi Fujita
藤田 長一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63274802A priority Critical patent/JPH02121575A/en
Publication of JPH02121575A publication Critical patent/JPH02121575A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress a ringing or noise component that deteriorates the picture quality by providing a non-linear circuit having core ring characteristics and clipping characteristics in the low and high level areas of an input signal respectively into a secondary differentiating circuit. CONSTITUTION:A contour emphasizing signal generating circuit consists of a differentiating circuit 10, a polarity inversion amplifier 11, a level control variable amplifier 12, a non-linear amplifier 13, and a differentiating circuit 14 which are connected in series. The output of the circuit is connected to an addition circuit 15, and the output of the circuit 15 is connected to a terminal 2. The amplifier 13 has the 5-broken line characteristics whose gains are reduced in the low and high level areas of an input signal. Thus the amplifier 13 amplifies only the signal components set within a prescribed level range of a primary differential signal B and suppresses the ringing, the noises, and the excessive component that cause the deterioration of picture quality of a video receiver.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、例えば陰極線管を用いたテレビジョン受像機
等の映像受信装置の画面の!¥鋭度を改善する輪郭強調
回路に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is applicable to the screen of a video receiving device such as a television receiver using a cathode ray tube. This relates to a contour enhancement circuit that improves sharpness.

〔発明の概要〕[Summary of the invention]

本発明は、例えば陰極線管を用いたテレビジョン受像機
等の映像受信装置の画面の鮮鋭度を改善する輪郭強調回
路において、入力映像信号と該入力映像信号を二次微分
回路を介して得られた信号とを加算して映像出力信号と
する上記の輪郭強調回路部内に、入力信号の低レベル域
でコアリング特性をかつ高レベル域でクリッピング特性
を有する非線型回路を設けたことにより、または入力映
像信号を一次微分回路を介して得られた信号を陰極線管
の偏向速度変調手段に供給する輪郭強調回路部内に、入
力信号の低レベル域でコアリング特性をかつ高レベル域
でクリッピング特性を有する非線型回路を設けたことに
より、入力映像信号内に輪郭強調回路の前段の回路で生
じたリンギングやノイズを抑圧した輪郭強調を施した映
像信号を得ることができる。また、映像信号の急峻な変
化や高輝度映像信号が入力された場合でも、過大な信号
成分を含まない輪郭強調を施した映像信号を得ることが
できるようにしたものである。
The present invention provides an edge enhancement circuit that improves the sharpness of the screen of a video receiving device such as a television receiver using a cathode ray tube. By providing a nonlinear circuit having a coring characteristic in the low level region of the input signal and a clipping characteristic in the high level region of the input signal in the above-mentioned contour enhancement circuit section that adds the input signal and the video output signal, or In the contour enhancement circuit section, which supplies the signal obtained by passing the input video signal through a first-order differentiation circuit to the deflection speed modulation means of the cathode ray tube, a coring characteristic is set in the low level range of the input signal, and a clipping characteristic is set in the high level range of the input signal. By providing the nonlinear circuit having the above-mentioned nonlinear circuit, it is possible to obtain a video signal in which ringing and noise generated in the circuit before the contour emphasis circuit are suppressed in the input video signal, and the contour is emphasized. Furthermore, even when a sharp change in the video signal or a high-intensity video signal is input, it is possible to obtain a video signal with edge enhancement that does not contain excessive signal components.

(従来の技術) 一般に、テレビジョン受像機等の映像受信装置の陰極線
管の空間周波数特性は、すなわち映像信号が2次元画像
に変換される時の特性は低域フィルタ特性を持ち、入力
映像信号と映像受信装置の実際の画面とを比較した場合
、画面の明るさの変化特性は上記入力映像信号の特性よ
りも象、峻でなくなる。上述の空間周波数特性を補正し
映像受信装置の画面の鮮鋭度を改善すると共に、より一
層の輪郭強調を行う手法として、下記に(1)、(2)
及び(3)に説明する方法が知られている。
(Prior Art) In general, the spatial frequency characteristics of a cathode ray tube in a video receiving device such as a television receiver, that is, the characteristics when a video signal is converted into a two-dimensional image, have low-pass filter characteristics, and the input video signal When compared with the actual screen of the video receiving device, the brightness change characteristics of the screen are less steep than the characteristics of the input video signal. The following methods (1) and (2) are used to correct the above-mentioned spatial frequency characteristics, improve the sharpness of the screen of the video receiving device, and further enhance the contours.
The method described in (3) and (3) is known.

