JPH02120819A - Method for correcting bend of scanning line - Google Patents

Method for correcting bend of scanning line

Info

Publication number
JPH02120819A
JPH02120819A JP63275709A JP27570988A JPH02120819A JP H02120819 A JPH02120819 A JP H02120819A JP 63275709 A JP63275709 A JP 63275709A JP 27570988 A JP27570988 A JP 27570988A JP H02120819 A JPH02120819 A JP H02120819A
Authority
JP
Japan
Prior art keywords
lens
scanning
scanning line
optical system
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63275709A
Other languages
Japanese (ja)
Other versions
JP2756125B2 (en
Inventor
Hiroshi Tomita
寛 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63275709A priority Critical patent/JP2756125B2/en
Publication of JPH02120819A publication Critical patent/JPH02120819A/en
Application granted granted Critical
Publication of JP2756125B2 publication Critical patent/JP2756125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Systems Of Projection Type Copiers (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To easily correct a bend of a scanning line in a degree at which no influence is given to the picture quality within an extent in which the cost is not increased by fixing a specific lens after the lens is deflected in the auxiliary scanning direction. CONSTITUTION:After the lens which has a magnification in Y-Y direction perpendicular to the scanning direction X-X of a luminous flux deflected by an optical deflector 3 and has the lens surface which is the maximum in magnification among lenses 2, 51, and 52 of the 1st and 2nd image forming systems is deflected in the auxiliary direction, the lens is fixed for correcting a bend of a scanning line. For example, a line image formed on the reflecting surface 4 of the deflector 3 by means of a cylindrical lens 2 of the 1st image forming optical system forms a point image on the image surface 7 of a medium to be scanned when the line image is emitted through of lens 51 and 52 of the 2nd image forming optical system and scanned along a straight line 8 in accordance with the rotation of the deflector 3 in the direction shown by the arrow. Therefore, a bend of a scanning line can be corrected easily in a degree at which no influence is given to the picture quality within an extent in which the cost is not increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種プリンタ、ファクシミリ等に適用される走
査光学系における走査線の曲がり矯正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for correcting the curvature of a scanning line in a scanning optical system applied to various printers, facsimile machines, and the like.

〔従来の技術〕[Conventional technology]

光源から出射さ九る光束を線状に結像させる第1結像光
学系と、この第1結像光学系による結像位置の近傍に偏
向反射面が設定されている光偏向器と、この光偏向器で
偏向された光束により走査される被走査媒体と、上記光
束の光路上であってこの被走査媒体と上記光偏向器との
間に配設され。
a first imaging optical system that forms a linear image of the light beam emitted from the light source; an optical deflector in which a deflecting reflection surface is set in the vicinity of the imaging position by the first imaging optical system; A scanned medium is scanned by a light beam deflected by a light deflector, and the light beam is disposed on the optical path of the light beam between the scanned medium and the light deflector.

上記光偏向器で連続的に偏向される光束の軌跡面たる偏
向面と垂直な面内において上記光偏向器の偏向反射面と
上記被走査媒体どを光学的に共役な関係に保ちつつ上記
光束を上記被走査媒体上に結像させる第2結像光学系を
有する走査光学系が知られている。
The light beam is maintained in an optically conjugate relationship between the deflection reflecting surface of the light deflector and the scanned medium in a plane perpendicular to the deflection surface which is the locus plane of the light beam continuously deflected by the light deflector. A scanning optical system is known that includes a second imaging optical system that forms an image of the image on the scanned medium.

上記走査光学系の−・−例を説明した第8図において、
光源1より出射された光束は第1結像光学系としてのシ
リンドリカルレンズ2により線状に結像される。一方、
この結像位置を含むその近傍には光偏向器3の複数の偏
向反射面の一つが回転に応じて順次、位置するように設
定されている。
In FIG. 8 illustrating an example of the above-mentioned scanning optical system,
The light beam emitted from the light source 1 is linearly imaged by a cylindrical lens 2 serving as a first imaging optical system. on the other hand,
One of the plurality of deflection/reflection surfaces of the optical deflector 3 is set to be located in the vicinity of the image formation position in sequence according to the rotation.

上記により、(1!向反射面4上に結像されたLAEt
は第2結像光学系としてのfOレンズ51及びfOレン
ズ52を介して出射することにより被走査媒体上の像面
7上に点像として結像され、且つ、光偏向器3の矢印方
向の回転に応じて直線8上を走査される。この走査を主
走査と称し、その方向を主走査方向X−Xと称する。さ
らに、像面7上で主走査方向X−Xに直交する方向での
走査を副走査と称し、その方向を副走査方向Y−Yど称
する。
By the above, (1! LAEt imaged on the reflective surface 4
is emitted through the fO lens 51 and the fO lens 52 as the second imaging optical system, and is imaged as a point image on the image plane 7 on the scanned medium, and is directed in the direction of the arrow of the optical deflector 3. A straight line 8 is scanned according to the rotation. This scanning is called main scanning, and its direction is called main scanning direction XX. Further, scanning in a direction perpendicular to the main scanning direction XX on the image plane 7 is referred to as sub-scanning, and this direction is referred to as sub-scanning direction Y-Y.

こめような走査光学系で例えばfOレンズに偏心がある
と1本来なら直線8の様に走査されるべき走査線は符号
8′で示す如く湾曲した走査線となる。
If, for example, the fO lens in a scanning optical system is decentered, the scanning line that should normally be scanned as a straight line 8 becomes a curved scanning line as shown by reference numeral 8'.

ここで、偏心とは、第9図に示すレンズ軸部に関し、破
線で示すものが偏心のない理想状態のレンズ輪部とする
と、実線で示す状態に偏心量Sずれていることをいう、
走査線の曲がりに大きく影響する偏心は、主に副走査方
向Y−Yヘレンズ面がシフトした如き状況を伴なう。
Here, eccentricity refers to the lens axis shown in FIG. 9, and if what is shown by the broken line is the lens ring in an ideal state without eccentricity, it means that the eccentricity S deviates from the state shown by the solid line.
Eccentricity, which greatly affects the curvature of the scanning line, mainly accompanies a situation where the YY Herrens plane in the sub-scanning direction is shifted.

第9図中、符号0−0はレンズの光軸を示す。In FIG. 9, the symbol 0-0 indicates the optical axis of the lens.

〔発明が解決しようとする3wi〕 従来のモノクロプリンタ、ファクシミリ等では走査線面
がりは、約0.2〜0.5a+m発生しているが。
[3 Wis to be Solved by the Invention] In conventional monochrome printers, facsimile machines, etc., scanning line surface warping occurs by about 0.2 to 0.5 a+m.

この程度の値は許容されていた。This level of value was acceptable.

しかし、近年幅広プリンタや、高精度の製版プロッタ、
さらに複数ビームで書き込みを行なうカラープリンタの
開発が行なわれるにつれて走査線面がりが書き込みの位
置すれとして画質に影響を及ぼすようになってきた。
However, in recent years, wide printers, high-precision plate-making plotters,
Furthermore, with the development of color printers that perform writing with multiple beams, scanning line surface warping has come to affect image quality as a positional deviation in writing.

