JP3210790B2 - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JP3210790B2
JP3210790B2 JP28273193A JP28273193A JP3210790B2 JP 3210790 B2 JP3210790 B2 JP 3210790B2 JP 28273193 A JP28273193 A JP 28273193A JP 28273193 A JP28273193 A JP 28273193A JP 3210790 B2 JP3210790 B2 JP 3210790B2
Authority
JP
Japan
Prior art keywords
scanning
optical
constant
deflection
orthogonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28273193A
Other languages
Japanese (ja)
Other versions
JPH07134262A (en
Inventor
彰久 板橋
広道 厚海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP28273193A priority Critical patent/JP3210790B2/en
Publication of JPH07134262A publication Critical patent/JPH07134262A/en
Application granted granted Critical
Publication of JP3210790B2 publication Critical patent/JP3210790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、レーザプリンタ、レー
ザファクシミリ、レーザ複写機等における光書込み装置
等として用いられる光走査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device used as an optical writing device in a laser printer, a laser facsimile, a laser copying machine or the like.

【0002】[0002]

【従来の技術】レーザ光源等の光源装置からの光束を回
転多面鏡等の光偏向器により等角速度的に偏向走査し、
等速走査結像光学素子により感光体等の被走査媒体の被
走査面上に光スポットとして集光させて光走査を行なう
光走査装置が種々提案されており、レーザプリンタ、レ
ーザファクシミリ、レーザ複写機等における光書込み装
置等として利用されている。このような光走査装置にお
いて、偏向光束を被走査面上に光スポットとして集光す
る光学素子として、従来からfθレンズが広く知られて
いるが、fθレンズに代えて反射性の結像素子(偏向光
束を反射し、被走査面上に光スポットとして集光させる
機能を持つ光学素子であって、等速走査用結像反射鏡あ
るいはfθミラーなどと称する)を利用したものが種々
提案されている(特公昭55−36127号、特開昭5
4−123040号、特開平2−84612号、特開平
1−200219号等)。
2. Description of the Related Art A light beam from a light source device such as a laser light source is deflected and scanned at a constant angular velocity by an optical deflector such as a rotary polygon mirror.
There have been proposed various optical scanning devices that perform optical scanning by converging a light spot on a surface to be scanned such as a photoreceptor or the like by a constant-speed scanning image forming optical element, such as a laser printer, a laser facsimile, and a laser copying machine. It is used as an optical writing device in machines and the like. In such an optical scanning device, an fθ lens has been widely known as an optical element for condensing a deflected light beam as a light spot on a surface to be scanned, but a reflective imaging element ( An optical element having a function of reflecting a deflected light beam and condensing it as a light spot on a surface to be scanned, which is referred to as an image-forming reflecting mirror for constant-speed scanning or an fθ mirror, has been proposed. (Japanese Patent Publication No. 55-36127,
4-123040, JP-A-2-84612, JP-A-1-200219).

【0003】このような等速走査用結像反射鏡を用いる
光走査装置では、回転多面鏡等の光偏向器により偏向さ
れた偏向光束が等速走査用結像反射鏡により光偏向器側
に折り返されるため、光偏向器から等速走査用結像反射
鏡に向かう光路と、等速走査用結像反射鏡から被走査面
に向かう光路とを互いに分離する光路分離手段が必要と
なる。この光路分離手段の一つとして、例えば、光偏向
器における偏向反射面の回転軸に対して傾いた方向から
光束を入射させ、偏向光束の方向が上記回転軸に直交す
る平面から傾くようにすることが考えられる。このよう
にすると等速走査用結像反射鏡に入射する偏向光束の方
向と反射光束の方向が分離するため、入射偏向光束の光
路と反射光束の光路とを分離できる。しかし、このよう
な手段により光路分離を行なう場合、各光学素子のレイ
アウトを可能ならしめるためには、偏向反射面に対する
入射光束の角度をある程度大きくせざるを得ず、上記角
度が大きくなると、被走査面上における光スポットの軌
跡、すなわち、走査線に大きな曲がりを生じ、良好な走
査の妨げとなる。
In an optical scanning apparatus using such an imaging mirror for constant-speed scanning, a deflected light beam deflected by an optical deflector such as a rotary polygon mirror is directed to the optical deflector by the imaging mirror for constant-speed scanning. Since the optical path is folded back, an optical path separating unit that separates an optical path from the optical deflector to the imaging mirror for constant-speed scanning and an optical path from the imaging mirror for constant-speed scanning to the surface to be scanned is required. As one of the optical path separating means, for example, a light beam is incident from a direction inclined with respect to the rotation axis of the deflecting reflection surface in the optical deflector, and the direction of the deflection light beam is inclined from a plane orthogonal to the rotation axis. It is possible. By doing so, the direction of the deflected light beam incident on the imaging mirror for constant-speed scanning and the direction of the reflected light beam are separated, so that the optical path of the incident deflected light beam and the optical path of the reflected light beam can be separated. However, when the optical path is separated by such means, in order to make the layout of each optical element possible, the angle of the incident light beam with respect to the deflecting / reflecting surface must be increased to some extent. The locus of the light spot on the scanning surface, that is, a large bend in the scanning line, hinders good scanning.

【0004】また、一般に光偏向器として回転多面鏡が
用いられるが、回転多面鏡の回転に伴い反射点の位置が
ずれるため、一般にサグ(Sag)と呼ばれる反射点バラツ
キが発生し、像面の回転という現象が発生する。結像系
としてfθレンズを用いた場合は、特開平1−9271
7号や特開平4−342222号に開示されているよう
に、fθレンズを被走査媒体と平行にシフトすることに
より補正することが可能であるが、結像系に等速走査用
結像反射鏡を用いた場合、上記手段では像面の回転を補
正しきることはできない。
In general, a rotary polygon mirror is used as an optical deflector, but the position of a reflection point shifts with the rotation of the rotary polygon mirror, so that a reflection point variation generally called a sag occurs, and an image plane is degraded. A phenomenon called rotation occurs. When an fθ lens is used as an image forming system, Japanese Patent Laid-Open No. 1-9271
As disclosed in Japanese Patent Application Laid-Open No. 7-342, and Japanese Patent Application Laid-Open No. 4-342222, the correction can be made by shifting the fθ lens in parallel with the medium to be scanned. When a mirror is used, the above means cannot completely correct the rotation of the image plane.

【0005】[0005]

【発明が解決しようとする課題】本発明は上述した事情
に鑑みてなされたものであって、偏向走査に回転多面鏡
等の光偏向器を用い、等速走査用結像光学素子に反射鏡
を用いた場合にも、上記像面の回転を簡単に補正でき、
且つ上記走査線の曲がりをも有効に補正することができ
る手段を備えた新規な光走査装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and uses an optical deflector such as a rotary polygonal mirror for deflection scanning, and uses a reflecting mirror as an imaging optical element for uniform scanning. In the case of using, the rotation of the image plane can be easily corrected,
It is another object of the present invention to provide a novel optical scanning device provided with a unit capable of effectively correcting the bending of the scanning line.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の光走査装置は、光源装置と、光源装
置からの光束を副走査対応方向(光源から被走査面に到
る光路を光軸に沿って直線的に展開した仮想的な光路上
において、副走査方向に平行的に対応する方向)に収束
させて主走査対応方向(光源から被走査面に到る光路を
光軸に沿って直線的に展開した仮想的な光路上におい
て、主走査方向に平行的に対応する方向)に長い線像に
結像させる光学素子と、上記線像の結像位置近傍に偏向
反射面を有し光束を等角速度的に偏向させる光偏向器
と、光偏向器により偏向された光束を被走査面上に光ス
ポットとして集光しこの光スポットにより被走査面を等
速走査させるべく配された等速走査用結像反射鏡とを有
する光学系を備えた構成となっており、上記等速走査用
結像反射鏡は、その光軸と偏向走査面(主走査平面)に
直交する直線とが交わる点を通り偏向走査面に直交する
直線を回転軸として傾けて配置されている(光学系の光
軸に対し、等速走査用結像反射鏡の光軸が傾けて配置さ
れている)ことを特徴とする。尚、上記偏向走査面は、
光偏向器により理想的に偏向された偏向光束の主光線の
掃引により形成される仮想的な平面(主走査平面)であ
り、例えば、光偏向器が回転多面鏡の場合、回転多面鏡
の回転軸に直交する平面となる。
According to a first aspect of the present invention, there is provided an optical scanning device, comprising: a light source device; and a light beam from the light source device, the light beam corresponding to a sub-scanning direction (an optical path from the light source to the surface to be scanned). Are converged in a virtual optical path linearly developed along the optical axis in a direction corresponding to the sub-scanning direction (in a direction corresponding to the sub-scanning direction), and the optical path from the light source to the surface to be scanned is shifted along the optical axis. An optical element that forms a line image that is long in a virtual optical path that is linearly developed along the main scanning direction (in a direction corresponding to the main scanning direction), and a deflecting reflective surface near the image forming position of the line image. A light deflector for deflecting a light beam at a constant angular velocity, and a light beam deflected by the light deflector is condensed as a light spot on a surface to be scanned, and the light spot is arranged to scan the surface to be scanned at a constant speed. With an optical system having a fixed imaging mirror for constant velocity scanning The above-mentioned imaging mirror for constant velocity scanning is tilted with a straight line passing through a point where an optical axis intersects a straight line orthogonal to the deflection scanning plane (main scanning plane) and orthogonal to the deflection scanning plane as a rotation axis. (The optical axis of the imaging mirror for constant-speed scanning is inclined with respect to the optical axis of the optical system.) Note that the deflection scanning surface is
A virtual plane (main scanning plane) formed by sweeping the principal ray of the deflected light beam ideally deflected by the optical deflector. For example, when the optical deflector is a rotary polygon mirror, the rotation of the rotary polygon mirror It becomes a plane orthogonal to the axis.