(1)第8図において、入力映像信号Aは入力端子lを
介して微分回路10と加算回路15に入力される。該入
力映像信号Aは直列に接続された微分回路10及び微分
回路14において2回の微分が施され、極性反転増幅器
11及びレベル調整回路12を介して加算回路15にて
上記入力映像信号Aと加算され、映像出力信号Fとして
出力端子2に送出される。
(1) In FIG. 8, an input video signal A is input to a differentiator circuit 10 and an adder circuit 15 via an input terminal l. The input video signal A is differentiated twice in a differentiating circuit 10 and a differentiating circuit 14 connected in series, and is then differentiated from the above input video signal A by an adding circuit 15 via a polarity inverting amplifier 11 and a level adjustment circuit 12. The signals are added together and sent to the output terminal 2 as a video output signal F.

この時の入力映像信号A等の各構成回路の信号の波形を
第9回に示す。上記二次微分信号Cは上記人力映像信号
Aの波形のPl、P2、P3及び24部分における該人
力映像信号Aの加速度成分である。従って、この加速度
成分が加算された映像出力信号Fは上記入力映像信号A
に比べ上記のPl、P2、P3及び24部でてプリシュ
ート及びオーバーシュートが付加された映像信号となる
The waveforms of the signals of each component circuit, such as the input video signal A at this time, are shown in the ninth section. The second-order differential signal C is an acceleration component of the human-powered video signal A at portions P1, P2, P3, and 24 of the waveform of the human-powered video signal A. Therefore, the video output signal F to which this acceleration component has been added is the input video signal A.
Compared to the above, the video signal has preshoot and overshoot added at the Pl, P2, P3 and 24 sections.

この上述の一連の処理が施された映像出力信号Fを陰極
線管の映像信号とした場合、映像受信装置の画面の輪郭
が強調される。
When the video output signal F subjected to the series of processes described above is used as a cathode ray tube video signal, the outline of the screen of the video receiving device is emphasized.

(2)特開昭52−132727号公報で開示されてい
る鮮鋭度改善回路の技術においては、所定レベル以上の
入力信号に対して咳レベルが大となるほど利得が小とな
る非直線増幅器を二次微分回路の前段(第8図において
、微分回路10の前段)に配置し、入力映像信号を該非
線型増幅器で増幅器し、この増幅された信号を二次微分
回路を介して得られる信号と上記入力映像信号とを加算
し、この加算された信号を映像信号とする。
(2) In the sharpness improvement circuit technology disclosed in Japanese Patent Application Laid-Open No. 52-132727, a non-linear amplifier whose gain decreases as the cough level increases for input signals of a predetermined level or higher is used. The input video signal is amplified by the non-linear amplifier, and this amplified signal is combined with the signal obtained through the second-order differentiator circuit (in front of the differentiator circuit 10 in FIG. 8). The input video signal is added and the added signal is used as a video signal.

この上述の一連の処理が施された映像出力信号Fを陰極
線管の映像信号とした場合、所定のレベル以下の入力映
像信号に対しては上述(1)の技術と同様に映像受信装
置の画面の輪郭が強調されると共に、所定のレベル以上
の入力映像信号に対しては該入力映像信号の変化量を抑
え、上記の加算回路の後段に接続される映像出力増幅器
回路のダイナミックレンジの制約から生じる該映像出力
増幅器回路の飽和現象を防止している。
When the video output signal F that has been subjected to the series of processes described above is used as a cathode ray tube video signal, for input video signals below a predetermined level, the screen of the video receiving device is The contours of the input video signal are emphasized, and the amount of change in the input video signal is suppressed for input video signals of a predetermined level or higher. This prevents the saturation phenomenon of the video output amplifier circuit from occurring.