例えば1色別の書き込みを行なう走査光学系を用いるカ
ラープリンタでは第10図(a)に示すように赤、緑、
青画像の各情報を含む各書き込み走査線811e、 8
G、 8Bが理想とする直線状の走査tjA8に対して
それぞれ湾曲して各々が所謂、走査線の曲がりを生ずる
ことがある。
For example, in a color printer using a scanning optical system that writes in each color, red, green,
Each writing scan line 811e, 8 contains each piece of information of the blue image.
G and 8B may be curved with respect to the ideal linear scanning tjA8, resulting in so-called bending of the scanning line.

走査線8Reは基準となる走査線8に対し副走査方向Y
−4について上に曲がり量dl’!、走査線8Bは副走
査方向Y−Yについて下に曲がり量dB3有しているの
で1両者の最大差はdn + dBとなり、この差に応
じた色ずれを生ずる。
The scanning line 8Re is in the sub-scanning direction Y with respect to the reference scanning line 8.
The amount of upward bending dl' for -4! Since the scanning line 8B has a downward bend amount of dB3 in the sub-scanning direction Y-Y, the maximum difference between the two is dn+dB, and a color shift occurs according to this difference.

また1幅広プリンタでは第10図(b)に示す例がある
。この例は、左右2個のA2サイズ幅用の走査光学系に
よる走査線を組み合わせてAOサイズ幅の書き込みを合
成するもので、基準となる走査線8に対し、副走査方向
Y−Yについて各走査線81゜82がそれぞれ互いに異
なる向きに曲がり量di、d2湾曲しているため一両走
査線のつなぎ目に相当する仮想ラインN−Nにて合計d
l+d2ものつなぎ目のずれを生じ画質を損なう。
Further, there is an example of a wide printer as shown in FIG. 10(b). In this example, writing of AO size width is synthesized by combining the scanning lines of the left and right scanning optical systems for two A2 size widths. Since the scanning lines 81 and 82 are curved by di and d2 in different directions, a total of d is obtained at the virtual line N-N corresponding to the joint between the two scanning lines.
This causes a displacement of l+d2 at the seam, impairing the image quality.

このような色ずれやつなぎ目のずれを解、消するには、
レンズの偏心公差及びレンズの取付面の公差を極めて厳
しくする必要がある。
To resolve and eliminate such color deviations and seam deviations,
The eccentricity tolerance of the lens and the tolerance of the lens mounting surface must be extremely strict.

しかし、上記公差を厳しくすると今度は加エコス1−が
高くなり、この主走査光学系を用いた各種の:2t#装
随の低価格化への要請にそえなくなり問題となっている
However, if the above-mentioned tolerances are tightened, the additive cost 1- becomes high, which is a problem because it does not meet the demand for lower costs of various :2t# equipment using this main scanning optical system.

本発明は、レンズの偏心公差、取付面の公差等を厳洛に
管理することなく、従ってコストを押し上げない範囲で
、走査線の曲がりを画質に影響が出ない程度に簡易に矯
正することのできる走査線の曲がり矯正方法を提供する
ことを目的どする。
The present invention is a method for easily correcting the bending of a scanning line to the extent that it does not affect the image quality, without strictly controlling the eccentricity tolerance of the lens, the tolerance of the mounting surface, etc., and without increasing the cost. It is an object of the present invention to provide a method for correcting the curvature of a scanning line.

なお、走査線の曲がりは、前記レンズの偏心に起因する
ものの他に、レンズの倒れによるもの。
Note that the bending of the scanning line is caused not only by the eccentricity of the lens but also by the tilting of the lens.

すなわち、レンズ中、主走査方向の任意の軸を中心と・
してレンズを回転させることによっても発生するiしか
し、この場合の曲がりは前記副走査方向への偏心と光軸
方向への偏心(レンズ面のずれ)の組合せにより容易に
解消することができる。さらに、上記光軸方向への偏心
は走査線の曲がりに与えるkWが小さい等のことから問
題にならない。
In other words, when the lens is centered around an arbitrary axis in the main scanning direction,
However, the bending in this case can be easily eliminated by a combination of eccentricity in the sub-scanning direction and eccentricity in the optical axis direction (displacement of the lens surface). Furthermore, the eccentricity in the optical axis direction does not pose a problem because the kW applied to the bending of the scanning line is small.

[課題を解決するための手段〕 上記目的を達成するために、本発明においては、光偏向
器で偏向さ九る光束による走査方向(主走査方向)と直
交する方向(副走査方向)に倍率をもち、前記第1.第
2結像光学系のレンズの中、上記倍率が最大のレンズ面
を有するレンズについて、そのレンズを副走査方向に偏
心させた上、固定することにより走査線の曲がりを矯正
する。
[Means for Solving the Problems] In order to achieve the above object, in the present invention, a magnification is 1. Among the lenses of the second imaging optical system, the lens having the lens surface with the maximum magnification is decentered in the sub-scanning direction and fixed, thereby correcting the curvature of the scanning line.

〔作  用〕[For production]

走査線の曲がりに最も大きい影響力をもちレンズについ
て事後的に設定位置が調整される。
The set position of the lens that has the greatest influence on the curvature of the scanning line is adjusted after the fact.

〔実施例〕〔Example〕

先ず、比較の基準として、偏心がないときの結像関係を
第3図に示す。
First, as a reference for comparison, the imaging relationship when there is no eccentricity is shown in FIG.

この図は、前記第8図に示した走査光学系を。This figure shows the scanning optical system shown in FIG. 8 above.

しンズ光軸を通り且つ副走査方向の断面(副走査断面)
で示したものである。
Cross-section passing through the optical axis of the lens in the sub-scanning direction (sub-scanning cross-section)
This is shown in .

図に示す通りfθレンズは符号51.52で示す如く2
枚構成どなっている。そして、1枚目のfOレンズ51
は片側が球面51−1.他側がシリンダ面51−2を有
し、2枚目のfOレンズ52は片側がシリンダ面52−
1 、他側がトロイダル面52−2で構成されている。
As shown in the figure, the fθ lens is 2
What's the composition like? And the first fO lens 51
has a spherical surface on one side 51-1. The other side has a cylinder surface 51-2, and the second fO lens 52 has a cylinder surface 52-2 on one side.
1. The other side is composed of a toroidal surface 52-2.

偏向反射面4に線状(線方向は主走査方向Y−Yであり
第3図中の紙面に垂直な方向)に結像された光束は、偏
向された上、球面51−1及びトロイダル面52−2に
よるレンズ機能により広げられ、空間上の虚像位ff1
V1に虚像を結ぶ。なお、レンズ光軸を通る主光線を符
号CRで示している。
The light beam that is imaged linearly (the linear direction is the main scanning direction Y-Y and perpendicular to the plane of the paper in FIG. 3) on the deflection and reflection surface 4 is deflected, and is also reflected on the spherical surface 51-1 and the toroidal surface. The virtual image position ff1 in space is expanded by the lens function of 52-2.
Connect a virtual image to V1. Note that the chief ray passing through the lens optical axis is indicated by the symbol CR.

この光束が〜・般には副走査方向Y−・Yに−・番パワ
ーの強い[・ロイダル面52−2により集束されて像面
7上の所定位[8Fに結像される。
This light beam is focused by the loidal surface 52-2, which generally has a strong power in the sub-scanning direction Y-Y, and is imaged at a predetermined position [8F] on the image plane 7.