【0007】請求項2記載の光走査装置は、請求項1記
載の光走査装置において、等速走査用結像反射鏡は、そ
の光軸と偏向走査面に直交する直線とが交わる点を通り
偏向走査面に直交する直線を回転軸として傾けて配置さ
れ、かつ偏向走査面内において被走査面と平行な方向に
ずらして配置されていることを特徴とする。
According to a second aspect of the present invention, in the optical scanning device according to the first aspect, the imaging mirror for constant-speed scanning passes through a point where an optical axis thereof intersects a straight line orthogonal to the deflection scanning surface. It is characterized by being arranged obliquely about a straight line orthogonal to the deflection scanning surface as a rotation axis, and displaced in the direction parallel to the surface to be scanned within the deflection scanning surface.

【0008】請求項3記載の光走査装置は、請求項1記
載の光走査装置において、等速走査用結像反射鏡は、そ
の光軸と偏向走査面に直交する直線とが交わる点を通り
偏向走査面に直交する直線を回転軸として傾けて配置さ
れ、さらに偏向走査面と直交する方向にずらして配置さ
れていることを特徴とする。
According to a third aspect of the present invention, in the optical scanning device of the first aspect, the imaging mirror for constant-speed scanning passes through a point where an optical axis thereof intersects a straight line orthogonal to the deflection scanning surface. It is characterized by being arranged obliquely about a straight line orthogonal to the deflection scanning surface as a rotation axis, and further displaced in a direction orthogonal to the deflection scanning surface.

【0009】請求項4の記載の光走査装置は、請求項1
記載の光走査装置において、等速走査用結像反射鏡は、
その光軸と偏向走査面に直交する直線とが交わる点を通
り偏向走査面に直交する直線を回転軸として傾けて配置
され、さらに偏向走査面と平行で、光学系の光軸と直交
する軸を回転中心として傾けて配置されていることを特
徴とする。
The optical scanning device according to the fourth aspect is the first aspect.
In the optical scanning device described, the imaging reflector for constant-speed scanning,
An axis that is inclined with a rotation axis passing through a point where the optical axis intersects a straight line orthogonal to the deflection scanning surface and that is orthogonal to the deflection scanning surface, and that is parallel to the deflection scanning surface and orthogonal to the optical axis of the optical system. Are arranged to be inclined with respect to the rotation center.

【0010】請求項5記載の光走査装置は、請求項3記
載の光走査装置において、等速走査用結像反射鏡は、さ
らに偏向走査面内において被走査面と平行な方向にずら
して配置されていることを特徴とする。
According to a fifth aspect of the present invention, in the optical scanning device of the third aspect, the imaging mirror for constant-speed scanning is further displaced in a direction parallel to the surface to be scanned in the deflection scanning surface. It is characterized by having been done.

【0011】請求項6記載の光走査装置は、請求項4記
載の光走査装置において、等速走査用結像反射鏡は、さ
らに偏向走査面と平行で、光学系の光軸と直交する方向
にずらして配置されていることを特徴とする。
According to a sixth aspect of the present invention, there is provided the optical scanning device according to the fourth aspect, wherein the imaging mirror for constant-speed scanning is further parallel to the deflection scanning surface and orthogonal to the optical axis of the optical system. , And are arranged so as to be shifted from each other.

【0012】請求項7記載の光走査装置は、請求項1記
載の光走査装置において、等速走査用結像反射鏡は、そ
の光軸と偏向走査面に直交する直線とが交わる点を通り
偏向走査面に直交する直線を回転軸として傾けて配置さ
れ、さらに偏向走査面内において被走査面と平行な方向
にずらして配置されており、さらに偏向走査面と直交す
る方向にずらして配置されており、さらに偏向走査面と
平行で光学系の光軸と直交する軸を回転中心として傾け
て配置されていることを特徴とする。
According to a seventh aspect of the present invention, in the optical scanning device according to the first aspect, the imaging mirror for constant-speed scanning passes through a point where an optical axis thereof intersects a straight line orthogonal to the deflection scanning surface. It is arranged to be inclined with a straight line perpendicular to the deflection scanning surface as a rotation axis, further shifted in a direction parallel to the surface to be scanned within the deflection scanning surface, and further shifted in a direction orthogonal to the deflection scanning surface. Further, it is characterized in that it is arranged to be inclined about an axis parallel to the deflection scanning surface and orthogonal to the optical axis of the optical system as a rotation center.

【0013】[0013]

【作用】本発明の光走査装置においては、等速走査用結
像反射鏡を、その光軸と偏向走査面に直交する直線とが
交わる点を通り偏向走査面に直交する直線を回転軸とし
て傾けて配置したことにより、光偏向器に回転多面鏡等
を用いた場合に問題となる像面の回転を補正することが
可能となる。また、請求項2記載の光走査装置において
は、さらに、等速走査用結像反射鏡を、偏向走査面内に
おいて被走査面と平行な方向にずらして配置することに
より、像面の回転を容易に補正することが可能となる。
In the optical scanning apparatus according to the present invention, the image-forming reflecting mirror for constant-speed scanning is formed such that a rotation axis is a straight line passing through a point where the optical axis intersects a straight line orthogonal to the deflection scanning surface and orthogonal to the deflection scanning surface. The tilted arrangement makes it possible to correct the rotation of the image plane, which is a problem when a rotating polygon mirror or the like is used as the optical deflector. Further, in the optical scanning device according to the second aspect, the image-forming mirror for constant-speed scanning is further displaced in a direction parallel to the surface to be scanned in the deflection scanning surface, thereby rotating the image surface. Correction can be easily performed.

【0014】また、請求項3乃至7記載の光走査装置に
おいては、等速走査用結像反射鏡を、その光軸と偏向走
査面に直交する直線とが交わる点を通り偏向走査面に直
交する直線を回転軸として傾けて配置し、さらに偏向走
査面内において被走査面と平行な方向にずらして配置し
たり、さらには、偏向走査面と直交する方向にずらして
配置したり、あるいは、偏向走査面と平行で光学系の光
軸と直交する軸を回転中心として傾けて配置した、ある
いは、これらを組み合わせた配置構成をとすることによ
り、光偏向器に回転多面鏡等を用いた場合に問題となる
像面の回転を補正することが可能となり、且つ、光スポ
ットの軌跡である走査線の曲がりをも有効に補正するこ
とが可能となる。
Further, in the optical scanning apparatus according to the third to seventh aspects, the imaging mirror for constant-speed scanning is arranged so that the mirror is perpendicular to the deflection scanning surface through a point where the optical axis intersects a straight line orthogonal to the deflection scanning surface. To be tilted as a rotation axis, and further displaced in a direction parallel to the surface to be scanned within the deflection scanning surface, or further displaced in a direction orthogonal to the deflection scanning surface, or When a rotating polygon mirror or the like is used as an optical deflector by arranging it at an angle parallel to the deflection scanning surface and orthogonal to the optical axis of the optical system, or by using a combination of these. In this case, it is possible to correct the rotation of the image plane, which is a problem, and to effectively correct the curvature of the scanning line, which is the locus of the light spot.