(3)入力映像信号を一次微分回路を介して得られる信
号を用いて陰極線管の偏向速度変調を行い上記空間周波
数特性を見かけ上改善及び映像受信装置の画面の輪郭を
強調する方法がある0例えば偏向ヨークによる主偏向走
査に加え、上記一次微分回路の出力信号を陰極線管の電
極に供給して電子ビームの偏向を行う所謂静電偏向速度
変調方法や、または上記一次微分回路の出力信号を速度
変調コイル(VMコイル)に供給して電子ビームの偏向
を行う所謂電磁偏向速度変調方法がある。上記両偏向速
度変調方法は偏向の速度を変調をすることにより、発光
の位置が移動することを利用したものである。すなわち
陰極線管の画面の明るさはビーム電流に比例し、その走
査速度に反比例するから、ビーム電流が一定の場合、走
査速度が速いと画面が暗くなり、逆に走査速度が遅いと
画面が明るくなる原理を利用したものである。
(3) There is a method of modulating the deflection speed of the cathode ray tube using a signal obtained from an input video signal through a first-order differentiator circuit, thereby apparently improving the above spatial frequency characteristics and emphasizing the outline of the screen of the video receiving device. For example, in addition to main deflection scanning by a deflection yoke, there is a so-called electrostatic deflection velocity modulation method in which the output signal of the above-mentioned first-order differentiator circuit is supplied to the electrodes of a cathode ray tube to deflect the electron beam, or the output signal of the above-mentioned first-order differentiator circuit is supplied to the electrodes of a cathode ray tube to deflect the electron beam. There is a so-called electromagnetic deflection velocity modulation method in which an electron beam is deflected by supplying it to a velocity modulation coil (VM coil). Both of the above deflection speed modulation methods utilize the fact that the position of light emission is moved by modulating the speed of deflection. In other words, the brightness of a cathode ray tube screen is proportional to the beam current and inversely proportional to its scanning speed, so if the beam current is constant, a fast scanning speed will make the screen darker, and conversely, a slower scanning speed will make the screen brighter. It uses the principle of

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来の技術において、何れの手法をもちいてもあ
る程度の鮮鋭度の改善効果を得ることができるが、入力
映像信号内に輪郭強調回路の前段の回路で生じたリンギ
ングやノイズがある場合、この不必要な雑音までが強調
されて輪郭強調後の映像信号内に含まれてしまう。
In the conventional techniques described above, it is possible to obtain a certain degree of sharpness improvement effect using any of the methods, but if there is ringing or noise generated in the circuit before the contour enhancement circuit in the input video signal, Even this unnecessary noise is emphasized and included in the video signal after contour emphasis.

また、映像信号の急峻な変化や高輝度映像信号が入力さ
れた場合、輪郭強調後の映像信号に過大な信号成分が含
まれてしまう。
Furthermore, if a sharp change in the video signal or a high-intensity video signal is input, the video signal after edge enhancement will contain excessive signal components.

〔課題を解決するための手段〕[Means to solve the problem]

本件の出願に係る第1の発明は、入力映像信号と該入力
映像信号を二次微分回路を介して得られた信号とを加算
して映像出力信号とする輪郭強調回路において、上記の
二次微分回路部内に、入力信号の低レベル域でコアリン
グ特性をかつ高レベル域でクリッピング特性を有する非
線型回路を設けたことを特徴としている。
The first invention related to the present application is a contour enhancement circuit that adds an input video signal and a signal obtained from the input video signal through a second-order differentiation circuit to obtain a video output signal. The present invention is characterized in that a nonlinear circuit having coring characteristics in the low level region of the input signal and clipping characteristics in the high level region of the input signal is provided in the differentiating circuit section.

本件の出願に係る第2の発明は、入力映像信号を一次微
分回路を介して得られた信号を陰極線管の偏向速度変調
手段に供給する輪郭強調回路において、上記一次微分回
路部内に、入力信号の低レベル域でコアリング特性をか
つ高レベル域でクリッピング特性を有する非線型回路を
設けたことを特徴としている。
A second invention according to the present application is a contour enhancement circuit for supplying a signal obtained by passing an input video signal through a first-order differentiating circuit to a deflection speed modulation means of a cathode ray tube, in which the input signal is It is characterized by the provision of a nonlinear circuit that has coring characteristics in the low level range and clipping characteristics in the high level range.

〔作用〕[Effect]

入力映像信号内に輪郭強調回路の前段の回路で生じたリ
ンギングやノイズを抑圧した輪郭強調ができるようにし
たものである。また、映像信号の急峻な変化や高輝度映
像信号が入力された場合でも、過大な信号成分を含まな
い輪郭強調ができるようにしたものである。
It is possible to perform edge enhancement in an input video signal by suppressing ringing and noise generated in the circuit before the edge enhancement circuit. Furthermore, even when a sharp change in the video signal or a high-intensity video signal is input, contour enhancement can be performed without including excessive signal components.

〔実施例〕〔Example〕

以下、本発明に係る輪郭強調回路の実施例について図面
を参照しながら説明する。
Embodiments of the contour enhancement circuit according to the present invention will be described below with reference to the drawings.