光偏向器の回転駆動に応じて偏向反射面4が回動すると
、これに応じて像面7上の光像1ま所定位1i8Fを通
り紙面に垂直な方向、つまり主走査方向Y−■に走査さ
れるが、ここではレンズに偏心がないことを前提にして
いるため、走査線の曲がりは生ぜず、従ってこの走査軌
跡は第3図の紙面上に投影したときに、所定位置8Fか
ら外れない。
When the deflection/reflection surface 4 rotates in response to the rotational drive of the optical deflector, the light image 1 on the image plane 7 passes through a predetermined position 1i8F in a direction perpendicular to the plane of the paper, that is, in the main scanning direction Y-■. However, since it is assumed here that the lens is not eccentric, the scanning line does not curve, and therefore, when projected onto the paper in Figure 3, this scanning trajectory deviates from the predetermined position 8F. do not have.

次に、fOレンズ52に関し、そのシリンダ面52−1
については偏心が無く、I−ロイダル面52−2につい
てのみ、副走査方向Y−Yに偏心量Sだけ偏心した場か
を考える。この場合の結像関係を、偏心が無い場合と共
に第4図に示す。第4図において、偏心の無い[・ロイ
ダル面52−2は破線で、偏心したトロイダル面52−
2’ は実線で示しである。
Next, regarding the fO lens 52, its cylinder surface 52-1
Consider a case where there is no eccentricity and only the I-loidal surface 52-2 is eccentric by an eccentric amount S in the sub-scanning direction YY. The imaging relationship in this case is shown in FIG. 4 together with the case where there is no eccentricity. In FIG. 4, the toroidal surface 52-2 without eccentricity is indicated by a broken line, and the toroidal surface 52-2 with eccentricity is indicated by a broken line.
2' is indicated by a solid line.

第4図し;おいて、偏心が無い場合を考えると。As shown in Figure 4, consider the case where there is no eccentricity.

レンズ光軸上を進んできた主光線CRはトロイダル面5
2−2を通過した後も破線で示す如く直進する。
The chief ray CR that has proceeded on the lens optical axis is a toroidal surface 5
After passing 2-2, continue going straight as shown by the broken line.

−・方、偏心が有する場合を考えると、主光線cnはト
ロイダル面52−2’  を通過したのち、レンズソロ
軸上、トロイダル面52−2の焦点距m f flれた
点を通るし〉゛ズ光軸との直交平面上で偏心量Sだけレ
ンズylから副走査方向Y−’Yにずれた位置に進むよ
うに曲がる。
- On the other hand, considering the case where there is eccentricity, the principal ray cn passes through the toroidal surface 52-2' and then passes through a point on the lens solo axis at a focal length mffl of the toroidal surface 52-2. The lens is bent so as to proceed to a position shifted in the sub-scanning direction Y-'Y from the lens yl by an amount of eccentricity S on a plane perpendicular to the optical axis of the lens.

この副走査方向にのみ曲げら九た後の光LAを主)゛コ
線Cと称すれば、副走査断面上、主光Bcnと主光線C
どは角度φをなしている。
If the light LA after being bent only in the sub-scanning direction is called the main ray C, then on the sub-scanning section, the principal ray Bcn and the principal ray C
form an angle φ.

上記第4図に示した状況を前提に結像関係を他の光学系
も含めて、レンズ光軸を通り且つ副走査断面に直交する
断面である主走査断面上に表わしたのが第5図である。
Figure 5 shows the imaging relationship, including other optical systems, based on the situation shown in Figure 4 above, on a main scanning cross-section that passes through the lens optical axis and is orthogonal to the sub-scanning cross-section. It is.

第5図には、主光線Cがレンズ光軸より像高比0で紙面
7上の点8Cに結像している様子と、像高比約1の走査
端部付近で像面7上の点8Rに結像している様子が示さ
れている。後者の点8RのHDに寄与している光atよ
主光線Rである。
In Figure 5, the principal ray C is imaged from the lens optical axis at a point 8C on the paper surface 7 with an image height ratio of 0, and the principal ray C is focused on the image surface 7 near the scanning end with an image height ratio of about 1. It is shown that the image is focused on point 8R. The light at that contributes to the HD of the latter point 8R is the principal ray R.

第5図において、fOレンズ52の最終面たるt・ロイ
ダル面52−2から像面7までの距=をLCとする。光
学的条件により、主光線C1主光fiRはそれぞれ[・
ロイダル面52−2に対して直角に出射している。ここ
でトロイダル面52−2と主光、tCとの交差部を輪郭
52−2C,)−ロイダル面52−2と主光線Rとの交
差部を輪郭52−2Rでそれぞれ示す。
In FIG. 5, the distance from the final surface t of the fO lens 52 to the image plane 7 is defined as LC. Depending on the optical conditions, the principal rays C1 and fiR are respectively [・
The light is emitted perpendicularly to the rhoidal surface 52-2. Here, the intersection between the toroidal surface 52-2 and the principal ray tC is indicated by a contour 52-2C, and the intersection between the toroidal surface 52-2 and the principal ray R is indicated by a contour 52-2R.

そこで、主走査平面上、主光II!ARが主光L%cに
対してなす角度を走査角0とし、主光線Cが同平面上、
トロイダル面52−2より出射する位置のレンズ光軸方
向でのずれ量をΔとすると、主光線Rがトロイダル面5
2−2より出射し5て像面7上の点8Rに至るまでの距
離LRは、Ln十(Δ+LC) / cos Oど表わ
せる。
Therefore, on the main scanning plane, the main light II! The angle that AR makes with respect to the principal ray L%c is the scanning angle 0, and the principal ray C is on the same plane,
If the amount of deviation in the lens optical axis direction of the position emitted from the toroidal surface 52-2 is Δ, then the principal ray R is
The distance LR from the light emitted from the light beam 2-2 to the point 8R on the image plane 7 can be expressed as Ln+(Δ+LC)/cos O.

次に、前記第4図に示す偏心したトロイダル面52−2
″による結像関係を上記第5図の主光線C9主光線Rに
ついて副走査断面に投影するど第6図(a)のようにな
る。
Next, the eccentric toroidal surface 52-2 shown in FIG.
When the imaging relationship according to `` is projected onto the sub-scanning section with respect to the principal ray C9 and the principal ray R in FIG. 5, it becomes as shown in FIG. 6(a).

さらに、第6図(a)の要部を拡大して示すと第6図(
b)のようになる。なお、第6図(a)において、偏心
のあるト・ロイダル面52−2’ の中、主光BCを出
射する面の輪郭を符号52−2’C1主光線Rを出射す
る面の輪郭を符号52−2’Rでそれぞれ示す。
Furthermore, when the main part of FIG. 6(a) is enlarged, FIG.
b) In FIG. 6(a), among the eccentric toroidal surfaces 52-2', the outline of the surface that emits the chief ray BC is expressed as 52-2'C1, and the outline of the surface that emits the chief ray R is Each is designated by the reference numeral 52-2'R.

第6図(a)、 (b)において、主光線Cは副走査断
面上にあるため第4図と全く同様に示され、レンズ光軸
から角度φだけ曲がっているように示される。ここで、
φ=jan” (S / f )と表わすことができる
(第4図参照)。
In FIGS. 6(a) and 6(b), the principal ray C is shown in exactly the same way as in FIG. 4 because it is on the sub-scanning section, and is shown as being bent by an angle φ from the lens optical axis. here,
It can be expressed as φ=jan'' (S/f) (see FIG. 4).