【0015】[0015]

【実施例】以下、本発明を図示の実施例に基づいて詳細
に説明する。図1は本発明の光走査装置における走査光
学系の概略構成を示す斜視図である。図1において、符
号1は光源装置であり、この例においては半導体レーザ
(LD)であり、発散性の光束を放射する。尚、光源装
置としては、この他にLED等を用いることができる。
光源装置1からの光束は、集光レンズ2を通った後、副
走査対応方向にのみ収束させるパワーを持つ潜像結像光
学素子(副走査方向にパワーを有するシリンドリカルレ
ンズ等)3により主走査対応方向に長い線像が光偏向器
4の偏向反射面4A近傍に結像する。光偏向器4は、図
示の例では回転軸に平行な複数の偏向反射面4Aを有す
る回転多面鏡であり、各偏向反射面4Aは回転軸の周り
を回動され、光偏向器4は入射してくる光束を偏向反射
面4Aで等角速度的に偏向する。尚、光偏向器4により
理想的に偏向された偏向光束の主光線の掃引により形成
される仮想的な平面(主走査平面)が偏向走査面であ
り、この例では、回転多面鏡の回転軸に直交する平面と
なる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. FIG. 1 is a perspective view showing a schematic configuration of a scanning optical system in the optical scanning device of the present invention. In FIG. 1, reference numeral 1 denotes a light source device, which in this example is a semiconductor laser (LD), which emits a divergent light beam. In addition, an LED or the like can be used as the light source device.
After the light beam from the light source device 1 passes through the condenser lens 2, main scanning is performed by a latent image forming optical element (such as a cylindrical lens having power in the sub-scanning direction) 3 having power to converge only in the sub-scanning corresponding direction. A line image long in the corresponding direction is formed near the deflection reflection surface 4A of the optical deflector 4. In the illustrated example, the light deflector 4 is a rotary polygon mirror having a plurality of deflecting / reflecting surfaces 4A parallel to the rotation axis. The incoming light beam is deflected at a constant angular velocity by the deflecting / reflecting surface 4A. A virtual plane (main scanning plane) formed by sweeping the principal ray of the deflected light beam ideally deflected by the optical deflector 4 is a deflection scanning surface. In this example, the rotation axis of the rotary polygon mirror is used. Is a plane orthogonal to.

【0016】光偏向器4により等角速度的に偏向された
光束は、等速走査用結像反射鏡6に入射して反射された
後、折り返しミラー(あるいはハーフミラー)5により
折り返され、感光体等の被走査媒体7上に光スポットと
して集光され、被走査媒体7上を光走査する。すなわ
ち、光スポットは、光偏向器4の回転による光束の偏向
に従い、被走査媒体7上の光走査ラインL上を光走査す
る。尚、被走査媒体7の周面における接平面の内で上記
光走査ラインLを含むものが被走査面である。また、図
中の符号11は副走査方向の面倒れ補正光学素子であ
る。
The light beam deflected at a constant angular velocity by the light deflector 4 is incident on and reflected by a constant-speed scanning image forming reflecting mirror 6, and then is returned by a return mirror (or a half mirror) 5 to form a photosensitive member. Are condensed as light spots on the medium 7 to be scanned and optically scan the medium 7 to be scanned. That is, the light spot optically scans the optical scanning line L on the medium 7 to be scanned according to the deflection of the light beam due to the rotation of the optical deflector 4. The surface to be scanned includes the tangent plane on the peripheral surface of the medium to be scanned 7 that includes the optical scanning line L. Reference numeral 11 in the figure denotes a surface tilt correction optical element in the sub-scanning direction.

【0017】さて、この例においては、図2(b)に示
すように、等速走査用結像反射鏡6による反射光が光偏
向器4の側に戻らないように、等速走査用結像反射鏡6
の鏡面が入射光束に対し若干傾けられている。しかし、
図2(a)に示すように、等速走査用結像反射鏡6によ
る反射光が直接被走査媒体7上を光走査する構成として
も良いし、あるいは、光量的に余裕のあるときは、等速
走査用結像反射鏡6を傾けることなく、図2(c)に示
すように、反射光束を半透鏡(ハーフミラー)8で反射
して被走査媒体7に導いても良い。また、これらの他に
も種々の光路構成が可能である。尚、等速走査用結像反
射鏡6を傾けると、走査線に曲がりが生じるが、本出願
人が先に出願した特願平4−62522号、特願平4−
60080号等に提示されているように、偏向光束の光
路中に挿入されたハーフミラーや平行平板を傾けたり、
後述するように、等速走査用結像反射鏡6をシフトさせ
ることにより、走査線の曲がりを実質的に問題とならな
い程度に小さくすることができる。
In this example, as shown in FIG. 2 (b), the constant-speed scanning image forming mirror 6 does not return the reflected light to the optical deflector 4 side. Image reflector 6
Is slightly tilted with respect to the incident light beam. But,
As shown in FIG. 2A, the configuration may be such that the light reflected by the constant-speed scanning imaging reflecting mirror 6 directly scans the medium 7 to be scanned, or when there is a margin in the amount of light, As shown in FIG. 2C, the reflected light beam may be reflected by a semi-transmissive mirror (half mirror) 8 and guided to the medium 7 to be scanned, without tilting the imaging mirror for constant-speed scanning 6. Various other optical path configurations are also possible. When the imaging mirror for constant-speed scanning 6 is tilted, the scanning line is bent. However, the present applicant has previously filed Japanese Patent Application Nos. 4-62522 and 4-254.
No. 60080, etc., a half mirror or a parallel plate inserted in the optical path of the deflected light beam is tilted,
As will be described later, the bending of the scanning line can be reduced to a level that does not substantially cause a problem by shifting the imaging mirror for constant-speed scanning 6.

【0018】次に、等速走査用結像反射鏡について説明
する。等速走査用結像反射鏡6は、偏向光束を被走査面
上に光スポットに集光させる機能と共に、光スポットに
よる光走査が実質的に等速的(光スポットの等速走査か
らのずれによる光走査の誤差を電気的な信号処理で補正
する必要のない程度)に行なわせる機能をも有する。
Next, a description will be given of the imaging mirror for constant-speed scanning. The constant-speed scanning imaging reflecting mirror 6 has a function of condensing the deflected light beam onto a light spot on the surface to be scanned, and also makes the light scanning by the light spot substantially uniform (the deviation of the light spot from the constant-speed scanning). To the extent that it is not necessary to correct optical scanning errors due to electrical signal processing).

【0019】等速走査用結像反射鏡6の形状は、この等
速走査用結像反射鏡6の光軸(鏡面の対称軸)と、この
光軸に直交し主走査対応方向に平行な直線とで決定され
る面(主対称面という)内においては、等速走査用結像
反射鏡6の鏡面は、光軸方向の座標をX、光軸位置を原
点とする光軸直交方向の座標をYとして、一般式、 X=Y2/{Rm+√(Rm 2−(1+K)Y2)}+A22+A3
3+A44+・・・ (Rm:光軸上の曲率半径、K:円錐定数、A2,A3,A
4・・・:非球面係数)で表わされる形状を有する。従っ
て、等速走査用結像反射鏡6の鏡面形状は、Rm,Rs
Kという3つのパラメーターで決定される。尚、等速走
査用結像反射鏡6の鏡面が上記一般式で表わされる形状
を持つとは、鏡面の形状が上記一般式で実質的に表わさ
れることを意味する。
The shape of the constant-speed scanning imaging reflector 6 is perpendicular to the optical axis of the constant-speed scanning imaging reflector 6 (the axis of symmetry of the mirror surface) and parallel to the main scanning direction. Within the plane determined by the straight line (referred to as the principal symmetry plane), the mirror surface of the imaging mirror for constant-speed scanning 6 has a coordinate in the optical axis direction of X and an origin in the optical axis position. coordinate as Y, formula, X = Y 2 / {R m + √ (R m 2 - (1 + K) Y 2)} + a 2 Y 2 + a 3
Y 3 + A 4 Y 4 +... (R m : radius of curvature on the optical axis, K: conical constant, A 2 , A 3 , A
4 ...: aspherical coefficient). Accordingly, the mirror surface shape of the constant-speed scanning imaging reflecting mirror 6 is R m , R s ,
It is determined by three parameters, K. The fact that the mirror surface of the imaging mirror 6 for constant-speed scanning has the shape represented by the above general formula means that the shape of the mirror surface is substantially represented by the above general formula.