実施例(1) 第1図において、端子lは映像信号の入力端子であり、
輪郭強調信号を生成する回路と加算回路15に接続され
ている0輪郭強調信号を生成する回路は、微分回路10
、極性反転増幅器11、レベルを調整する可変増幅器1
2、非線型増幅器13及び微分回路14が直列に接続さ
れて構成されており、その出力は上記の加算回路15に
接続されており、該加算回路15の出力は端子2に接続
されている。なお上記非線型増幅器13は微分回路10
と微分回路13との間に配置されている。
Embodiment (1) In FIG. 1, terminal l is an input terminal for a video signal,
The circuit that generates the 0-contour emphasis signal, which is connected to the circuit that generates the contour emphasis signal and the addition circuit 15, is the differentiating circuit 10.
, a polarity inverting amplifier 11, and a variable amplifier 1 for adjusting the level.
2. A nonlinear amplifier 13 and a differentiating circuit 14 are connected in series, and the output thereof is connected to the above-mentioned adding circuit 15, and the output of the adding circuit 15 is connected to terminal 2. Note that the nonlinear amplifier 13 is a differentiating circuit 10.
and the differentiating circuit 13.

第2図の波形は第1図に示す各々の構成回路の信号であ
り、第1図と第2図の各アルファベットは信号と波形の
対応関係を示す。
The waveforms in FIG. 2 are signals of each component circuit shown in FIG. 1, and the alphabets in FIGS. 1 and 2 indicate the correspondence between signals and waveforms.

入力映像信号Aは入力端子lを介して微分回路10と加
算回路15に入力される。ところで、該入力映像信号A
は第2図に示す如く通常波形の立ち上がり部PI及び立
ち下がり部P4において、リンギングやノイズを必ずを
持つものである0次に微分回路10において該入力映像
信号Aは微分が施される。第2図おいて、この時一次微
分された信号の波形をBに示す、この一次微分信号Bに
は上記リンギングやノイズの微分された成分が含まれて
おり、この成分は映像受信装置の画質を劣化する要因と
なるものである。また、上記一次微分信号Bの内に所定
のレベル以上の成分が含まれていると、この成分と陰極
線管のダイナミックレンジとの関係で映像受信装置の画
面のデフォーカスに近僚したような画質劣化の要因とな
る0次に、この一次微分された信号は極性反転増幅器1
1及びレベル調整回路12を介して非線型増幅器13に
送られる。
Input video signal A is input to a differentiator circuit 10 and an adder circuit 15 via an input terminal l. By the way, the input video signal A
As shown in FIG. 2, the input video signal A is differentiated in the zero-order differentiating circuit 10, which always has ringing and noise at the rising portion PI and falling portion P4 of the normal waveform. In Fig. 2, the waveform of the first-order differentiated signal is shown in B. This first-order differentiated signal B includes the differentiated components of the ringing and noise described above, and this component is due to the image quality of the video receiving device. This is a factor that causes deterioration. Furthermore, if the first-order differential signal B contains a component above a predetermined level, the relationship between this component and the dynamic range of the cathode ray tube will cause the image quality to be similar to the defocusing of the screen of the video receiving device. This first-order differentiated signal is sent to the polarity inverting amplifier 1, which causes the deterioration.
1 and a level adjustment circuit 12 to a nonlinear amplifier 13.

ところで、この非線型増幅器13は第3図に示す如く入
力信号の低レベル域及び高レベル域においては利得が減
少する5折線特性を持ち、上記の一次微分回路Bの所定
のレベル範囲の信号成分のみを増幅し、上述した映像受
信装置の画質劣化の要因であるリンギング、ノイズ及び
過大成分を抑圧す特性を持つ、第3図の波形は該非線型
増幅器の入出力波形の関係を概略的に示しており、入力
信号の低レベル域及び高レベル域において出力波形は鈍
った形状の波形となる。すなわち上記の画質劣化の要因
が抑圧される。なお、この非線型特性は、例えば低レベ
ル域は所謂コアリング回路の特性(a)と高レベル域で
はクリッピング回路の特性(b)を利用し、上記コアリ
ング回路とクリッピング回路を直列に接続する組み合わ
せで実現可能である。
By the way, as shown in FIG. 3, this nonlinear amplifier 13 has a five-fold line characteristic in which the gain decreases in the low level region and high level region of the input signal, and the signal component in the predetermined level range of the above-mentioned first-order differentiator B The waveforms in FIG. 3 schematically show the relationship between the input and output waveforms of the nonlinear amplifier. Therefore, the output waveform has a blunt shape in the low level range and high level range of the input signal. In other words, the above-mentioned causes of image quality deterioration are suppressed. Note that this nonlinear characteristic is obtained by connecting the coring circuit and the clipping circuit in series, for example, by using the characteristic (a) of a so-called coring circuit in the low level range and the characteristic (b) of a clipping circuit in the high level range. It can be realized by combination.