一方、主光線Rが主走査平面となす角度についても主光
uACと同じに角度φである。これは、主光線は常に第
5図でトロイダル面52−2に直角に出射し、数面のレ
ンズパワーは角度0のもとでも不変だからである。しか
し、このような主光線Rを副走査断面へ投影してみると
第7図(a)に示す如く角度φよりも大きく開いた角度
ωで表われる。
On the other hand, the angle that the principal ray R makes with the main scanning plane is also the angle φ, which is the same as the principal ray uAC. This is because the chief ray always exits at right angles to the toroidal surface 52-2 in FIG. 5, and the lens powers of several surfaces remain unchanged even at an angle of 0. However, when such a principal ray R is projected onto the sub-scanning section, it appears at an angle ω that is wider than the angle φ, as shown in FIG. 7(a).

この角度ωは、 (1) =tan’ (S/ f−c
ost)で示される。このように、主光fiRはレンズ
光軸より曲がった様になり、且つ レンズ面の輪郭52
−2’Rもずれ量Δだけずれる。
This angle ω is (1) = tan' (S/ f-c
ost). In this way, the principal light fiR appears to be bent from the lens optical axis, and the outline 52 of the lens surface
-2'R is also shifted by the shift amount Δ.

以上説明した第4図乃至第C図をまどめて副走査断面上
に表わすと第7図(a)のようになる。そこで、第7図
(a)により走査線の曲がりがどの様におきるかを考え
てみる。
When the above-described FIGS. 4 to C are collectively expressed on a sub-scanning section, the result is as shown in FIG. 7(a). Therefore, let us consider how the scanning line curves as shown in FIG. 7(a).

第7図(a)中、符号rR(回転)」は、第5図におけ
るt・ロイダル面52−2の弧の中心を中心として第5
図、第6図中の主光線Rを副走査断面上へ角度0だけレ
ンズ光軸寄りに戻す向きに回転し。
In FIG. 7(a), the symbol "rR (rotation)" indicates the fifth rotation centering on the center of the arc of the t-roidal surface 52-2 in FIG.
The chief ray R in FIGS. 6 and 6 is rotated so as to return toward the lens optical axis by an angle of 0 onto the sub-scanning section.

投影したどきに現われる仮想の光線部分を示す。Shows the virtual ray portion that appears when projected.

上記主光vARの回転を考えるどき、そのような主光l
aRを生じさせる輪郭52−2’Rも同様の態様で回転
した位置に表わされ、この輪郭を符号「52−2’R(
回転)」で示す。この輪郭r52−2’ll (回転)
」は輪郭52−2″Cと重なる。
When considering the rotation of the principal light vAR mentioned above, such a principal light l
The contour 52-2'R that gives rise to aR is also represented in a rotated position in a similar manner, and this contour is designated by the symbol "52-2'R (
rotation)”. This contour r52-2'll (rotation)
'' overlaps the contour 52-2''C.

上記回転を考えたときの結像位置は、像面7より(距潴
LR−距煎tc)だけずれた仮想の像面9になる。そし
て、主光線C1主光tsRは共に主走査断面と角度φを
なしているため、主光線Cの結像位置は主走査断面より
副走査方向Y−YにL C−t、anφ怠れた位置8’
Cとなり、主光線Rの結像位置は主走査断面より副走査
方向Y−YにLR−tanφ離れた位置8″Rとなる。
When considering the above rotation, the image formation position is a virtual image plane 9 that is shifted from the image plane 7 by (the distance LR - the distance tc). Since the principal rays C1 and tsR both form an angle φ with the main scanning section, the imaging position of the principal ray C is a position L C-t, an φ offset from the main scanning section in the sub-scanning direction Y-Y. 8'
C, and the imaging position of the principal ray R is a position 8''R that is LR-tanφ apart from the main scanning section in the sub-scanning direction YY.

上記位置8″Cとレンズ光軸との間の距離と、上記位g
ia’nとレンズ光軸との間の距煎の差が走査線の曲が
り量dであり、 d = (Ln−LC) tanφと
表わすことができる。
The distance between the above position 8''C and the lens optical axis and the above position g
The difference in distance between ia'n and the lens optical axis is the amount of curvature d of the scanning line, and can be expressed as d=(Ln-LC) tanφ.

この走査線面がりff1dは走査角0を定めることに応
じて距ML、n、 LCが定まることにより特定される
This scanning line surface edge ff1d is specified by determining the distances ML, n, and LC in accordance with determining the scanning angle 0.

第7図(a)の輪郭52−2’ C及び輪郭r52−2
’n(回転)」部分を拡大して示した第7図(b)にお
いて、[・ロイダル面52−2の副走査断面での半径を
rとするとき、tanφ=S/ (f+ (r=57:
17))となる。
Contour 52-2'C and contour r52-2 in FIG. 7(a)
In FIG. 7(b), which shows an enlarged view of the 'n (rotation)' portion, tanφ=S/ (f+ (r= 57:
17)).

通常S < rであるから、  r −q ’r Oど
なり、前記式におけるtanφは、tanφ坤−となる
Normally, S < r, so r - q 'r O, and tanφ in the above equation becomes tanφ gon-.

従って、tanφは偏心量Sど比例するから走査線の曲
がり量dは d鰺 (LR−LC)  ・−・・・、(1)で示され
、偏心量Sに比例した呟どなる。
Therefore, since tanφ is proportional to the amount of eccentricity S, the amount of bending d of the scanning line is expressed as d(LR-LC) . . . (1).

ところで、第5図で主光BR1主光vIcRは−・般の
場合、必ずしもトロイダル面52−2に対し垂直出射す
るどは限らない、そこで垂直出射でない場合も含めて考
える。
By the way, in FIG. 5, the main light BR1 and the main light vIcR do not necessarily emit perpendicularly to the toroidal surface 52-2 in the general case, and the case where the main light does not emit perpendicularly is also considered.

第5図で輪郭52−2C,輸郭52−21での主光線C
1主光線Rにそった第5図の紙面に垂直な方向での倍r
$をそれぞれβ5z−z (CL βB−z(R)どす
ると、第7図(a)の位@8’C,8’Rとレンズ光軸
との距離はそれぞれ 5(1−β*z−z (C))、 5(1−β32−2
(R))となり、走査線の曲がり量dは、 d=S (β、、−,(R)−β龜z−z (C)) 
 ・・・(2)ど表わせる。
In Figure 5, the chief ray C at contour 52-2C and contour 52-21
1 times r in the direction perpendicular to the paper surface of Figure 5 along the principal ray R
When $ is respectively β5z-z (CL βB-z(R), the distances between the positions @8'C and 8'R in Fig. 7(a) and the optical axis of the lens are 5(1-β*z-), respectively. z (C)), 5(1-β32-2
(R)), and the amount of bending d of the scanning line is d=S (β,, -, (R)-β龾-z (C))
...(2) How can I express it?