【0020】さて、一般に光偏向器4として回転多面鏡
が用いられるが、回転多面鏡の回転に伴い反射点の位置
がずれるため、一般にサグと呼ばれる反射点ばらつきが
発生し、像面の回転という現象が発生する。結像系とし
てfθレンズを用いた場合は、特開平1−92717号
や特開平4−342222号に開示されているように、
fθレンズを被走査媒体と平行にシフトすることにより
補正することが可能であるが、結像系に等速走査用結像
反射鏡を用いた場合、上記手段では像面の回転を補正し
きることはできない。本発明はこの像面の回転を、等速
走査用結像反射鏡6を、その光軸と偏向走査面(主走査
平面)に直交する直線とが交わる点を通り偏向走査面に
直交する直線を回転軸として傾けて配置することにより
補正しようというものである。
In general, a rotary polygon mirror is used as the optical deflector 4. However, since the position of the reflection point shifts with the rotation of the rotary polygon mirror, a variation in the reflection point, which is generally called sag, occurs. The phenomenon occurs. When an fθ lens is used as an imaging system, as disclosed in JP-A-1-92717 and JP-A-4-342222,
The correction can be made by shifting the fθ lens in parallel with the medium to be scanned. However, when an imaging reflecting mirror for constant-speed scanning is used in the imaging system, the above-described means can completely correct the rotation of the image plane. Can not. According to the present invention, the rotation of the image plane is determined by using a constant-speed scanning imaging reflecting mirror 6 as a straight line passing through the point where the optical axis intersects a straight line orthogonal to the deflection scanning plane (main scanning plane) and orthogonal to the deflection scanning plane. Is to be corrected by tilting the rotation axis.

【0021】ここで、図3は本発明の実施例を説明する
ための図であって、走査光学系の主走査平面上の光学系
配置及び光路を仮想的に示す図である。以下、図3によ
り本発明の補正手段について説明する。偏向走査面内
(主走査面内)において、光偏向器の偏向反射面4Aに
入射する光束が収束光である場合、等速走査用結像反射
鏡6から収束光束の自然集光点までの距離をS0 とす
る。また、光偏向器の偏向反射面4Aに入射する光束が
発散光束である場合は、入射光束の虚光源位置が自然集
光点に対応し、その位置は等速走査用結像反射鏡6の鏡
面の手前の位置にあり、負の距離で表わされ、収束光束
の場合と同様に符号S0 で表わす。さらに、線像結像光
学素子3の肉厚をd2、屈折率をn、光源側の曲率半径
をR1M(主走査方向),R1S(副走査方向)、光偏向器
側の曲率半径をR2M(主走査方向),R2S(副走査方
向)とし、線像結像素子3と偏向反射面4Aの距離をd
3 とし、光偏向器4の偏向角をθとする。
FIG. 3 is a view for explaining an embodiment of the present invention, and is a view virtually showing an optical system arrangement and an optical path on a main scanning plane of a scanning optical system. Hereinafter, the correcting means of the present invention will be described with reference to FIG. In the deflection scanning plane (main scanning plane), when the light beam incident on the deflection reflection surface 4A of the optical deflector is convergent light, the light from the imaging mirror for constant-speed scanning 6 to the natural focal point of the convergent light beam Let the distance be S 0 . When the light beam incident on the deflecting / reflecting surface 4A of the optical deflector is a divergent light beam, the position of the imaginary light source of the incident light beam corresponds to the natural condensing point, and the position of the imaginary light source is the position of the imaging mirror for constant speed scanning 6. It is located in front of the mirror surface, is represented by a negative distance, and is represented by the symbol S 0 as in the case of the convergent light flux. Further, the thickness of the line image forming optical element 3 is d 2 , the refractive index is n, the radius of curvature on the light source side is R 1M (main scanning direction), R 1S (sub scanning direction), and the radius of curvature on the optical deflector side. Are R 2M (main scanning direction) and R 2S (sub scanning direction), and the distance between the line image forming element 3 and the deflecting / reflecting surface 4A is d.
3, and the deflection angle of the optical deflector 4 is θ.

【0022】図3において、本発明では、等速走査用結
像反射鏡6は、その光軸と偏向走査面(主走査平面)に
直交する直線とが交わる点を通り偏向走査面に直交する
直線を回転軸Sとして傾けて(回転して)配置されてお
り、その回転した角度(ティルト角)をγとする。すな
わち、このティルト角γを適宜調整することにより、像
面の回転を補正することができる。さらに、図3におい
て、偏向走査面内における光学系の主光軸方向をx方
向、このx方向に直交し、被走査媒体の被走査面7’に
平行な方向をy方向とした場合に、等速走査用結像反射
鏡6を被走査面7’と平行な方向(y方向)にずらして
(シフトして)配置しても像面の回転を補正することが
でき、等速走査用結像反射鏡6の回転軸Sを中心とした
回転と、y方向へのシフトの両方を実施することによ
り、像面の回転をより有効に補正することが可能とな
る。
In FIG. 3, in the present invention, the imaging mirror for constant-speed scanning 6 passes through the point where the optical axis intersects a straight line perpendicular to the deflection scanning plane (main scanning plane) and is orthogonal to the deflection scanning plane. They are arranged to be inclined (rotated) with the straight line as the rotation axis S, and the rotated angle (tilt angle) is γ. That is, by appropriately adjusting the tilt angle γ, the rotation of the image plane can be corrected. Further, in FIG. 3, when the main optical axis direction of the optical system in the deflection scanning plane is an x direction, and a direction orthogonal to the x direction and parallel to the scanning surface 7 ′ of the medium to be scanned is a y direction, Even if the imaging mirror for constant-speed scanning 6 is displaced (shifted) in a direction (y-direction) parallel to the surface 7 'to be scanned, the rotation of the image plane can be corrected. By performing both the rotation of the imaging mirror 6 about the rotation axis S and the shift in the y direction, the rotation of the image plane can be more effectively corrected.

【0023】次に、図4は本発明の別の実施例を説明す
るための図であって、走査光学系の光偏向器以降の光学
系配置及び光路を副走査方向の断面で示した図である。
本実施例では、面倒れ補正光学系として、副走査方向に
のみパワーを有する副シリンドリカルミラー80を用い
ている。また、光束の分離は、図4に示すように、ハー
フミラー50を用いており、本実施例では、このハーフ
ミラー50の等速走査用結像反射鏡6側の面5bを反射
面(半透鏡面)としている。また、符号BSは、光偏向
器4により理想的に偏向された偏向光束の主光線が掃引
することにより形成される仮想的な平面、すなわち偏向
走査面(主走査平面)を示している。上記ハーフミラー
50は偏向走査面BSに対して傾けて配置されており、
光偏向器4からの偏向光束はハーフミラー50を透過
し、等速走査用結像反射鏡6により反射された後、ハー
フミラー50の反射面5bにより反射され、さらに、副
シリンドリカルミラー80により反射されて被走査媒体
7上に光スポットとして集光される。
Next, FIG. 4 is a view for explaining another embodiment of the present invention, in which the arrangement of the optical system after the optical deflector and the optical path of the scanning optical system are shown in a cross section in the sub-scanning direction. It is.
In this embodiment, a sub-cylindrical mirror 80 having power only in the sub-scanning direction is used as the surface tilt correction optical system. In addition, as shown in FIG. 4, a half mirror 50 is used to separate the light beam. In this embodiment, the surface 5b of the half mirror 50 on the side of the constant-speed scanning imaging reflecting mirror 6 is a reflecting surface (half surface). (Mirror surface). Reference symbol BS denotes a virtual plane formed by sweeping the principal ray of the deflected light beam ideally deflected by the optical deflector 4, that is, a deflection scanning plane (main scanning plane). The half mirror 50 is arranged to be inclined with respect to the deflection scanning surface BS,
The deflected light beam from the optical deflector 4 passes through the half mirror 50, is reflected by the imaging mirror for constant-speed scanning 6, is reflected by the reflection surface 5 b of the half mirror 50, and is further reflected by the sub-cylindrical mirror 80. The light is condensed on the medium to be scanned 7 as a light spot.