この非線型増幅を施された信号は微分回路14を介して
、加算回路I5にに送られる。微分回路14において上
記の非線型処理された信号Cは微分され、従来の非線型
増幅を施さない輪郭強調信号に比べてリンギング、ノイ
ズ及び過大成分を含まない比較的なだらかな輪郭強調信
号Fとなる。
This nonlinear amplified signal is sent via the differentiating circuit 14 to the adding circuit I5. The above nonlinearly processed signal C is differentiated in the differentiation circuit 14, and becomes a relatively smooth contour emphasis signal F that does not contain ringing, noise, and excessive components compared to a conventional contour emphasis signal that is not subjected to nonlinear amplification. .

加算回路15においては、上記入力映像信号Aと咳輪邦
強調信号Fとが加算されて出力映像信号として端子2に
送出される。すなわちこの出力映像信号は上記入力映像
信号Aに比べて該入力映像信号AのPI、P2、P3及
び24部分においてプリシュート及びオーバーシュート
特性を持つ映像信号となり、また従来の非線型増幅を施
さない映像信号に比べてリンギング、ノイズ及び過大成
分を含まない比較的なだらかな映像信号となる。
In the adder circuit 15, the input video signal A and the cough ring emphasis signal F are added together and sent to the terminal 2 as an output video signal. That is, this output video signal is a video signal that has preshoot and overshoot characteristics in the PI, P2, P3, and 24 portions of the input video signal A compared to the input video signal A, and is not subjected to conventional nonlinear amplification. This results in a relatively smooth video signal that does not contain ringing, noise, and excessive components compared to the video signal.

この輪郭強調が施され信号を陰極線管の映像信号とした
場合、映像受信装置の画面の効果的な輪郭強調がなされ
ると共に入力映像信号のリンギングやノイズによる画質
の劣化を抑えることができる。また、実際の微分回路の
特性から派生する特性、すなわち同じ信号変化であって
も、微分をした場合高レベル域信号に対してはその微分
した結果の値が大きくなる特性や人力映像信号の過大な
変化から生じる過大微分値を該非線型増幅器でタリンピ
ングすることによって、輪郭強調後の映像信号を陰極線
管のダイナミックレンジ内に抑えることができ、デフォ
ーカスに近位したような劣化が生じない良好な画質をえ
ることができる。
When this contour-enhanced signal is used as a cathode ray tube video signal, it is possible to effectively emphasize the contours of the screen of the video receiver and to suppress deterioration in image quality due to ringing and noise in the input video signal. In addition, there are characteristics derived from the characteristics of actual differentiating circuits, that is, even if the signal changes are the same, when differentiated, the value of the differentiated result becomes large for high-level signals, and the excessive value of human-powered video signals. By using the nonlinear amplifier to talimp the excessive differential value caused by such changes, the image signal after contour enhancement can be suppressed within the dynamic range of the cathode ray tube, and a good signal that does not suffer from deterioration similar to defocusing can be achieved. You can get better image quality.

ところで、本実施例では非線型増幅器を第二の微分回路
14の前段に配置したが、第二の微分回路14の後段に
配置しても同様の効果を得ることが出来る。
Incidentally, in this embodiment, the nonlinear amplifier is placed before the second differentiating circuit 14, but the same effect can be obtained even if it is placed after the second differentiating circuit 14.

次に、非線型増幅器の具体的な回路の説明をする。第4
図は上述の非線型増幅器の具体的回路構成を示すもので
ある。映像信号は端子30を介してトランジスタ3I及
び32で構成されるコアリング回路のエミッタ抵抗の共
通接続点に、トランジスタ33及び34で構成されるク
リッピング特性を持つ差動増幅器(正の範囲を増幅する
)及びトランジスタ35及びトランジスタ36で構成さ
れるクリッピング特性を持つ差動増幅器(負の範囲を増
幅する)に入力される。
Next, a specific circuit of the nonlinear amplifier will be explained. Fourth
The figure shows a specific circuit configuration of the above-mentioned nonlinear amplifier. The video signal is passed through a terminal 30 to a common connection point of the emitter resistors of a coring circuit made up of transistors 3I and 32, and is connected to a differential amplifier with clipping characteristics (which amplifies the positive range) made up of transistors 33 and 34. ), and is input to a differential amplifier (amplifying the negative range) with clipping characteristics, which is composed of transistors 35 and 36.