・一方、第5図で主光線Cについては、倍率をβCとし
て、(1、C”−f)/f=βC,主光線Rについては
倍率をβRどじて (Lll−f)/f=  β R・・・(3)と考えら
れる。
- On the other hand, in Fig. 5, for the chief ray C, the magnification is βC, (1, C''-f)/f = βC, and for the chief ray R, the magnification is βR, (Lll-f)/f = β R...(3) is considered.

そこで前記(1)式と、上記(3)式よりdについて解
くと。
So, if we solve for d from the above equation (1) and the above equation (3).

d=scβR−βC)   ・・・(・1)どなる。こ
の(・1)式をト・ロイダル面52−2についてあては
めれば d=S (β5□−2(R)−β32−2 (C)) 
 ・・・(5)となり、(2)式と(5)式は等しい。
d=scβR-βC) ...(・1) Howl. Applying this formula (・1) to the toroidal surface 52-2, d=S (β5□-2(R)-β32-2 (C))
...(5), and equations (2) and (5) are equal.

従って、垂直出射の場合も、そうでない場合も走査線の
曲がりidに関しては同じ条件式が適用できることどな
る。
Therefore, the same conditional expression can be applied to the bending id of the scanning line whether it is vertical emission or not.

そこで、第1図により、上記条件式を適用して走査光学
系を構成する各レンズ等の影響も考慮した走査線画がり
量を検討する。
Therefore, with reference to FIG. 1, the amount of scanning line image sharpness will be examined by applying the above conditional expression and taking into account the influence of each lens and the like constituting the scanning optical system.

第1図において、符号VIは第5図に示した各レンズ面
、つまり偏向反射面4.fOレンズ51.fOレンズ5
2の各光学面に偏心の無いとき、シリンダ面52−1以
前の光学系で作られる虚像位置、符号VI’ は同じく
、偏心が有るときの虚像位置をそれぞれ示す。従って、
虚像位置VI’  を通りレンズ光軸に平行な光cn”
と同じく虚像位[VI’  を通る光であってシリンダ
面52−1以前の光学系に偏心があるときの主光線CR
が偏心のない1へロイダル面52−2により結像される
位置は結像位置8′ンどなる。すなわち、結像位置8’
yはトロイダル面52−2以前で偏心している光が偏心
のないF・ロイダル面52−2により結像される位はで
ある。
In FIG. 1, the reference numeral VI indicates each lens surface shown in FIG. fO lens 51. fO lens 5
When each optical surface of 2 has no decentering, the virtual image position created by the optical system before the cylinder surface 52-1, and the symbol VI' similarly shows the virtual image position when there is decentering. Therefore,
Light cn'' passing through the virtual image position VI' and parallel to the lens optical axis
Similarly, the principal ray CR when the optical system before the cylinder surface 52-1 is decentered is the light passing through the virtual image position [VI'.
The position where the image is formed by the toroidal surface 52-2 on the non-eccentric 1 is the image forming position 8'. That is, the imaging position 8'
y is the extent to which the light eccentric before the toroidal surface 52-2 is imaged by the F.roidal surface 52-2, which is not eccentric.

すると、レンズの最終面であるトロイダル面52−2よ
りも前のレンズ面による虚像位置の変動は前記各虚像位
置vr、 vr″の差で表わされ、且つ。
Then, the variation in the virtual image position due to the lens surface before the toroidal surface 52-2, which is the final surface of the lens, is represented by the difference between the virtual image positions vr and vr''.

その量は像高比yの関数S’(y)で表わされ、各光学
面の倍率も像高比yの関数β(y)で表わすことができ
る。
The amount is expressed by a function S'(y) of the image height ratio y, and the magnification of each optical surface can also be expressed by a function β(y) of the image height ratio y.

関数S’(y)と関数β(y)の間際を表わすと、次の
ようになる。
The relationship between the function S'(y) and the function β(y) is expressed as follows.

S’(y)=β’z (y)・S2+β°、□−□(y
)・Sl、−2+β’51−z (”/) 551−z
+β’52−1(”/) ’ 5sz−>  ”・(6
)上記(6)式中の各項における添字はレンズ面の符号
(レンズ面番号)を示し、具体的には次のようになる。
S'(y)=β'z(y)・S2+β°, □−□(y
)・Sl, -2+β'51-z (''/) 551-z
+β'52-1(''/)'5sz->''・(6
) The subscript in each term in the above formula (6) indicates the code of the lens surface (lens surface number), specifically as follows.

本例ではβ2=0であるからmをレンズ面番号どして、
Σβ’n+(y)=1となる。
In this example, β2=0, so let m be the lens surface number,
Σβ'n+(y)=1.

上記(6)式のS’(y)より、[・ロイダル52−2
が偏心していないときのレンズ光軸とシリンダ面52−
1以前の光学系に偏心がある場合の光束が、偏心のない
トロイダル面52−2により結像される泣taB’(y
)の11走査方向でのレンズ光軸からの距=をS”(y
)どして求めると、 S”(y)=−3’(y)(1−β5z−z (y))
 +S’(y)=S’(y)  ・β整z−z(y) と表わせる。
From S'(y) in the above equation (6), [・Roidal 52-2
Lens optical axis and cylinder surface 52- when is not eccentric
The light flux when the optical system before 1 has eccentricity is imaged by the toroidal surface 52-2 without eccentricity.
) from the lens optical axis in the scanning direction = S”(y
), then S”(y)=-3'(y)(1-β5z-z (y))
It can be expressed as +S'(y)=S'(y) ・β alignment zz-z(y).

有った場合を考えると、 S”(y) = (SS2−Z  S’(y))  (
1f3gz−z (31)) +S’(y)”S、z−
z (1−β52−2 (y)) +S’(y)−β5
=−2(y)どなる。
Considering the case where there is, S''(y) = (SS2-Z S'(y)) (
1f3gz-z (31)) +S'(y)"S, z-
z (1-β52-2 (y)) +S'(y)-β5
=-2(y) Howl.

これにより、像面7上における主〕Ic線Cにょる結伶
位にと、主光線Rによる結像位置どの差、すなわち走査
線の曲がり量dを求めると、前記(2)式より。
As a result, the difference between the convergence position according to the main Ic line C and the image formation position according to the principal ray R on the image plane 7, that is, the amount of bending d of the scanning line, can be calculated from the above equation (2).

d=(β’−、!−z (R)(S″(R)−3麟2−
2)−β52−2 (C) (S’(C)  552−
23この式を各面の偏心の影響が表わわる様に変形する
と1次式が得られる。
d=(β'-,!-z (R)(S''(R)-3rin2-
2)-β52-2 (C) (S'(C) 552-
23 If this equation is transformed to reflect the influence of eccentricity on each surface, a linear equation is obtained.

d =:に21 S2 +KS1−11Ss14 +f
(5z−2′SS1.−2+Ksz−t  5sz−1
+Ksz−z ・55z−z    山(8)但し、上
式において、係数Kmの各値は次のとおりとする。
d =:21 S2 +KS1-11Ss14 +f
(5z-2'SS1.-2+Ksz-t 5sz-1
+Ksz-z ・55z-z Mountain (8) However, in the above formula, each value of the coefficient Km is as follows.

さらに、トロイダル面52−2の偏心がs sz−z以
上により、各面の影響の和が全体の走査線の曲がりの値
であることがわかる。
Furthermore, since the eccentricity of the toroidal surface 52-2 is greater than or equal to ssz-z, it can be seen that the sum of the effects of each surface is the value of the curvature of the entire scanning line.