【0024】ところで、図4に示すように、光偏向器4
と等速走査用結像反射鏡6の間に光束分離用のハーフミ
ラー50を設け、このハーフミラー50を偏向走査面に
対して傾けて配備すると、ハーフミラー50の厚さのた
めに、ハーフミラー50を透過した偏向光束は偏向走査
面BSに直交する方向へずれることになる。このため、
等速走査用結像反射鏡6の光軸が偏向走査面に合致され
て配置されていると、偏向光束の等速走査用結像反射鏡
6に対する入射位置が光軸からずれ、これが光スポット
の軌跡の曲がり(走査線の曲がり)を発生する原因とな
る。そこで本実施例では、図4において、光偏向器4の
回転軸と平行な方向をz軸、光偏向器4の回転軸と直交
する面(偏向走査面)内において等速走査用結像反射鏡
6の光軸AXと平行な方向をx軸としたとき、等速走査
用結像反射鏡6を、偏向走査面BSと直交する方向(z
方向)にずらして(シフトして)配置する。このように
することにより、走査線の曲がりを有効に補正すること
ができる。尚、走査線の曲がりの補正手段としては、上
記の他に、等速走査用結像反射鏡6の光軸AXを偏向走
査面BSに対して傾けて配置することによっても可能で
ある。
By the way, as shown in FIG.
When a half mirror 50 for separating a light beam is provided between the image forming reflecting mirror 6 for scanning at a constant speed and the half mirror 50 is disposed at an angle with respect to the deflection scanning surface, the half mirror 50 becomes thick due to the thickness of the half mirror 50. The deflected light beam transmitted through the mirror 50 is shifted in a direction orthogonal to the deflected scanning surface BS. For this reason,
If the optical axis of the constant-speed scanning imaging reflector 6 is aligned with the deflection scanning surface, the incident position of the deflected light beam on the constant-speed scanning imaging reflector 6 deviates from the optical axis, and this is the light spot. Of the trajectory (scanning line). Therefore, in this embodiment, in FIG. 4, the direction parallel to the rotation axis of the optical deflector 4 is the z-axis, and the imaging reflection for constant velocity scanning is performed in a plane (deflection scanning plane) orthogonal to the rotation axis of the optical deflector 4. Assuming that the direction parallel to the optical axis AX of the mirror 6 is the x axis, the imaging mirror for constant velocity scanning 6 is moved in the direction (z
Direction). By doing so, it is possible to effectively correct the bending of the scanning line. In addition, in addition to the above, it is also possible to correct the scanning line bending by disposing the optical axis AX of the imaging mirror for constant-speed scanning 6 at an angle to the deflection scanning surface BS.

【0025】本発明の光走査装置においては、図3に示
したように、等速走査用結像反射鏡6の回転軸Sを中心
とした回転と、y方向へのシフトにより、像面の回転を
有効に補正することができ、さらに、図4に示したよう
に、等速走査用結像反射鏡6を、偏向走査面BSと直交
する方向(z方向)にずらして(シフトして)配置する
か、等速走査用結像反射鏡6の光軸AXを偏向走査面B
Sに対して傾けて配置することによって走査線の曲がり
を有効に補正することができる。従って、図3、図4を
参照して説明した補正手段を実施することにより、像面
の回転と、走査線の曲がりの両方が補正された光走査装
置を提供できる。
In the optical scanning device according to the present invention, as shown in FIG. 3, the rotation of the imaging mirror for constant velocity scanning 6 around the rotation axis S and the shift in the y direction cause the image plane to be shifted. The rotation can be effectively corrected, and as shown in FIG. 4, the imaging mirror for constant-speed scanning 6 is shifted (shifted) in a direction (z direction) orthogonal to the deflection scanning surface BS. ) To dispose or set the optical axis AX of the imaging mirror for constant-speed scanning 6 to the deflection scanning plane B.
By arranging the scanning line at an angle to S, it is possible to effectively correct the bending of the scanning line. Therefore, by implementing the correction means described with reference to FIGS. 3 and 4, it is possible to provide an optical scanning device in which both the rotation of the image plane and the curvature of the scanning line are corrected.

【0026】次に、具体的な実施例を用いて本発明の効
果の説明を行なう。 (実施例1)光走査装置の光偏向器4以降の光学系の構
成は図4と同様であり、光偏向器4の回転軸と平行な方
向をz軸、光偏向器4の回転軸と直交する面(偏向走査
面)内において等速走査用結像反射鏡6の光軸AXと平
行な方向をx軸とするとき、光偏向器4の回転軸と直交
する面(偏向走査面)BSから等速走査用結像反射鏡6
の光軸AXのz方向へのシフト量をΔzとする。また、
副シリンドリカルミラー80の入射光束と反射光束の成
す角をβとする。また、図4において、αはハーフミラ
ー50と入射光束の成す角であり、ハーフミラー50へ
の入射光束と等速走査用結像反射鏡6の光軸AXは平行
に設置されているものとする。そして、等速走査用結像
反射鏡6は図3に示したと同様に、その光軸AXと偏向
走査面(主走査平面)BSに直交する直線とが交わる点
を通り偏向走査面BSに直交する直線を回転軸Sとして
傾けて配置されており、その回転軸Sを中心に回転した
角度をγとする。尚、γは反時計回りを+方向とする。
Next, the effects of the present invention will be described with reference to specific examples. (Embodiment 1) The configuration of the optical system after the optical deflector 4 of the optical scanning device is the same as that of FIG. 4, the direction parallel to the rotation axis of the optical deflector 4 is the z axis, and the rotation axis of the optical deflector 4 is When the direction parallel to the optical axis AX of the imaging mirror for constant-speed scanning 6 in the orthogonal plane (deflection scanning plane) is the x-axis, the plane orthogonal to the rotation axis of the optical deflector 4 (deflection scanning plane). Imaging reflector 6 for uniform scanning from BS
Is the shift amount of the optical axis AX in the z direction. Also,
The angle between the incident light beam and the reflected light beam of the sub-cylindrical mirror 80 is represented by β. In FIG. 4, α is an angle formed between the half mirror 50 and the incident light beam, and it is assumed that the light beam incident on the half mirror 50 and the optical axis AX of the imaging mirror for constant-speed scanning 6 are set in parallel. I do. Then, as shown in FIG. 3, the constant-speed scanning imaging reflecting mirror 6 passes through a point where its optical axis AX intersects with a straight line orthogonal to the deflection scanning plane (main scanning plane) BS and is orthogonal to the deflection scanning plane BS. Is inclined with respect to the rotation axis S, and the angle rotated about the rotation axis S is γ. Note that γ is a counterclockwise direction in the + direction.

【0027】また、ハーフミラー50の屈折率をn’、
光偏向器4の偏向反射面4Aからハーフミラー50の光
入射面までの距離をd0 、ハーフミラー50の光入射点
から出射点までの距離をd1 、ハーフミラー50の光出
射点から等速走査用結像反射鏡6の反射面までの距離を
4 、偏向走査面BSから副シリンドリカルミラー80
の反射面までの距離をd5 、副シリンドリカルミラー8
0の反射面から被走査媒体7の被走査面までの距離をd
6 とする。また、副シリンドリカルミラー80の曲率半
径をR3M(主走査方向),R3S(副走査方向)とする。
また、光偏向器4以前の光学系配置は図3と同様であ
り、線像結像光学素子3の肉厚をd2 、屈折率をn、光
源側の曲率半径をR1M(主走査方向),R1S(副走査方
向)、光偏向器4側の曲率半径をR2M(主走査方向),
2S(副走査方向)とし、線像結像素子3と偏向反射面
4Aの距離をd3 とし、光偏向器4の偏向角をθとす
る。
The refractive index of the half mirror 50 is n ′,
The distance from the deflecting / reflecting surface 4A of the optical deflector 4 to the light incident surface of the half mirror 50 is d 0 , the distance from the light incident point to the light emitting point of the half mirror 50 is d 1 , and the distance from the light emitting point of the half mirror 50 The distance from the reflecting surface of the imaging mirror 6 for fast scanning is d 4 , and the distance between the deflection scanning surface BS and the sub-cylindrical mirror 80 is
The distance to the reflecting surface of d 5 , the secondary cylindrical mirror 8
0 is the distance from the reflecting surface of the scanning medium 7 to the scanning surface of the medium 7 to be scanned.
6 is assumed. The radius of curvature of the sub cylindrical mirror 80 is R 3M (main scanning direction) and R 3S (sub scanning direction).
The arrangement of the optical system before the light deflector 4 is the same as that of FIG. 3, and the thickness of the line image forming optical element 3 is d 2 , the refractive index is n, and the radius of curvature on the light source side is R 1M (in the main scanning direction). ), R 1S (sub-scanning direction), radius of curvature on the optical deflector 4 side as R 2M (main scanning direction),
R 2S (sub-scanning direction), the distance between the linear image forming element 3 and the deflecting / reflecting surface 4A is d 3, and the deflection angle of the optical deflector 4 is θ.