該コアリング回路のトランジスタ31及び32のベース
は互いに接続されてバイアス電圧50が印加されており
、比較的レベルの低い範囲において信号レベルが小さく
なればなるほど利得が小となる特性を持ている。また、
上記の二つの差動増幅器は比較的レベルの高い範囲にお
いて信号のレベルが大きくなればなるほど利得が小とな
る特性を持っている。
The bases of the transistors 31 and 32 of the coring circuit are connected to each other and a bias voltage 50 is applied to them, and have a characteristic that the gain decreases as the signal level decreases in a relatively low level range. Also,
The above two differential amplifiers have a characteristic that the gain decreases as the signal level increases in a relatively high level range.

次に、上記コアリング回路及び差動増幅器において非線
型増幅された信号は、トランジスタ38及びトランジス
タ39で構成される加算回路で正及び負の信号が加算さ
れバッファ増幅器を介して端子43に出力される。
Next, the signals nonlinearly amplified in the coring circuit and the differential amplifier are added together as positive and negative signals in an adder circuit composed of a transistor 38 and a transistor 39, and outputted to a terminal 43 via a buffer amplifier. Ru.

上記のコアリング回路長と差動増幅器を組み合わせた特
性は第5図に示す特性を持つことになる。
The characteristics obtained by combining the coring circuit length and the differential amplifier described above have the characteristics shown in FIG.

なお第5図は第4図のトランジスタ42のエミッタでの
特性であり、人力信号が正の範囲のみを示したものであ
る。この非線型増幅器の利得特性は上述した5折線特性
と同様に入力信号の低レベル域及び高レベル域において
は利得が減少する特性を有するので、上述の実施例に用
いた場合も、同様に映像受信装置の画面の輪郭は強調さ
れると共に、入力映像信号のリンギングやノイズによる
画質の劣化を抑えることができる。また入力映像信号の
過大な変化や高レベルに対しても陰極管のダイナミック
スレンジを越える輪郭強調とは成らずデフォーカスに近
似したような画質劣化は生じない輪郭強調が行える。
Note that FIG. 5 shows the characteristics at the emitter of the transistor 42 in FIG. 4, and only shows the range in which the human input signal is positive. The gain characteristic of this nonlinear amplifier is similar to the five-fold line characteristic described above, and has a characteristic that the gain decreases in the low level region and high level region of the input signal. The outline of the screen of the receiving device is emphasized, and deterioration in image quality due to ringing and noise of the input video signal can be suppressed. Furthermore, even in the case of excessive changes or high levels of the input video signal, the edge enhancement can be performed without exceeding the dynamic range of the cathode tube, and without causing image quality deterioration similar to defocusing.

実施例(2) 次に特許請求の範囲に記載した第2の発明である偏向速
度変調方法の輪郭強調回路の実施例について説明する。
Embodiment (2) Next, an embodiment of the contour emphasizing circuit of the deflection velocity modulation method, which is the second invention described in the claims, will be described.

第6図は偏向速度変調方法の輪郭強調回路の具体的構成
を示す。端子50は入力映像信号の入力端子である。該
入力端子50は一次微分回路52、非線型増幅器53、
増幅器54及び速度変調コイル55が直列に接続された
回路に接続されている。
FIG. 6 shows a specific configuration of the contour emphasizing circuit for the deflection velocity modulation method. Terminal 50 is an input terminal for input video signals. The input terminal 50 includes a first-order differential circuit 52, a nonlinear amplifier 53,
An amplifier 54 and a speed modulation coil 55 are connected in a series connected circuit.

なお該非線型増幅器53の特性は上述した実施例(1)
と同様にコアリング回路とクリッピング回路とを直列に
接続した回路の特性を持つ、入力映像信号は端子50及
び増幅器51を介して一次微分回路52で微分される。
Note that the characteristics of the nonlinear amplifier 53 are as described in Example (1) above.
The input video signal, which has the characteristics of a circuit in which a coring circuit and a clipping circuit are connected in series, is differentiated by a first-order differentiating circuit 52 via a terminal 50 and an amplifier 51.