実際のレンズについて考えるど、各レンズ面の偏心を0
とすれば走査線の曲がりが無くなることは明らかである
が、レンズは、少なくとも2つ以上の面を持つため、副
走査方向の調整を行なっても1両面共の偏心を0とする
ことは1両面の偏心が−・致している場合を除き不可能
である。
When thinking about an actual lens, the eccentricity of each lens surface is 0.
It is obvious that the bending of the scanning line will be eliminated if this is done, but since the lens has at least two surfaces, it is impossible to make the eccentricity of one surface zero even if the adjustment is made in the sub-scanning direction. This is not possible unless the eccentricities on both sides are the same.

しかし、各レンズを次式のΔSだけ5N整し。However, each lens is adjusted by 5N by ΔS of the following formula.

Sn z+ΔSの偏心を強制的に残す様にすると、次の
(10)式がtηられる。
If the eccentricity of Sn z +ΔS is forced to remain, the following equation (10) can be obtained by tη.

dn=o=Kn 1・(Sn x+ΔS)+Kn 2 
・(Sn Z+ΔS)  −(10)但し、nはレンズ
番号とする。
dn=o=Kn 1・(Sn x+ΔS)+Kn 2
-(Sn Z+ΔS) −(10) However, n is the lens number.

上記(10)式を変形してΔSについて解くと1次の(
11)式を得る。
If we transform the above equation (10) and solve for ΔS, we get the first-order (
11) Obtain the formula.

この(11)式を適用すれば各レンズ毎の走査線の曲が
りを解消できる。さらに、全レンズについて上記(11
)式に従う調整をすればd=0にできる。
By applying this equation (11), it is possible to eliminate the bending of the scanning line for each lens. Furthermore, for all lenses, the above (11)
) can be adjusted to d=0.

次に、走査光学系を構成する各レンズの中、どれを調整
したら最も効果的かについて検討する。
Next, we will consider which of the lenses that make up the scanning optical system should be adjusted most effectively.

前記(8)式よりKn+が走査線面がりの影響度合を表
わしているので、各面の1音率βを考えるとシリンドリ
カルレンズ2の面からシリンダ面52−1までの各面で
は、各面共、0≦β≦1 (β2=o)となっている。
From the above equation (8), Kn+ represents the degree of influence of scanning line surface rounding, so considering the 1 sound rate β of each surface, each surface from the surface of the cylindrical lens 2 to the cylinder surface 52-1 has a Both, 0≦β≦1 (β2=o).

従って、前記(7)式におけるβ′もoくβ′く1とな
る。これに対し、トロイダル面52−2はβ<−1とな
っている。又、倍率β(R)とβ(C)の差をみると、
1β(R)−β(C)I <Iβ(R)+β(C)I 
/2となる。且つ、−・収約に倍率βmが大きいものが
1β(R)−β(c)1の値も大である。
Therefore, β' in the above equation (7) also becomes 0×β'×1. On the other hand, the toroidal surface 52-2 has β<-1. Also, looking at the difference between magnification β(R) and β(C),
1β(R)-β(C)I <Iβ(R)+β(C)I
/2. Moreover, the value of 1β(R)−β(c)1 is also large when the magnification βm is large for the contraction.

以上により倍率1βallの大きな面のKmが大きいこ
とは、前記(9)式からも明らかである。
From the above, it is clear from equation (9) above that Km of the surface with a large magnification of 1βall is large.

このため、1β1の大きな面を含むレンズを動かすこと
で大部分の走査線の曲がりを調整により解消できること
がわかる。
Therefore, it can be seen that most of the bending of the scanning line can be eliminated by adjustment by moving the lens including the large surface of 1β1.

次に、実施例の走査光学系について各レンズの諸元が表
−1であるとき走査線の曲がりに対しての影iWI量を
考える。
Next, consider the amount of shadow iWI with respect to the bending of the scanning line when the specifications of each lens are as shown in Table 1 for the scanning optical system of the embodiment.

(表−1) 但し、表−1において、主光線Cに関し、偏向反射面4
の回転角は0°、主光線Rに関し、偏向反射面4の回転
角は16.6°とする。
(Table-1) However, in Table-1, regarding the principal ray C, the deflection reflection surface 4
The rotation angle of the deflection reflection surface 4 with respect to the chief ray R is 0°, and the rotation angle of the deflection reflection surface 4 is 16.6°.

すると1表−1の各レンズ面の倍率は次のようになる。Then, the magnification of each lens surface in Table 1-1 is as follows.

βz(R)=βz (C)= 0− βn−z (C)
=0.952tβsi −L (R) =0.947 
   βB、−z (C) = 0.887 eβ5z
−z (R) =0.871   、β5z−z (C
)=0.811゜β5t−1(R) =0.772  
  β5z−z CC)= −5,45゜β鴛2−2 
(R) = −0,604上記倍率ど前記(7)式、(
9)式より、K2 =0.11. K514 =0.0
3 ’+ Kgl−t =0.lQ+に52−z =0
.35+ K52−2 =Q、59となる。
βz (R) = βz (C) = 0- βn-z (C)
=0.952tβsi-L(R) =0.947
βB, -z (C) = 0.887 eβ5z
-z (R) =0.871, β5z-z (C
)=0.811゜β5t-1(R)=0.772
β5z-z CC) = -5,45゜β雛2-2
(R) = -0,604 The above magnification is the above equation (7), (
From formula 9), K2 = 0.11. K514 =0.0
3'+Kgl-t=0. 52-z = 0 to lQ+
.. 35+K52-2=Q, 59.

本例でも係数にの−・番大きい面52−2の倍率、βs
ニーz (C)= 7’ 5.45及びβ〜2−2 (
R) =−6,04が−・番大きく、その面52−2を
含むfOレンズ52を調整するどよい。
In this example, the coefficient is −・The magnification of the largest surface 52-2, βs
Knee z (C) = 7' 5.45 and β ~ 2-2 (
R)=-6,04 is -.largest, and the fO lens 52 including that surface 52-2 should be adjusted.

なお、アナモフィン面をもっfOレンズを有する走査光
学系においては、そのfOレンズの最終面にトロイダル
面を配置し、この面の倍率をβく−1とするのが一般的
である0本例でもトロイダル面52−2を最終面におき
、前記の通り数面の倍率はβ<−1である。よって、こ
のトロイダル面をもつfOレンズ52を:A整すること
が効果的どいえる。
In addition, in a scanning optical system having an fO lens with an anamorphine surface, it is common to arrange a toroidal surface on the final surface of the fO lens and set the magnification of this surface to β-1. The toroidal surface 52-2 is placed as the final surface, and as described above, the magnification of the several surfaces is β<-1. Therefore, it is effective to adjust the fO lens 52 having the toroidal surface to:A.