【0028】本実施例における各パラメータの具体的な
数値を以下にまとめて示す。 R1M=∞ ,R1S=96.11mm ,R2M=∞ ,R2S=∞
,R3M=∞ ,R3S=-143.46mm ,d2=5mm ,n
=1.51118 ,d3=146.852mm ,d0=254.921mm ,
1=7.071mm ,n’=1.51118 ,d4=18.336mm
,d5=81.664mm ,R=-800.0mm ,K=0.5 ,A4
=1.0×10~10 ,A6=-2.8×10~15 ,A8=2.6×10~20
,S0=595.674mm ,θ=±28.4°,α=45°,β=1
0°,γ=-2.328°,Δz=8.336mm ,Δy=-34.15mm
,δ=0 。
Specific numerical values of each parameter in the present embodiment are summarized below. R 1M = ∞, R 1S = 96.11 mm, R 2M = ∞, R 2S = ∞
, R 3M = ∞, R 3S = -143.46 mm, d 2 = 5 mm, n
= 1.51118, d 3 = 146.852 mm, d 0 = 254.921 mm,
d 1 = 7.071mm, n '= 1.51118, d 4 = 18.336mm
, D 5 = 81.664 mm, R = −800.0 mm, K = 0.5, A 4
= 1.0 × 10 ~ 10 , A 6 = -2.8 × 10 ~ 15 , A 8 = 2.6 × 10 ~ 20
, S 0 = 595.674 mm, θ = ± 28.4 °, α = 45 °, β = 1
0 °, γ = -2.328 °, Δz = 8.336mm, Δy = -34.15mm
, Δ = 0.

【0029】ここで、Δyとは、等速走査用結像反射鏡
6が被走査面と平行な方向(図3のy方向)へシフトさ
れるときのシフト量を表わす。すなわち、本実施例で
は、等速走査用結像反射鏡6のy方向へのシフトと、回
転軸Sを中心とした回転の両方を行ない、これらの効果
により像面の回転を補正している。また、本実施例で
は、等速走査用結像反射鏡6をz方向へシフトすること
により走査線の曲がりを補正している。図5(a)に本
実施例の光走査装置における収差図を示す。尚、収差図
において、像面湾曲は光偏向器の回転時の動的像面湾曲
を表わし、点線が主走査方向、実線が副走査方向の結像
性能を示している。また、リニアリティ,fθ特性で、
点線がfθ特性、実線がリニアリティを示しており、f
θ特性は、周知の如く理想像高をHr(θ)、実像高をHi
(θ)とするとき、 (fθ特性)={Hr(θ)/Hi(θ)−1}×100(%) で定義される。また、リニアリティはfθ特性と同様に
周知であり、 (リニアリティ)={dHr(θ)/dHi(θ)−1}×100(%) で定義される。
Here, Δy represents the shift amount when the imaging mirror for constant-speed scanning 6 is shifted in the direction parallel to the surface to be scanned (the y direction in FIG. 3). That is, in the present embodiment, both the shift in the y direction of the imaging mirror for constant-speed scanning 6 and the rotation about the rotation axis S are performed, and the rotation of the image plane is corrected by these effects. . Further, in this embodiment, the curvature of the scanning line is corrected by shifting the imaging mirror for constant-speed scanning 6 in the z direction. FIG. 5A shows an aberration diagram in the optical scanning device of the present embodiment. In the aberration diagrams, the field curvature indicates the dynamic field curvature when the optical deflector rotates, and the dotted line indicates the imaging performance in the main scanning direction and the solid line indicates the imaging performance in the sub-scanning direction. In linearity and fθ characteristics,
The dotted line indicates the fθ characteristic, the solid line indicates the linearity, and f
As is well known, the θ characteristic indicates that the ideal image height is H r (θ) and the actual image height is H i (H i ).
When (θ) is defined, (fθ characteristic) = {H r (θ) / H i (θ) −1} × 100 (%). Also, the linearity is well known like the fθ characteristics, as defined in (linearity) = {dH r (θ) / dH i (θ) -1} × 100 (%).

【0030】次に、比較のため、等速走査用結像反射鏡
6のy方向へのシフトと、回転軸Sを中心とした回転の
両方とも行なっていない場合の例を示す。この場合の比
較例の各パラメータの数値データは、 γ=0°,Δy=0 とした以外は同じ条件とした。この時の収差図を図5
(b)に示す。図5の(a),(b)を比較すると、
(a)の方が像面湾曲及びfθ特性、リニアリティが改
善されており、本発明の効果は明らかである。尚、γ=
0°,Δy=-34.5 のように、y方向のシフトのみでは
性能がでないのは言うまでもない。
Next, for comparison, an example is shown in which both the shift in the y-direction of the imaging mirror for constant-speed scanning 6 and the rotation about the rotation axis S are not performed. Numerical data of each parameter of the comparative example in this case were set to the same conditions except that γ = 0 ° and Δy = 0. The aberration diagram at this time is shown in FIG.
(B). Comparing (a) and (b) of FIG.
(A) has improved field curvature, fθ characteristics, and linearity, and the effect of the present invention is clear. Note that γ =
Needless to say, the performance is not achieved only by shifting in the y direction, as in 0 °, Δy = -34.5.

【0031】(実施例2)次に、走査線の曲がりの補正
を、図4におけるz方向のシフトを用いずに、等速走査
用結像反射鏡6を、偏向走査面内に存在し、光軸AXと
直交する直線を軸として傾ける(回転する)手段(図4
における角度δだけ回転する)を用いることにより補正
した場合の実施例を示す。尚、δは時計回りを+方向と
する。本実施例における各パラメータの具体的な数値を
以下にまとめて示す。 R1M=∞ ,R1S=96.11mm ,R2M=∞ ,R2S=∞
,R3M=∞ ,R3S=-143.46mm ,d2=5mm ,n
=1.51118 ,d3=146.852mm ,d0=254.921mm ,
1=7.071mm ,n’=1.51118 ,d4=18.336mm ,
5=81.664mm ,R=-800.0mm ,K=0.5 ,A4
1.0×10~10 ,A6=-2.8×10~15 ,A8=2.6×10~
20 ,S0=595.674mm ,θ=±28.4°,α=45°,β
=10°,γ=-2.328°,Δz=0 ,Δy=-34.15mm
,δ=0.6° 。
(Embodiment 2) Next, the curvature of the scanning line is corrected without using the shift in the z-direction in FIG. Means for tilting (rotating) around a straight line orthogonal to the optical axis AX (FIG. 4)
An example is shown in which correction is made by using the angle .theta. Note that δ is a clockwise direction in the + direction. Specific numerical values of each parameter in the present embodiment are summarized below. R 1M = ∞, R 1S = 96.11 mm, R 2M = ∞, R 2S = ∞
, R 3M = ∞, R 3S = -143.46 mm, d 2 = 5 mm, n
= 1.51118, d 3 = 146.852 mm, d 0 = 254.921 mm,
d 1 = 7.071 mm, n ′ = 1.51118, d 4 = 18.336 mm,
d 5 = 81.664mm, R = -800.0mm , K = 0.5, A 4 =
1.0 × 10 ~ 10 , A 6 = -2.8 × 10 ~ 15 , A 8 = 2.6 × 10 ~
20 , S 0 = 595.674 mm, θ = ± 28.4 °, α = 45 °, β
= 10 °, γ = -2.328 °, Δz = 0, Δy = -34.15mm
, Δ = 0.6 °.

【0032】図6に本実施例の光走査装置における収差
図を示す。図6を見ると明らかなように、本実施例にお
いても像面湾曲及びfθ特性、リニアリティが改善され
ており、走査線の曲がりも有効に補正されている。
FIG. 6 shows aberration diagrams in the optical scanning device of this embodiment. As is apparent from FIG. 6, also in this embodiment, the field curvature, the fθ characteristic, and the linearity are improved, and the scanning line bending is also effectively corrected.

【0033】[0033]

【発明の効果】以上、説明したように、請求項1の光走
査装置においては、偏向走査に回転多面鏡等の光偏向器
を用い、等速走査用結像光学素子に反射鏡を用いた場合
にも、等速走査用結像反射鏡を、その光軸と偏向走査面
(主走査平面)に直交する直線とが交わる点を通り偏向
走査面に直交する直線を回転軸として傾けて配置したこ
とにより、像面の回転を簡単に補正することができる。
As described above, in the optical scanning apparatus according to the first aspect, an optical deflector such as a rotary polygon mirror is used for deflection scanning, and a reflecting mirror is used for an imaging optical element for uniform scanning. Also in this case, the imaging mirror for constant velocity scanning is arranged so that a straight line passing through a point where the optical axis intersects a straight line orthogonal to the deflection scanning plane (main scanning plane) and orthogonal to the deflection scanning plane is used as a rotation axis. This makes it possible to easily correct the rotation of the image plane.

【0034】請求項2の光走査装置においては、等速走
査用結像反射鏡を、その光軸と偏向走査面に直交する直
線とが交わる点を通り偏向走査面に直交する直線を回転
軸として傾けて配置し、かつ偏向走査面内において被走
査面と平行な方向にずらして配置したことにより、等速
走査用結像反射鏡の回転とシフトの互いの効果により、
像面の回転を容易に補正することができる。
In the optical scanning apparatus according to the second aspect, the imaging mirror for constant-speed scanning is formed by rotating a straight line orthogonal to the deflection scanning surface through a point where an optical axis thereof intersects a straight line orthogonal to the deflection scanning surface. By tilting and displacing in the direction parallel to the surface to be scanned in the deflection scanning plane, the mutual effect of rotation and shift of the imaging mirror for constant velocity scanning,
The rotation of the image plane can be easily corrected.

【0035】請求項3の光走査装置においては、等速走
査用結像反射鏡を、その光軸と偏向走査面に直交する直
線とが交わる点を通り偏向走査面に直交する直線を回転
軸として傾けて配置し、さらに偏向走査面と直交する方
向にずらして配置したことにより、像面の回転と走査線
の曲がりの両方を有効に補正することができる。
According to a third aspect of the present invention, in the optical scanning apparatus, the imaging mirror for constant-speed scanning is formed by rotating a straight line perpendicular to the deflection scanning surface through a point where an optical axis intersects a straight line orthogonal to the deflection scanning surface. By arranging them at an angle and further displacing them in a direction orthogonal to the deflection scanning plane, both the rotation of the image plane and the bending of the scanning line can be effectively corrected.

【0036】請求項4の光走査装置においては、等速走
査用結像反射鏡を、その光軸と偏向走査面に直交する直
線とが交わる点を通り偏向走査面に直交する直線を回転
軸として傾けて配置し、さらに偏向走査面と平行で、光
学系の光軸と直交する軸を回転中心として傾けて配置し
たことにより、像面の回転と走査線の曲がりの両方を有
効に補正することができる。
In the optical scanning device according to the fourth aspect, the imaging mirror for constant-speed scanning is formed by rotating a straight line perpendicular to the deflection scanning surface through a point where an optical axis intersects a straight line orthogonal to the deflection scanning surface. By tilting the axis of rotation about the axis parallel to the deflection scanning surface and orthogonal to the optical axis of the optical system, both the rotation of the image plane and the bending of the scanning line are effectively corrected. be able to.

【0037】請求項5の光走査装置においては、請求項
3の光走査装置において、等速走査用結像反射鏡は、さ
らに偏向走査面内において被走査面と平行な方向にずら
して配置されていることにより、等速走査用結像反射鏡
の回転とシフトの互いの効果により、像面の回転をより
容易に補正することができ、且つ走査線の曲がりを有効
に補正することができる。
According to a fifth aspect of the present invention, in the optical scanning device of the third aspect, the imaging mirror for constant-speed scanning is further displaced in a direction parallel to the surface to be scanned within the deflection scanning surface. Accordingly, the rotation of the image plane can be more easily corrected and the curvature of the scanning line can be effectively corrected by the mutual effect of the rotation and the shift of the imaging reflector for constant velocity scanning. .

【0038】請求項6の光走査装置においては、請求項
4の光走査装置において、等速走査用結像反射鏡は、さ
らに偏向走査面と平行で、光学系の光軸と直交する方向
にずらして配置されていることにより、像面の回転をよ
り容易に補正することができ、且つ走査線の曲がりを有
効に補正することができる。
In the optical scanning device according to the sixth aspect, in the optical scanning device according to the fourth aspect, the imaging mirror for constant-speed scanning further has a direction parallel to the deflection scanning surface and perpendicular to the optical axis of the optical system. By being shifted, the rotation of the image plane can be more easily corrected, and the curvature of the scanning line can be effectively corrected.

【0039】請求項7の光走査装置においては、等速走
査用結像反射鏡は、その光軸と偏向走査面に直交する直
線とが交わる点を通り偏向走査面に直交する直線を回転
軸として傾けて配置され、さらに偏向走査面内において
被走査面と平行な方向にずらして配置されており、さら
に偏向走査面と直交する方向にずらして配置されてお
り、さらに偏向走査面と平行で光学系の光軸と直交する
軸を回転中心として傾けて配置されていることにより、
像面の回転をより容易に補正することができ、且つ走査
線の曲がりをより有効に補正することができる。
In the optical scanning device of the present invention, the imaging mirror for constant-speed scanning is configured such that a rotation axis is a straight line passing through a point where an optical axis intersects a straight line orthogonal to the deflection scanning surface and orthogonal to the deflection scanning surface. Are arranged in a tilted manner, further shifted in a direction parallel to the surface to be scanned within the deflection scanning surface, further shifted in a direction orthogonal to the deflection scanning surface, and further parallel to the deflection scanning surface. By being tilted around the axis orthogonal to the optical axis of the optical system as the center of rotation,
The rotation of the image plane can be more easily corrected, and the curvature of the scanning line can be more effectively corrected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光走査装置における走査光学系の概略
構成例を示す斜視図である。
FIG. 1 is a perspective view showing a schematic configuration example of a scanning optical system in an optical scanning device of the present invention.

【図2】本発明が適用される光走査装置の副走査方向の
光路の説明図である。
FIG. 2 is an explanatory diagram of an optical path in a sub-scanning direction of an optical scanning device to which the present invention is applied.

【図3】本発明の実施例を説明するための図であって、
走査光学系の主走査平面上の光学系配置及び光路を仮想
的に示す図である。
FIG. 3 is a diagram for explaining an embodiment of the present invention,
FIG. 3 is a diagram virtually illustrating an optical system arrangement and an optical path on a main scanning plane of the scanning optical system.

【図4】本発明の別の実施例を説明するための図であっ
て、走査光学系の光偏向器以降の光学系配置及び光路を
副走査方向の断面で示した図である。
FIG. 4 is a diagram for explaining another embodiment of the present invention, and is a diagram showing an optical system arrangement and an optical path after an optical deflector of a scanning optical system in a cross section in the sub-scanning direction.

【図5】本発明による補正効果の説明図であって、
(a)は実施例1の光走査装置における収差を示す図、
(b)は像面の回転の補正を行なわない場合の収差を示
す図である。
FIG. 5 is an explanatory diagram of a correction effect according to the present invention,
FIG. 3A is a diagram illustrating aberrations in the optical scanning device according to the first embodiment.
FIG. 7B is a diagram illustrating aberrations when the rotation of the image plane is not corrected.

【図6】本発明による補正効果の説明図であって、実施
例2の光走査装置における収差を示す図である。
FIG. 6 is an explanatory diagram of a correction effect according to the present invention, showing aberrations in the optical scanning device according to the second embodiment.

【符号の説明】 1:光源装置 2:集光レンズ 3:線像結像光学素子 4:光偏向器(回転多面鏡) 4A:偏向反射面 5:折り返しミラー 6:等速走査用結像反射鏡 7:被走査媒体 8,50:ハーフミラー 11:面倒れ補正光学素子 80:副シリンドリカルミラー[Description of Signs] 1: Light source device 2: Condensing lens 3: Line image forming optical element 4: Optical deflector (rotating polygon mirror) 4A: Deflective reflecting surface 5: Return mirror 6: Image forming reflection for constant speed scanning Mirror 7: Scanned medium 8, 50: Half mirror 11: Surface tilt correction optical element 80: Sub-cylindrical mirror

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−348310(JP,A) 特開 昭56−167118(JP,A) 特開 平2−308213(JP,A) 特開 平5−346549(JP,A) 特開 平1−200221(JP,A) 特開 平5−45598(JP,A) 特開 昭64−52116(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 26/10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-348310 (JP, A) JP-A-56-167118 (JP, A) JP-A-2-308213 (JP, A) JP-A-5-167 346549 (JP, A) JP-A-1-200221 (JP, A) JP-A-5-45598 (JP, A) JP-A-64-52116 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 26/10