この微分された信号は入力映像信号の速度成分である0
次にこの微分された速度変調信号は、上記の非線型増幅
器53において該微分信号内のリンギングやノイズ成分
が抑圧せれる共に、映像信号の過大な変化や高レベルの
映像信号入力から派生する上述した過大微分成分がクリ
ッピングされる。この輪郭強調に不必要な成分が抑圧さ
れた速度変調信号で速度変調コイル55が励磁され偏向
速度が変調される。 上記の一連の処理によって、映像
受信装置の画面の輪郭が強調されると共に、入力映像信
号のリンギングやノイズによる画質の劣化を抑えること
ができる。また入力映像信号の過大な変化や高レベルに
対しても陰極管のダイナミックスレンジを越える輪郭強
調とは成らずデフォーカスに近似したような画質劣化は
生じない効果的な輪郭強調が行える。
This differentiated signal is the velocity component of the input video signal, 0
Next, this differentiated velocity modulation signal is processed by the nonlinear amplifier 53 described above to suppress ringing and noise components in the differentiated signal, and to suppress the above-mentioned noise components derived from excessive changes in the video signal or high-level video signal input. The over-differentiated component is clipped. The velocity modulation coil 55 is excited by the velocity modulation signal in which components unnecessary for contour enhancement are suppressed, and the deflection velocity is modulated. Through the series of processes described above, the outline of the screen of the video receiving device is emphasized, and deterioration in image quality due to ringing and noise of the input video signal can be suppressed. Furthermore, even in the case of excessive changes or high levels of the input video signal, the edge enhancement does not exceed the dynamic range of the cathode tube, and effective edge enhancement can be performed without causing image quality deterioration similar to defocusing.

なお、本実施例では非線型増幅器を微分回路の後段に配
置したが、第7図に示すように一次微分回路63の前段
に配置しても同様な効果を得ることが出来る。
In this embodiment, the nonlinear amplifier is placed after the differentiating circuit, but the same effect can be obtained even if it is placed before the first-order differentiating circuit 63 as shown in FIG.

本実施例は本発明を所謂電磁偏向速度変調方法に適用し
た具体的な実施例を説明したが、所謂静電速度変調方法
に本発明を適用し、陰極線管の速度変調電極(例えば第
4の電極)に上記の速度変調信号を供給するようにして
も、同様な効果を得ることができる。
This embodiment describes a specific example in which the present invention is applied to a so-called electromagnetic deflection velocity modulation method. However, the present invention is applied to a so-called electrostatic velocity modulation method, and a cathode ray tube's velocity modulation electrode (for example, the fourth A similar effect can be obtained by supplying the above speed modulation signal to the electrode.

〔効果〕〔effect〕

本発明に係る輪郭強調回路を用いることにより、テレビ
ジョン受像機等の映像受信装置の画面に輪郭強調を施す
際、輪郭強調を施された映像信号または偏向速度変調を
司る信号内に存在する該画面の画質を劣化させる要因と
なるリンギングやノイズの成分が抑圧されており、良好
な輪郭強調が行える。また、陰極線管のグイナミソクレ
ンジ内に上記の輪郭強調を施された映像信号レベルを抑
えることができ、デフォーカスに近似した画質劣化を起
こさない輪郭強調ができる。
By using the edge enhancement circuit according to the present invention, when edge enhancement is applied to the screen of a video receiving device such as a television receiver, the image signal that exists in the edge-enhanced video signal or the signal controlling deflection velocity modulation can be used. Ringing and noise components, which cause deterioration of screen image quality, are suppressed, allowing for excellent edge enhancement. Furthermore, the level of the video signal subjected to the above-mentioned edge enhancement can be suppressed within the wide range of the cathode ray tube, and edge enhancement can be performed without causing image quality deterioration similar to defocusing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例となる輪郭強調回路のブ
ロック回路図、第2図は該輪郭強調回路内の波形図、第
3図は該輪郭強調回路を構成する非線型増幅器の人出力
特性及び波形図、第4図及び第5図は該非線型増幅器の
具体的な回路図及びその特性図、第6図は本発明の第2
の実施例のブロック回路図、第7図は本発明の他の実施
例のブロック回路図、第8図は従来例を示すブロック回
路図及び第9図はその波形図である。 l O・ 13 ・ 14 ・ 15 ・ 52 ・ 53 ・ ・・微分回路 ・・非線型増幅器 ・・微分回路 ・・加算回路 ・・一次微分回路 ・・非線型増幅器 ・・速度変調回路 人士力特性バび波形! 第3図 入巴刀特柱 第5図 垢Zの宍焚労りのブロック回路図 第6図 1色の実売ダJめプロ・ツク回路図 第7図 第8図 第9 図
FIG. 1 is a block circuit diagram of a contour emphasizing circuit according to a first embodiment of the present invention, FIG. 2 is a waveform diagram in the contour emphasizing circuit, and FIG. 3 is a diagram of a nonlinear amplifier constituting the contour emphasizing circuit. Figures 4 and 5 are a specific circuit diagram and its characteristic diagram of the nonlinear amplifier, and Figure 6 is the second diagram of the present invention.
7 is a block circuit diagram of another embodiment of the present invention, FIG. 8 is a block circuit diagram showing a conventional example, and FIG. 9 is a waveform diagram thereof. l O・ 13 ・ 14 ・ 15 ・ 52 ・ 53 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ . Waveform! Figure 3: Nuri Tomoe Special Pillar Figure 5: Block circuit diagram of Saku Z's Shishitanori Figure 6: One-color actual sales daJme pro-tsuku circuit diagram Figure 7: Figure 8: Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)入力映像信号と該入力映像信号を二次微分回路を
介して得られた信号とを加算して映像出力信号とする輪
郭強調回路において、上記の二次微分回路部内に、入力
信号の低レベル域でコアリング特性をかつ高レベル域で
クリッピング特性を有する非線型回路を設けたことを特
徴とする輪郭強調回路。
(1) In a contour enhancement circuit that adds an input video signal and a signal obtained from the input video signal via a second-order differentiator circuit to produce a video output signal, the second-order differentiator circuit section is 1. An edge enhancement circuit comprising a nonlinear circuit having coring characteristics in a low level region and clipping characteristics in a high level region.
(2)入力映像信号を一次微分回路を介して得られた信
号を陰極線管の偏向速度変調手段に供給する輪郭強調回
路において、上記一次微分回路部内に、入力信号の低レ
ベル域でコアリング特性をかつ高レベル域でクリッピン
グ特性を有する非線型回路を設けたことを特徴とする輪
郭強調回路。
(2) In the contour enhancement circuit that supplies the signal obtained by passing the input video signal through the first-order differentiating circuit to the deflection speed modulation means of the cathode ray tube, the first-order differentiating circuit has a coring characteristic in the low level region of the input signal. What is claimed is: 1. A contour emphasizing circuit comprising: a nonlinear circuit having clipping characteristics in a high level region.
JP63274802A 1988-10-31 1988-10-31 Contour emphasizing circuit Pending JPH02121575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63274802A JPH02121575A (en) 1988-10-31 1988-10-31 Contour emphasizing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63274802A JPH02121575A (en) 1988-10-31 1988-10-31 Contour emphasizing circuit

Publications (1)

Publication Number Publication Date
JPH02121575A true JPH02121575A (en) 1990-05-09

Family

ID=17546769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63274802A Pending JPH02121575A (en) 1988-10-31 1988-10-31 Contour emphasizing circuit

Country Status (1)

Country Link
JP (1) JPH02121575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436371U (en) * 1990-07-20 1992-03-26

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046034A (en) * 1973-08-28 1975-04-24
JPS63164764A (en) * 1986-12-26 1988-07-08 Matsushita Electric Ind Co Ltd Picture quality compensating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046034A (en) * 1973-08-28 1975-04-24
JPS63164764A (en) * 1986-12-26 1988-07-08 Matsushita Electric Ind Co Ltd Picture quality compensating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436371U (en) * 1990-07-20 1992-03-26

Similar Documents

Publication Publication Date Title
JP2543567B2 (en) Dynamic noise reduction circuit and television receiver using the same
US4261014A (en) Spot arrest system
US5491520A (en) Contour correcting circuit for sharpening rising and falling edges of video signals
JPH021428B2 (en)
JPH02121575A (en) Contour emphasizing circuit
JPS63164765A (en) Picture quality compensating device
JPS63198483A (en) Picture-quality adjusting circuit
JP3352682B2 (en) Method and apparatus for improving vertical sharpness of a cathode ray tube
JP3407677B2 (en) Speed modulation circuit
JPS5951796B2 (en) Scan speed modulation circuit
JP2619492B2 (en) Image quality improvement circuit
JPS63164764A (en) Picture quality compensating device
JPS61210769A (en) Video reproducing device
JPS6314577A (en) Picture quality improving circuit
JPS6019407Y2 (en) scanning speed modulator
KR0137200Y1 (en) Speed modulation circuit of television
JPH05252413A (en) Scanning speed modulating circuit
JP3062516B2 (en) Picture quality adjustment circuit for television
JPH0273783A (en) Picture emphasis circuit
JPH0746435A (en) Scanning speed modulation circuit
JP2755112B2 (en) Contour correction circuit
JPH0252575A (en) Picture quality adjustment circuit
JPH07135577A (en) Television receiver provided with scanning speed modulation circuit and contour emphasis circuit including the modulation circuit
JP4013358B2 (en) VM effect control device
JPH06253179A (en) Contour correction circuit