第1図において、関数S’(y)が像高比によらない値
、S′であった場合には、その量だけトロイダル面52
−2を副走査方向Y−Yに移動調整(この:g*後のト
ロイダル面を符号52−2 reで示す)すれば、像面
7上での結像位置は本来の結像位置たる所定位置8Fよ
り距離I(離扛た結像位置8″yに結像し、走査線の曲
がりも発生しない。これは、トロ1′ダル面に偏心があ
るときに、この偏心の量だけfOレンズ52を移動すれ
ば走査線の曲がりを解消できることを意味する。
In FIG. 1, if the function S'(y) is a value S' that does not depend on the image height ratio, the toroidal surface 52
-2 in the sub-scanning direction Y-Y (the toroidal surface after g* is indicated by the symbol 52-2 re), the image formation position on the image plane 7 will be at the predetermined position which is the original image formation position. The image is formed at a distance I (separated from the image position 8''y) from the position 8F, and no bending of the scanning line occurs. This means that by moving 52, the curvature of the scanning line can be eliminated.

なお、」二連の如く結像位置は所定位置8Fから距離1
(たけ離れる。しかし、この種走査光学系では・般にレ
ンズ最終面と結像位置との間には光路折り曲げミラーM
が設けられて、光線を結像位置、〜導く手法が採ら九る
のでこのミラーMの角度を微調節することにより結像位
置8°′yを所定位置8Fへ移すことができる。
In addition, the imaging position is at a distance of 1 from the predetermined position 8F, as shown in the double series
However, in this type of scanning optical system, there is generally an optical path bending mirror M between the final lens surface and the imaging position.
is provided to guide the light beam to the imaging position, so by finely adjusting the angle of this mirror M, the imaging position 8°'y can be moved to the predetermined position 8F.

この結像位置の調節により、結像点がレンズ光軸方向へ
若Tずれるが、像面7とミラーMとの距離が、結徽位=
8′yから所定位置8F間の距離I(に対(21分長け
れば、結像点の光軸方向へのずれは無視できる。
Due to this adjustment of the imaging position, the imaging point is shifted by a small amount T in the direction of the lens optical axis, but the distance between the image plane 7 and the mirror M is
If the distance I from 8'y to the predetermined position 8F is longer by 21 minutes, the shift of the imaging point in the optical axis direction can be ignored.

さらに具体的には、上記例において、 52z−z =0.1mm、 5S2−2 =−0,0
8FlIfiとした場合、前記(11)式及び前記に、
2.−、 =o、3s、 t<、−、==0.59より
ΔS =0.34mmが求まる。
More specifically, in the above example, 52zz = 0.1 mm, 5S2-2 = -0,0
8FlIfi, the above formula (11) and the above,
2. -, =o, 3s, t<, -, ==0.59, ΔS =0.34mm is found.

従って、fOレンズ52を偏心が無いとした場合の理想
位置から0.3=1nrQ副走査方向に移a:A 整す
ればdsZξ0とすることができる。
Therefore, if the fO lens 52 is shifted in the sub-scanning direction by 0.3=1nrQ from the ideal position assuming no decentering, it can be set to dsZξ0.

これにより、走査線の曲がりはシリンドリカルレンズ2
、fOレンズ51の影響で発生するものだけどなり、し
かもその量は殆んど無視でさる程度なので、fOレンズ
52の調整のみで1分に走査線の曲がりの問題を解消で
きる。
As a result, the curve of the scanning line is reduced by the cylindrical lens 2.
, which is caused by the influence of the fO lens 51, and the amount thereof is almost negligible, so the problem of scanning line curvature can be solved in one minute just by adjusting the fO lens 52.

以上により、レンズ単品の偏心公差、取付面の偏心公差
を緩くしても、走査線の曲がり量を小さく:lH1する
ことが可能であることがわかる。
From the above, it can be seen that even if the eccentricity tolerance of the lens alone and the eccentricity tolerance of the mounting surface are made loose, it is possible to reduce the amount of bending of the scanning line by lH1.

次に、第2図を参照しつつ具体的な調整方法の一例を紹
介する。
Next, an example of a specific adjustment method will be introduced with reference to FIG.

第2図(a)において、符号520は偏心のない理想的
なfOレンズを示す。
In FIG. 2(a), reference numeral 520 indicates an ideal fO lens without eccentricity.

このfOlメンズの主径線(母線)から外径部。The outer diameter part from the main diameter line (generating line) of this fOl men's.

つまり取付面までの寸法な■Iとする。そして、この主
径線を理想光軸0−0に合致させた状態でハウジング4
00上に該fOレンズ520が取付けられているものと
する。このような状態を想定して基準状態とする。
In other words, the dimension to the mounting surface is ■I. Then, with this main diameter line aligned with the ideal optical axis 0-0, the housing 4
It is assumed that the fO lens 520 is attached on the lens 00. Such a state is assumed to be a reference state.

さて1本発明を実施するには予め、ハウジング1ooo
の上面をハウジング400のそれよりも寸法りだ【づ低
く=2定し、でおく。この寸法りは次のように定める。
Now, in order to carry out the present invention, a housing 1ooo
The upper surface of the housing 400 is set to be 2 degrees lower than that of the housing 400. This dimension is determined as follows.

つまり、走査光学系を構成する各レンズ単品の両面の偏
心の最大公差より得られる最大調整世を±ΔSMAXと
するとき、h≧1ΔSMAX+を満足する1′f:意の
値どする。このようにすれば寸法りのスペーサの厚さの
範囲であらゆる調整に対処できる。
That is, when the maximum adjustment range obtained from the maximum tolerance of the eccentricity of both surfaces of each lens constituting the scanning optical system is ±ΔSMAX, 1'f which satisfies h≧1ΔSMAX+ is an arbitrary value. In this way, any adjustments can be made within the range of the dimensions and thickness of the spacer.

そして、さらに第2図(b)に示す如く、このハウジン
グ4000上に設定されるべき具体的なfOレンズ52
0Aについて該レンズ両面の偏心量がSa。
Further, as shown in FIG. 2(b), a specific fO lens 52 to be set on this housing 4000
Regarding 0A, the eccentricity of both surfaces of the lens is Sa.

sbであって、その時の5!整量が上げ方向にΔS(但
し、ΔS<151sxAXl)として柑られたとすれば
、スペーナ50の厚さは、5p=h+ΔSとして求まり
、この厚さのスペーサを介在させて、レンズを固定する
ことにより走査線の曲がりを矯正できる。
sb and 5 at that time! If the fixed amount is set in the upward direction as ΔS (however, ΔS<151sxAXl), the thickness of the spacer 50 can be found as 5p=h+ΔS, and by fixing the lens with a spacer of this thickness, Curved scanning lines can be corrected.

第2図(C)の例はfOレンズ520I’3について。The example in FIG. 2(C) concerns the fO lens 520I'3.

調整量が下げ方向にΔS’(但しΔS′く1ΔSMA 
x l)どして得られた場合であり、このときのノ、ペ
ーサ50′ の厚さは、SP’ = h−ΔS′として
求まり、上記に準じて調整を行なうことにより走査線の
曲がりを矯正できる。
The adjustment amount decreases by ΔS' (however, ΔS' decreases by 1ΔSMA)
In this case, the thickness of the pacer 50' is obtained as SP' = h - ΔS', and the bending of the scanning line can be corrected by adjusting according to the above. It can be corrected.