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源装置と、光源装置からの光束を副走査
対応方向に収束させて主走査対応方向に長い線像に結像
させる光学素子と、上記線像の結像位置近傍に偏向反射
面を有し光束を等角速度的に偏向させる光偏向器と、光
偏向器により偏向された光束を被走査面上に光スポット
として集光しこの光スポットにより被走査面を等速走査
させるべく配された等速走査用結像反射鏡とを有する光
学系を備えた光走査装置において、 上記等速走査用結像反射鏡は、その光軸と偏向走査面
(主走査平面)に直交する直線とが交わる点を通り偏向
走査面に直交する直線を回転軸として傾けて配置されて
いる(光学系の光軸に対し、等速走査用結像反射鏡の光
軸が傾けて配置されている)ことを特徴とする光走査装
置。
1. A light source device, an optical element for converging a light beam from the light source device in a sub-scanning corresponding direction to form a line image long in a main scanning corresponding direction, and deflecting and reflecting near an image forming position of the line image A light deflector having a surface and deflecting a light beam at a constant angular velocity; and a light beam deflected by the light deflector is condensed as a light spot on a surface to be scanned, and the light spot is used to scan the surface to be scanned at a constant speed. In an optical scanning device provided with an optical system having an arranged constant-speed scanning imaging reflector, the constant-speed scanning imaging reflector is orthogonal to its optical axis and a deflection scanning plane (main scanning plane). The optical axis of the imaging mirror for constant-speed scanning is tilted with respect to the optical axis of the optical system, and is inclined with respect to the optical axis of the optical system. Optical scanning device.
【請求項2】請求項1記載の光走査装置において、等速
走査用結像反射鏡は、その光軸と偏向走査面に直交する
直線とが交わる点を通り偏向走査面に直交する直線を回
転軸として傾けて配置され、かつ偏向走査面内において
被走査面と平行な方向にずらして配置されていることを
特徴とする光走査装置。
2. The optical scanning device according to claim 1, wherein the imaging mirror for constant-speed scanning forms a straight line orthogonal to the deflection scanning surface through a point where the optical axis intersects a straight line orthogonal to the deflection scanning surface. An optical scanning device, wherein the optical scanning device is arranged to be inclined as a rotation axis and is shifted in a direction parallel to a surface to be scanned within a deflection scanning surface.
【請求項3】請求項1記載の光走査装置において、等速
走査用結像反射鏡は、その光軸と偏向走査面に直交する
直線とが交わる点を通り偏向走査面に直交する直線を回
転軸として傾けて配置され、さらに偏向走査面と直交す
る方向にずらして配置されていることを特徴とする光走
査装置。
3. The optical scanning device according to claim 1, wherein the imaging mirror for constant-speed scanning forms a straight line orthogonal to the deflection scanning surface through a point at which the optical axis intersects a straight line orthogonal to the deflection scanning surface. An optical scanning device, wherein the optical scanning device is arranged to be tilted as a rotation axis and further shifted in a direction orthogonal to a deflection scanning surface.
【請求項4】請求項1記載の光走査装置において、等速
走査用結像反射鏡は、その光軸と偏向走査面に直交する
直線とが交わる点を通り偏向走査面に直交する直線を回
転軸として傾けて配置され、さらに偏向走査面と平行
で、光学系の光軸と直交する軸を回転中心として傾けて
配置されていることを特徴とする光走査装置。
4. The optical scanning device according to claim 1, wherein the imaging mirror for constant-speed scanning forms a straight line orthogonal to the deflection scanning surface through a point where the optical axis intersects a straight line orthogonal to the deflection scanning surface. An optical scanning device, wherein the optical scanning device is tilted as a rotation axis, and further tilted with an axis parallel to the deflection scanning surface and orthogonal to the optical axis of the optical system as a rotation center.
【請求項5】請求項3記載の光走査装置において、等速
走査用結像反射鏡は、さらに偏向走査面内において被走
査面と平行な方向にずらして配置されていることを特徴
とする光走査装置。
5. The optical scanning device according to claim 3, wherein the imaging mirror for constant-speed scanning is further displaced in a direction parallel to the surface to be scanned in the deflection scanning surface. Optical scanning device.
【請求項6】請求項4記載の光走査装置において、等速
走査用結像反射鏡は、さらに偏向走査面と平行で、光学
系の光軸と直交する方向にずらして配置されていること
を特徴とする光走査装置。
6. The optical scanning device according to claim 4, wherein the imaging mirror for constant-speed scanning is further displaced in a direction parallel to the deflection scanning surface and orthogonal to the optical axis of the optical system. An optical scanning device characterized by the above-mentioned.
【請求項7】請求項1記載の光走査装置において、等速
走査用結像反射鏡は、その光軸と偏向走査面に直交する
直線とが交わる点を通り偏向走査面に直交する直線を回
転軸として傾けて配置され、さらに偏向走査面内におい
て被走査面と平行な方向にずらして配置されており、さ
らに偏向走査面と直交する方向にずらして配置されてお
り、さらに偏向走査面と平行で光学系の光軸と直交する
軸を回転中心として傾けて配置されていることを特徴と
する光走査装置。
7. The optical scanning device according to claim 1, wherein the imaging mirror for constant-speed scanning forms a straight line orthogonal to the deflection scanning surface through a point at which the optical axis intersects a straight line orthogonal to the deflection scanning surface. It is disposed at an angle as a rotation axis, is further displaced in a direction parallel to the surface to be scanned within the deflection scanning surface, is further displaced in a direction orthogonal to the deflection scanning surface, and further includes a deflection scanning surface. An optical scanning device, wherein the optical scanning device is arranged to be inclined about an axis parallel to and orthogonal to an optical axis of an optical system as a rotation center.
JP28273193A 1993-11-11 1993-11-11 Optical scanning device Expired - Lifetime JP3210790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28273193A JP3210790B2 (en) 1993-11-11 1993-11-11 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28273193A JP3210790B2 (en) 1993-11-11 1993-11-11 Optical scanning device

Publications (2)

Publication Number Publication Date
JPH07134262A JPH07134262A (en) 1995-05-23
JP3210790B2 true JP3210790B2 (en) 2001-09-17

Family

ID=17656315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28273193A Expired - Lifetime JP3210790B2 (en) 1993-11-11 1993-11-11 Optical scanning device

Country Status (1)

Country Link
JP (1) JP3210790B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548956B2 (en) 1994-12-13 2003-04-15 The Trustees Of Princeton University Transparent contacts for organic devices
US6596134B2 (en) 1994-12-13 2003-07-22 The Trustees Of Princeton University Method of fabricating transparent contacts for organic devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548956B2 (en) 1994-12-13 2003-04-15 The Trustees Of Princeton University Transparent contacts for organic devices
US6596134B2 (en) 1994-12-13 2003-07-22 The Trustees Of Princeton University Method of fabricating transparent contacts for organic devices
US7714504B2 (en) 1994-12-13 2010-05-11 The Trustees Of Princeton University Multicolor organic electroluminescent device formed of vertically stacked light emitting devices
US8324803B2 (en) 1994-12-13 2012-12-04 The Trustees Of Princeton University Transparent contacts for organic devices

Also Published As

Publication number Publication date
JPH07134262A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
JP3072061B2 (en) Optical scanning device
US20010055139A1 (en) Optical scanning device
JPH06118325A (en) Optical scanner
JP3453737B2 (en) Scanning imaging optical system / optical scanning device and image forming apparatus
JPH06123844A (en) Optical scanner
US20020114051A1 (en) Scanning optics with optical elements formed of resin and optical scanning device and image forming apparatus using the same
JP3222498B2 (en) Scanning optical system
KR100393874B1 (en) Photo Scanner and Image Reading Apparatus and Image Forming Apparatus using the Photo Scanner
JP3943820B2 (en) Optical scanning device, multi-beam optical scanning device, and image forming apparatus
JP3191538B2 (en) Scanning lens and optical scanning device
JP3210790B2 (en) Optical scanning device
JPH10148755A (en) Scanning optical device, and scanning optical lens therefor
JP2003107382A (en) Scanning optical system
JP3323354B2 (en) Optical scanning device
JP4219429B2 (en) Manufacturing method of imaging mirror in multi-beam scanning imaging optical system
JP4794717B2 (en) Optical scanning optical device and image forming apparatus using the same
JP3320239B2 (en) Scanning optical device
JP3639097B2 (en) Optical scanning device
JP3026664B2 (en) Imaging reflector for constant-speed optical scanning and optical scanning device
JP3452294B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JPH112769A (en) Optical scanner
JP2615850B2 (en) Light beam scanning optical system
JP3364525B2 (en) Scanning imaging lens and optical scanning device
JP3405373B2 (en) Optical deflector and optical scanning device
JPH11242179A (en) Optical scanner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070713

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

EXPY Cancellation because of completion of term