〔発明の効果〕〔Effect of the invention〕

本発明によ九ば、レンズの偏心公差、取(、f面の公差
等を厳格に管理することなく、従ってコスl−を押し上
げない範囲で、走査線の曲がりを画質に影響が出ない程
度にU易に嬌圧する二とができる。
According to the present invention, the bending of the scanning line can be reduced to an extent that does not affect the image quality without strictly controlling the eccentricity tolerance, f-plane tolerance, etc. of the lens, and therefore without pushing up the cost l-. You can easily force it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明を説明するための図、第3図は
走査光学系の平面図、第・1図は[・ンズに偏心がある
場合及びない場合の結像関係を説明した図、第5図は各
走査光を主走査断面へ投影した図、第6図、第7図は同
上図の走査光を副走査断に投影し、た図、第8図は本発
明の実施に適する走査光学系の斜視図、第9図はレンズ
の偏心を説明した図、第10図は従来の走査光学系によ
り生じていた走査線の曲がりについて説明した図である
。 51・・・・fOレンズ、52−2・・・・トロイダル
面、X−X・・・・主走査方向、Y−Y・・・・副走査
方向。 ちl (4> る60
Figures 1 and 2 are diagrams for explaining the present invention, Figure 3 is a plan view of the scanning optical system, and Figure 1 explains the imaging relationship when the lenses are decentered and not. Figure 5 is a diagram in which each scanning beam is projected onto the main scanning section, Figures 6 and 7 are diagrams in which the scanning beams in the same figure are projected onto the sub-scanning section, and Figure 8 is a diagram in which the scanning beams of the same figure are projected onto the sub-scanning section. FIG. 9 is a perspective view of a scanning optical system suitable for implementation, FIG. 9 is a diagram illustrating eccentricity of a lens, and FIG. 10 is a diagram illustrating bending of a scanning line caused by a conventional scanning optical system. 51...fO lens, 52-2...toroidal surface, X-X...main scanning direction, Y-Y...sub-scanning direction. Chil (4>ru60

Claims (1)

【特許請求の範囲】[Claims] 光源から出射される光束を線状に結像させる第1結像光
学系と、この第1結像光学系による結像位置の近傍に偏
向反射面が設定されている光偏向器と、この光偏向器で
偏向された光束により走査される被走査媒体と、上記光
束の光路上であってこの被走査媒体と上記光偏向器との
間に配設され、上記光偏向器で連続的に偏向される光束
の軌跡面たる偏向面と垂直な面内において上記光偏向器
の偏向反射面と上記被走査媒体とを光学的に共役な関係
に保ちつつ上記光束を上記被走査媒体上に結像させる第
2結像光学系を有する走査光学系に関し、上記第2結像
光学系中のレンズの偏心に起因する走査線の曲がりを矯
正する方法であって、上記光偏向器で偏向される光束に
よる走査方向(以下、主走査方向という)と直交する方
向(以下、副走査方向という)に倍率をもち、上記第1
、第2結像光学系のレンズの中、上記倍率が最大のレン
ズ面を有するレンズについて、該レンズを副走査方向に
偏心させた上、固定することを特徴とする走査線の曲が
り矯正方法。
a first imaging optical system that forms a linear image of the light beam emitted from the light source; an optical deflector having a deflecting reflection surface set near the imaging position of the first imaging optical system; A scanned medium is scanned by a light beam deflected by a deflector, and a medium is disposed on the optical path of the light beam between the scanned medium and the light deflector, and is continuously deflected by the light deflector. The light beam is imaged on the scanned medium while maintaining an optically conjugate relationship between the deflection reflection surface of the optical deflector and the scanned medium in a plane perpendicular to the deflection plane that is the locus plane of the beam. A method for correcting bending of a scanning line due to eccentricity of a lens in the second imaging optical system, the method comprising: has a magnification in a direction (hereinafter referred to as sub-scanning direction) perpendicular to the scanning direction (hereinafter referred to as main scanning direction), and
A method for correcting the curvature of a scanning line, comprising decentering the lens in the sub-scanning direction and then fixing the lens having the lens surface with the maximum magnification among the lenses of the second imaging optical system.
JP63275709A 1988-10-31 1988-10-31 Scanning line bending correction method, and scanning optical system in which scanning line bending is corrected by the method Expired - Fee Related JP2756125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63275709A JP2756125B2 (en) 1988-10-31 1988-10-31 Scanning line bending correction method, and scanning optical system in which scanning line bending is corrected by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63275709A JP2756125B2 (en) 1988-10-31 1988-10-31 Scanning line bending correction method, and scanning optical system in which scanning line bending is corrected by the method

Publications (2)

Publication Number Publication Date
JPH02120819A true JPH02120819A (en) 1990-05-08
JP2756125B2 JP2756125B2 (en) 1998-05-25

Family

ID=17559275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63275709A Expired - Fee Related JP2756125B2 (en) 1988-10-31 1988-10-31 Scanning line bending correction method, and scanning optical system in which scanning line bending is corrected by the method

Country Status (1)

Country Link
JP (1) JP2756125B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828401A (en) * 1993-06-28 1998-10-27 Kabushiki Kaisha Toshiba Laser beam exposing unit having plastic non-spherical lenses between a scanner and an image bearer
US6445483B2 (en) 1996-07-01 2002-09-03 Seiko Epson Corporation Optical scanning apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI363698B (en) 2009-03-31 2012-05-11 E Pin Optical Industry Co Ltd Two optical elements fθ lens of short focal distance for laser scanning unit
TWI426297B (en) 2009-06-25 2014-02-11 E Pin Optical Industry Co Ltd Two optical elements fθ lens of short focal distance for laser scanning unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828401A (en) * 1993-06-28 1998-10-27 Kabushiki Kaisha Toshiba Laser beam exposing unit having plastic non-spherical lenses between a scanner and an image bearer
US6445483B2 (en) 1996-07-01 2002-09-03 Seiko Epson Corporation Optical scanning apparatus

Also Published As

Publication number Publication date
JP2756125B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
US7248279B2 (en) Optical scanning device and image forming apparatus using the same
JP2007010868A (en) Optical scanner and image forming apparatus
JPH10197821A (en) Scanning optical instrument
JP3902933B2 (en) Multi-beam optical scanning optical system and image forming apparatus using the same
JP4659277B2 (en) Optical scanning device and image forming apparatus using the same
US7224503B2 (en) Optical scanning apparatus and image forming apparatus using the same
US6987594B2 (en) Optical scanning apparatus
JPH09274152A (en) Multibeam writing optical system
EP1795942B1 (en) Optical scanning system and image forming apparatus using the same
US5583559A (en) Light beam optical scanning system having an fθ mirror
JP2004070109A (en) Optical scanner and image forming apparatus using the same
JP2000267031A (en) Optical scanner
JP5168753B2 (en) Optical scanning apparatus, image forming apparatus, and lens
JPH02120819A (en) Method for correcting bend of scanning line
JP2003149575A (en) Scanning optical system
US6108115A (en) Scanning optical system
JPH11109265A (en) Optical scanner
JP2001059945A (en) Multibeam scanning optical system and image forming device using the same
JP2003185957A (en) Scanning optical system
JPH0862492A (en) Scanning lens system
JP3470040B2 (en) Color image forming equipment
JP3210790B2 (en) Optical scanning device
JP2002148546A (en) Optical scanner
JP2004070110A (en) Optical scanner and image forming apparatus using the same
JP3478679B2 (en) Scanning optical device and laser beam printer having the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees