JPH02119992A - Method and device for purifying sewage - Google Patents

Method and device for purifying sewage

Info

Publication number
JPH02119992A
JPH02119992A JP63270359A JP27035988A JPH02119992A JP H02119992 A JPH02119992 A JP H02119992A JP 63270359 A JP63270359 A JP 63270359A JP 27035988 A JP27035988 A JP 27035988A JP H02119992 A JPH02119992 A JP H02119992A
Authority
JP
Japan
Prior art keywords
soil
sewage
permeable
layer
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63270359A
Other languages
Japanese (ja)
Other versions
JP2835394B2 (en
Inventor
Toshiyuki Wakatsuki
若月 利之
Go Inada
稲田 郷
Shuichi Komura
小村 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANATSU GIKEN KOGYO KK
Original Assignee
KANATSU GIKEN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANATSU GIKEN KOGYO KK filed Critical KANATSU GIKEN KOGYO KK
Priority to JP27035988A priority Critical patent/JP2835394B2/en
Publication of JPH02119992A publication Critical patent/JPH02119992A/en
Application granted granted Critical
Publication of JP2835394B2 publication Critical patent/JP2835394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To improve the activity of denitrifying bacteria and to enhance the denitrifying capacity by supplying sewage to the bed of the soil mixed with metallic iron and a filler to consume the oxygen in the sewage, and maintaining the bed in an anaerobic atmosphere. CONSTITUTION:The SS, BOD, COD, etc., of the sewage A from a sewage sprinkler pipe 1 is aerobically decomposed in the coating soil bed 2 by the digesting and decomposing action of the soil organisms and the adsorbing and filtering action of soil to obtain treated water B. The treated water B is then infiltrated into the anaerobic and water-permeable soil 6, and brought into contact with the iron particles as a reducing agent in the soil. As a result, a large amt. of oxygen in the treated water B and the soil 6 is consumed, and the activity of the denitrifying bacteria is improved. Consequently, the NO2 and NO3-N in the treated water B are converted to N2 and N2O by the denitrifying bacteria while infiltrating down the soil 6, and efficiently denitrified. By this method, purified water C with the org. matter and nitrogen contents remarkably reduced is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、汚水の処理方法、特に生活排水や尿尿処理水
、下水等の汚水中に含まれる窒素骨や燐分を土壌を利用
して高度に処理する新規な方法及び装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for treating sewage, in particular, a method for treating sewage using soil to remove nitrogen bones and phosphorus contained in sewage such as domestic wastewater, urine and urine treated water, and sewage. The present invention relates to a novel method and apparatus for advanced processing.

[従来の技術] 従来実施されている土壌浄化法の問題点、及び土壌に要
求される性質は、以下の3点に要約される。
[Prior Art] Problems with conventional soil purification methods and properties required of soil can be summarized in the following three points.

■ 透水性が十分高く、目詰りが起きにくいこと。■ Water permeability is sufficiently high and clogging is unlikely to occur.

■ 活性アルミニウムや活性鉄等の燐酸を吸着できる化
合物の含量が高いこと。
■ High content of compounds capable of adsorbing phosphoric acid, such as activated aluminum and activated iron.

■ アンモニア態窒素の硝化に必要な好気的な土壌と、
微生物による脱窒作用に必要な炭素源の供給が可能でし
かも相対的に嫌気的な土壌層が共存し、汚水は両層を十
分な速さで通過し、且つ両層に十分接触浸透できる構造
になっていること。
■ Aerobic soil necessary for nitrification of ammonia nitrogen,
A structure in which a relatively anaerobic soil layer coexists that can supply the carbon source necessary for denitrification by microorganisms, and wastewater can pass through both layers at a sufficient speed and have sufficient contact and penetration into both layers. Become.

この、相矛盾する条件を共に満足させうるちのとして、
本発明者は通気性及び透水性に優れた土壌層(砂、マサ
上、ゼオライト粒等の層:以下「透水・好気性土壌層」
と言う)と、通気性、透水性は劣るが活性アルミニウム
や活性鉄及び炭素源に冨む土壌層(黒ボク、赤土等の屓
:以下[Pf透水・嫌気性土壌層」と言う)を組み合わ
した、多段土壌層法とでも言うべき理想的な土壌浄化方
法及び装置を開発した(特願昭60−52729、特開
昭6l−212386)。
As a solution that can satisfy both of these contradictory conditions,
The present inventor has developed a soil layer with excellent air permeability and water permeability (a layer of sand, masa, zeolite grains, etc.: hereinafter referred to as a "permeable/aerobic soil layer").
A soil layer rich in active aluminum, active iron, and carbon sources (black soil, red soil, etc.; hereinafter referred to as the [Pf permeable/anaerobic soil layer]) is combined with a soil layer that has poor air permeability and water permeability but is rich in active aluminum, active iron, and carbon sources. We have developed an ideal soil purification method and device that can be called a multi-stage soil layer method (Japanese Patent Application No. 60-52729, Japanese Unexamined Patent Publication No. 61-212386).

更に、第4図に示すように、!#透水・嫌気性土壌16
を透水性のある容器や袋体13に詰めた一種の土壌ブロ
ック17として8m水・嫌気性土壌層を形成することに
よって、施工性の問題を解決した。また、これらの容器
や袋体の素材として、木材やジュート等の炭素率(C/
N比)の高いものを用いることによって、脱窒能力の向
上を確保した(特願昭6l−10730)。
Furthermore, as shown in Figure 4,! #Permeable/anaerobic soil 16
The workability problem was solved by forming an 8 m water/anaerobic soil layer as a type of soil block 17 packed in a water-permeable container or bag 13. In addition, the carbon content (C/
By using a material with a high N ratio), an improvement in denitrification ability was ensured (Japanese Patent Application No. 61-10730).

[発明が解決しようとする課題] ところが、上記した従来の多段土壌層法による装置につ
いては、特にT#透水・嫌気性土壌(土壌ブロック)に
いくつかの問題が存在する。即ち、透水・好気性土壌は
アンモニア態窒素の硝化に必要な条件を十分溝たしてお
り、また高負荷に耐える良好な透水性を示し何ら問題は
ない。
[Problems to be Solved by the Invention] However, there are some problems with the conventional multi-layer soil layer method described above, especially in T# permeable/anaerobic soil (soil block). That is, the permeable aerobic soil satisfies the conditions necessary for nitrification of ammonia nitrogen, and also exhibits good water permeability that can withstand high loads without causing any problems.

これに対し、H透水・嫌気性土壌は微生物による脱窒作
用に必要な炭素源の供給は十分であったが、嫌気的な土
壌層として考慮した場合、脱窒能力の安定化及び微生物
(脱窒菌)の活性の高さの点ではまだ改善の余地が認め
られた。即ち、窒素浄化能は脱窒菌の脱窒反応速度によ
って規定されるが、汚水はH透水・嫌気性土壌中をあま
り通過せず主としてブロックの周縁部を通過する。その
ため、流入負荷it (I!/−・日)を増やすと周縁
部での流速が速くなって浄化能が低下する。また、流入
負荷が一定の場合は多段土壌層の厚みと浄化能は比例す
るが、容量負荷量<1/イ・日)を−定とし土壌層の厚
みを厚く (例えば2倍)して流入負荷量を増やす(例
えば2倍)と、浄化率は悪化する傾向にある。従って、
装置の汚水処理可能容1 (17rd・日)を増やすに
は面積を大きくする必要がある。そのため、施工場所が
限定されるし、高コストになり実施化に大きな障害とな
る。
On the other hand, in H permeable, anaerobic soils, the supply of carbon sources necessary for denitrification by microorganisms was sufficient, but when considered as an anaerobic soil layer, denitrification ability was stabilized and microorganisms (denitrification There was still room for improvement in terms of the high activity of Nitrogen bacteria. That is, although the nitrogen purification ability is determined by the denitrification reaction rate of denitrifying bacteria, wastewater does not pass much through the H permeable anaerobic soil, but mainly passes through the periphery of the block. Therefore, when the inflow load it (I!/-·day) is increased, the flow velocity at the peripheral portion becomes faster and the purification performance decreases. In addition, when the inflow load is constant, the thickness of the multi-stage soil layer and the purification capacity are proportional, but if the capacity load < 1/I day) is - constant, the thickness of the soil layer is increased (e.g. twice) and the inflow When the load amount is increased (for example, doubled), the purification rate tends to deteriorate. Therefore,
In order to increase the sewage treatment capacity of the device (17rd day), it is necessary to increase the area. As a result, construction locations are limited and costs are high, which poses a major obstacle to implementation.

〔課題を解決するための手段] 本発明は上記に鑑みなされたもので、脱窒作用に重要な
影響を及ぼすH透水・嫌気性土壌に代わって、透水性に
優れた土壌や充填材に金属鉄を混合した易透水・嫌気性
の改良土壌(以下「易透水・嫌気性土壌」と言う)を使
用することにより、処理能力の増大とともに、脱窒菌の
活性を向上させて脱窒能力を飛躍的に向上できるように
するものである。
[Means for Solving the Problems] The present invention was made in view of the above, and replaces the H permeable/anaerobic soil that has an important effect on denitrification by using soil with excellent water permeability and metal fillers. By using improved permeable and anaerobic soil mixed with iron (hereinafter referred to as "permeable and anaerobic soil"), the treatment capacity is increased and the activity of denitrifying bacteria is improved, resulting in a dramatic increase in denitrification capacity. This will enable them to improve their performance.

即ち、還元鉄等の金属鉄が空気を含んだ水と接触した場
合、中性域では空気中の酸素による酸化作用により微量
の鉄イオンが溶出する。この現象を利用して、汚水中の
酸素を消費することにより土壌層を嫌気的雰囲気に保ち
、脱窒菌の活性を向上させる。更に、嫌気性土壌部分の
透水性を良くして、万遍なく汚水が浸透して脱窒作用を
良好に行わせんとするものである。
That is, when metallic iron such as reduced iron comes into contact with air-containing water, a small amount of iron ions are eluted in the neutral region due to the oxidizing action of oxygen in the air. Utilizing this phenomenon, the soil layer is maintained in an anaerobic atmosphere by consuming oxygen in the wastewater, thereby improving the activity of denitrifying bacteria. Furthermore, the water permeability of the anaerobic soil portion is improved so that sewage permeates evenly and denitrification is performed well.

金属鉄は、必ずしも純鉄に限らない。また、反応性の点
では還元鉄が好ましいが、必ずしもこれに限らない。金
属鉄の形状は、取り扱い易さや溶性を考慮すると、粒状
のものが好ましい。その大きさは、通常5〜20メソシ
ュ程度のものを用いる。
Metallic iron is not necessarily limited to pure iron. Further, from the viewpoint of reactivity, reduced iron is preferable, but is not necessarily limited to this. The shape of the metal iron is preferably granular in consideration of ease of handling and solubility. Its size is usually about 5 to 20 mesosh.

金属鉄の使用割合は、金属鉄の純度や粒の大きさ、原水
(汚水)中の窒素濃度や溶存酸素量、処理水量等などを
基に計算或いは実験によって決定される。鉄粒の場合、
通常2〜IO重量%特に4〜6%程度が好ましい。これ
より少ないと、脱窒効率が落ちるし、多ずぎると鉄イオ
ンの溶出の問題が生じる。
The usage ratio of metallic iron is determined by calculation or experiment based on the purity and particle size of metallic iron, the nitrogen concentration and dissolved oxygen amount in raw water (sewage water), the amount of treated water, etc. In the case of iron particles,
Usually about 2 to IO weight %, especially about 4 to 6% is preferable. If it is less than this, the denitrification efficiency will decrease, and if it is too much, there will be a problem of elution of iron ions.

尚、金属鉄が熔解して生じる鉄イオンは、情酸イオンと
結合して沈澱するので、燐の除去にも優れた効果を示す
In addition, iron ions produced by melting metal iron combine with acid ions and precipitate, and therefore exhibit an excellent effect in removing phosphorus.

易透水・嫌気性土壌層を構成する土壌としては、砂、マ
サ土の他、砂丘未熟上、粗粒火山灰土、粗粒褐色森林上
等透水性の優れた土壌が用いられ・る。
As the soil constituting the easily permeable/anaerobic soil layer, in addition to sand and masa soil, soils with excellent permeability such as immature sand dune, coarse volcanic ash soil, and coarse brown forest soil are used.

また、土壌の替わりに用いられる充填材としては、ゼオ
ライト粒やパーライト、バーミキュライト等の天然或い
は人工の粒状鉱物の他、プラスチック粉砕品等も用いら
れる。これらの土壌や充填材中の炭素含量が少ない場合
は、炭素源として、ジュート、稲藁、木の葉、その他の
動植物体、余剰活性汚泥等炭素率(C/N比)の高い物
質を混入しておいてもよい。
In addition, as fillers used in place of soil, in addition to natural or artificial granular minerals such as zeolite particles, perlite, and vermiculite, crushed plastic products and the like can also be used. If the carbon content in these soils or fillers is low, mix materials with high carbon ratios (C/N ratio) such as jute, rice straw, tree leaves, other plants and animals, and surplus activated sludge as carbon sources. You can leave it there.

易透水・嫌気性土壌は、そのまま装置内に充填してもよ
いが、透水性のある容器や袋体に詰めた一種の土壌ブロ
ックとすると、取り扱いが極めて筒中になる。また、金
属鉄と土壌との比重の違いによる装置全体としての金属
鉄の偏在も防止されるし、透水・好気性土壌との使用割
合も設計通りにできる等の利点も生じる。また、これら
の容器や袋体の素材として、木材やジュート等の炭素率
(C/N比)の高いものを用いると、脱窒能力の向上が
図れる。
Easily permeable and anaerobic soil may be filled into the device as is, but if it is packed into a type of soil block packed in a water-permeable container or bag, handling becomes extremely difficult. In addition, uneven distribution of metallic iron in the entire device due to the difference in specific gravity between metallic iron and soil is prevented, and there are also advantages such as the use ratio of permeable and aerobic soil can be adjusted as designed. Furthermore, if a material with a high carbon content (C/N ratio) such as wood or jute is used as the material for these containers or bags, the denitrification ability can be improved.

一方、前記易透水・嫌気性土壌層或いはプロ・ツクの間
に充填される透水・好気性土壌としては、砂やマサ士等
前記易透水・嫌気性土壌と同じものの他に、同じくゼオ
ライト粒その他の充填材も用いられる。
On the other hand, the permeable/aerobic soil to be filled between the above-mentioned easily permeable/anaerobic soil layer or pro-tsuku includes not only the same materials as the above-mentioned easily permeable/anaerobic soil such as sand, but also zeolite grains and other materials. Fillers are also used.

この透水・好気性土壌の主要な役割は、汚水を易透水・
嫌気性土壌の層やブロックになるべく効率的に接触、拡
散、浸透できるようにするとともに、装置の目詰りを防
止して速やかに透水させることである。また、この透水
・好気性土壌を中心として、88分、BOD及びCOD
分その他の有機物の好気的分解や硝化、脱臭等が行なわ
れる。
The main role of this permeable and aerobic soil is to make wastewater permeable and
The objective is to enable contact, diffusion, and infiltration into layers and blocks of anaerobic soil as efficiently as possible, as well as to prevent clogging of the device and allow water to permeate quickly. In addition, mainly in this permeable and aerobic soil, 88 minutes, BOD and COD
Aerobic decomposition, nitrification, and deodorization of other organic matter are carried out.

従って、この土壌には通気性及び透水性が大きいこと(
例えば、飽和過水性係数が10″2〜l0−3CIII
/Sよりも大)が要求される。場合によっ°ζは、砂や
礫、適当な大きさの木の枝や人工芝等、透水性を促進さ
せるもを混入してもよい。
Therefore, this soil has high air permeability and water permeability (
For example, the saturated superhydric coefficient is 10″2~10-3CIII
/S) is required. Depending on the case, °ζ may be mixed with something that promotes water permeability, such as sand, gravel, appropriately sized tree branches, or artificial grass.

透水・好気性土壌として、ゼオライト粒を用いた場合に
は、ゼオライトはアンモニウムイオン保持能が大きく、
吸着された”アンモニウムイオンは硝化菌の作用を受け
てli+!+酸態窒素に変化し、ゼオライト粒から離脱
する。そして、再びアンモニウムイオンが吸着されると
いう過程が繰り返される。
When zeolite grains are used as permeable and aerobic soil, zeolite has a large ammonium ion retention capacity;
The adsorbed ammonium ions are converted into li+!+ acid nitrogen by the action of nitrifying bacteria, and are separated from the zeolite grains.Then, the process of ammonium ions being adsorbed again is repeated.

こうした挙動は装置内における窒素の滞留時間を長くす
る効果を持ら、窒素除去に有利に働くことになる。更に
、ゼオライトの大きなCECは硝化に伴う汚水のpl+
低下に対する緩衝作用を持っており、装置内における微
生物活動を保護するなど好ましい作用を行なうものであ
る。
This behavior has the effect of lengthening the residence time of nitrogen within the device, which is advantageous for nitrogen removal. Furthermore, the large CEC of zeolite reduces the pl+ of wastewater due to nitrification.
It has a buffering effect against deterioration, and has favorable effects such as protecting microbial activity within the device.

[作用] しかして、第1図で模式的に示すように、汚水供給源と
しての汚水撒水管1から供給された汚水(原水)(A)
は、マサ上等からなる被覆土壌層2中で、土壌生物の消
化分解作用や土の吸着や濾過作用により88分やBOD
及びCOD成分その他の有機物の好気的分解や除去作用
を受ける。またアンモニア態窒素も硝化細菌等の作用で
硝化されて、処理水(F3)となる。
[Function] As schematically shown in FIG.
In the covering soil layer 2 consisting of masa top, etc., the 88 min. and BOD
and is subject to aerobic decomposition and removal of COD components and other organic matter. Ammonia nitrogen is also nitrified by the action of nitrifying bacteria and becomes treated water (F3).

この処理水(r()の一部は被覆土壌層2の表面から蒸
散するが、大部分はトレンチ3下方の浄化層4に重力的
に浸透流下する。浄化層4は、透水・好気性土壌5の屑
と易透水・嫌気性土壌6の層を複数屓(図では2T−)
積層したものである。浄化層4としては、易透水・嫌気
性土壌6をジュート製袋体等に充填した易透水・嫌気性
土壌ブロックを、上下と前後左右を間隙をあけて配置し
、その間隙に透水・好気性土壌5を充填したものでもよ
い。
A part of this treated water (r()) transpires from the surface of the covering soil layer 2, but most of it gravitates down to the purification layer 4 below the trench 3.The purification layer 4 is made of permeable and aerobic soil. Multiple layers of waste from No. 5 and easily permeable/anaerobic soil No. 6 (2T- in the figure)
It is a layered product. As the purification layer 4, easily permeable and anaerobic soil blocks filled with easily permeable and anaerobic soil 6 in a jute bag etc. are placed with gaps left and right on the top and bottom, front and rear, and water permeable and aerobic soils are placed in the gaps. It may also be filled with soil 5.

透水・好気性土壌5中に浸透した処理水(B)はより酸
化的条件下に置かれ、被覆土壌層2と同様に有機物の好
気的分解や硝化作用を受ける。尚、ゼオライト粒を用い
ている場合は、ここでアンモニア態窒素の固定や硝化も
行なわれる。
The treated water (B) that has permeated into the permeable/aerobic soil 5 is placed under more oxidizing conditions and is subjected to aerobic decomposition and nitrification of organic matter in the same manner as the covering soil layer 2. In addition, when zeolite grains are used, fixation and nitrification of ammonia nitrogen are also performed here.

次いで、処理水(B)は易透水・嫌気性土壌6中に浸透
し、その中に含まれる還元剤例えば鉄粒に接触して、次
の反応を生じる。
Next, the treated water (B) permeates into the easily permeable anaerobic soil 6 and comes into contact with the reducing agent, such as iron particles, contained therein to cause the following reaction.

Fe(1一体)    [;’e2■+2eOそのため
、処理水(B)や易透水・嫌気性土壌6中の酸素を多量
に消費する。この作用によって易透水・嫌気性土壌6の
層全体が常に嫌気性に保たれ、脱窒菌の活性が向上する
。従って、処理水(B)中のNO2やNO3N(硝酸態
窒素)は、該土壌6の層中を浸透流下する時に脱窒菌に
よってN2やN20に変化し、効率的に脱窒される。
Fe (1 unit) [;'e2■+2eO Therefore, a large amount of oxygen in the treated water (B) and easily permeable/anaerobic soil 6 is consumed. This action keeps the entire layer of easily permeable, anaerobic soil 6 anaerobic at all times, improving the activity of denitrifying bacteria. Therefore, NO2 and NO3N (nitrate nitrogen) in the treated water (B) are converted into N2 and N20 by denitrifying bacteria when they percolate through the layer of the soil 6, and are efficiently denitrified.

またこの過程で、処理水(B)中の燐酸(正及びポリ)
は易透水・嫌気性土壌中の鉄イオンFe2Φと反応して
燐酸鉄の沈澱となり、土壌6の層中に吸着固定される。
In addition, during this process, phosphoric acid (positive and poly) in the treated water (B)
reacts with iron ions Fe2Φ in easily permeable, anaerobic soil to form a precipitate of iron phosphate, which is adsorbed and fixed in the layer of soil 6.

かくして、SS分、BOD及びCOD成分その他の有機
物に加えて窒素分や燐が大幅に除去された浄化水(C)
が、排水層7に集められ、排水管8を通って装置外に排
出される。
In this way, purified water (C) from which nitrogen and phosphorus have been largely removed in addition to SS, BOD, and COD components and other organic matter
is collected in the drainage layer 7 and discharged to the outside of the device through the drainage pipe 8.

[実施例] 次に、本発明を図面に示す実施例に基づいて詳細に説明
する。
[Example] Next, the present invention will be described in detail based on an example shown in the drawings.

第2図は、本発明に係る実験室規模の汚水浄化装置の一
例を示す。この汚水浄化装置9は、中10cm、長さ4
5cm、深さ45cmの内法寸法のアクリル製の槽10
の中に各土壌を納めたものである。
FIG. 2 shows an example of a laboratory-scale sewage purification apparatus according to the present invention. This sewage purification device 9 has a medium diameter of 10 cm and a length of 4 cm.
Acrylic tank 10 with internal dimensions of 5 cm and depth of 45 cm
Each type of soil is contained within.

即ち、上部から汚水撒水管1を配置した被覆土壌層2、
中央部は浄化層4、下部は排水管8を組み込んだ排水層
7となっている。排水層7には礫11を充填する。符号
12はネ・7トである。
That is, a covering soil layer 2 with a sewage sprinkler pipe 1 arranged from above;
The central part is a purification layer 4, and the lower part is a drainage layer 7 incorporating a drainage pipe 8. The drainage layer 7 is filled with gravel 11. The code 12 is net.7.

被覆土壌層2(厚み5cm)及び浄化層4に於ける透水
・好気性土壌5(厚み5mm)は、ゼオライト粒(2〜
31φ)を使用した。
The permeable/aerobic soil 5 (thickness 5 mm) in the cover soil layer 2 (thickness 5 cm) and the purification layer 4 are made of zeolite grains (2 to 5 mm thick).
31φ) was used.

一方、易透水・嫌気性土壌6としてはマサ土に鉄粒(1
0〜20メソシエ)を5%混合したものを用いた。この
改良された易透水・嫌気性土壌6の活性アルミニウム及
び活性鉄の含量(軟土重量基準)は0.1%と5.3%
であった。そして、この易透水・嫌気性土壌6を3cm
x 5cmX I Ocm (−部3cmX 2.5c
mX 10cm)サイズのジュート製袋体13に充填(
200g)して易透水・嫌気性土壌ブロック14とし、
これを、上下と左右に5mmの間隔をおいて並べた。各
層の土壌ブロック14は、処理水(B)が十分に接触浸
透できるように2.5cmずつずらして配置した。使用
した土壌ブロック14は77(Mで9段積みした。
On the other hand, as easily permeable and anaerobic soil 6, iron grains (1
A 5% mixture of 0 to 20 mesosier) was used. The active aluminum and active iron contents (based on soft soil weight) of this improved easily permeable and anaerobic soil 6 are 0.1% and 5.3%.
Met. Then, add this easily permeable, anaerobic soil 6 to 3 cm.
x 5cmX I Ocm (- part 3cmX 2.5c
Fill a jute bag 13 with a size of (m x 10 cm) (
200g) to form easily permeable/anaerobic soil block 14,
These were arranged at intervals of 5 mm vertically and horizontally. The soil blocks 14 in each layer were arranged at intervals of 2.5 cm so that the treated water (B) could sufficiently contact and penetrate. The soil blocks 14 used were 77 (M) and stacked in 9 stages.

このジュート製袋体13は、単に易透水・嫌気性土壌を
充填するユニットを構成しているだけでなく、それ自体
好気的土壌と嫌気的土壌の界面に存在する網状体であり
、両層の接触界面であらゆる方向に水の浸透・移動を可
能にしている。またジュート製袋体13は、炭素率(C
/N比)が極めて高い(通常50以上)ので脱窒菌の炭
素源ともなり、装置の脱窒活性を高める働きもする。尚
、前記汚水浄化装置9の構造や土壌ブロック14の素材
形状はあくまでも一例であり、本発明はこれらに限定さ
れるものではない。
This jute bag body 13 not only constitutes a unit for filling easily permeable and anaerobic soil, but also is itself a net-like body that exists at the interface between aerobic soil and anaerobic soil, and is a net-like body that exists in both layers. This allows water to penetrate and move in all directions at the contact interface. In addition, the jute bag body 13 has a carbon content (C
/N ratio) is extremely high (usually 50 or more), it also serves as a carbon source for denitrifying bacteria, and also works to increase the denitrifying activity of the device. Note that the structure of the sewage purification device 9 and the material shape of the soil block 14 are merely examples, and the present invention is not limited to these.

L7かして、この汚水浄化装置9に、原水(A)として
人工汚水(NO3N40mg/l! +PO4−P20
mg//)を17!/日の割合で供給した。
L7 and artificial sewage (NO3N40mg/l!+PO4-P20) is supplied to this sewage purification device 9 as raw water (A).
mg//) 17! /day.

実験は、昭和61年9月から1ケ月間連続して行なった
。その結果(平均値)は、表−1に示すようにT−N、
T”−Pとも99%以上で、極めて満足すべきものであ
った。尚、この装置で11/日の供給量は、25β/d
・日の流入負荷量に相当する。
The experiment was conducted continuously for one month starting from September 1986. The results (average values) are as shown in Table 1.
Both T''-P were over 99%, which was extremely satisfactory.In addition, the supply amount per day with this equipment was 25β/d.
・Equivalent to the daily inflow load.

次に、従来例として第4図に示す装置を用いて同様の汚
水浄化試験を行なった結果を同じく表1に示す。この従
来の汚水浄化装置15は、第2図の本発明装置において
、易透水・嫌気性土壌60代わりに黒ボク土壌16を充
填したH透水・嫌気性土壌ブロック17を用いた点のみ
が異り、他は全く同しものである。尚、黒ボク土壌の活
性アルミニウム及び活性鉄の含量(軟土重量基準)は5
゜6%と0.6%であった。
Next, as a conventional example, a similar sewage purification test was conducted using the apparatus shown in FIG. 4, and the results are also shown in Table 1. This conventional sewage purification device 15 differs from the device of the present invention shown in FIG. 2 only in that a H-permeable/anaerobic soil block 17 filled with Kuroboku soil 16 is used instead of the easily-permeable/anaerobic soil 60. , everything else is exactly the same. The content of active aluminum and active iron in Kuroboku soil (based on soft soil weight) is 5.
゜6% and 0.6%.

比較例1は前記実施例と同様に排水管8を第4図(イ)
の状態にして、IN/日の原水供給を3ケ月間連続し7
て行なった。表−1の数値は平均値であり、浄化水(0
)のT−N?JM度は経時的に上昇し3ケ月で浄化能が
著しく低下した。
Comparative Example 1 has a drain pipe 8 as shown in FIG.
Under this condition, raw water was supplied IN/day for 3 consecutive months.
I did it. The values in Table 1 are average values, and purified water (0
)'s T-N? The JM degree increased over time, and the purification ability significantly decreased after 3 months.

比較例2は、比較例1に引き続いて11/日の負荷水量
で2ケ月間連続して原水を供給した。但表  −1 であった。
In Comparative Example 2, following Comparative Example 1, raw water was continuously supplied for two months at a load water amount of 11/day. However, it was Table -1.

以上の比較例の結果から見て、従来型装置では浄化水(
C)のT−Nの目標処理水質を10mg/lとした場合
、長期的には流入負荷量は25I!/d・口程度が限度
であると思われる。
Judging from the results of the above comparative examples, it is clear that the conventional equipment does not require purified water (
If the target treated water quality for T-N in C) is 10 mg/l, the inflow load will be 25 I in the long term! /d・mouth seems to be the limit.

表−2 し、この場合は排水管8を第4図の(ロ)の状態にU7
て浄化層4を湛水状態(嫌気状態)にして使用した。そ
の結果、浄化水中のT−IJが当初5II1g/e程度
まで低下したが再び上昇し、2ケ月後にはT−Nの浄化
能が著しく低下した。尚、比較例1、比較例2とも、T
−Pの除去率は99%以上次に、本発明装置がどの程度
の流入負荷量に耐えるかを実験してみた。即ち、昭和6
2年5月から原水(A)の供給量を増やして得られた浄
化水(C)の浄化の程度を調べる実験を行なった。その
結果(各期間中の平均値)を表−2に示す。
Table 2 In this case, the drain pipe 8 is placed in the state shown in (b) in Figure 4.
The purification layer 4 was used in a flooded state (anaerobic state). As a result, T-IJ in the purified water initially decreased to about 5II1 g/e, but rose again, and two months later, the purification ability of T-N decreased significantly. In addition, in both Comparative Example 1 and Comparative Example 2, T
-The removal rate of P was 99% or more.Next, an experiment was conducted to see how much inflow load the device of the present invention could withstand. That is, Showa 6
Starting in May 2017, an experiment was conducted to examine the degree of purification of purified water (C) obtained by increasing the supply of raw water (A). The results (average values during each period) are shown in Table 2.

尚、装置9は前記実施例と同じものを用いた。Note that the device 9 used was the same as in the previous example.

原水(A)は、人工汚水(N O:l −N 36.6
mg/e−1−P O、+ −P21.4mg/ l)
を用い、ソノ供給は表中備考欄に示す通りに行いこれら
を連続して計3ケ月半行なった。また、表−2中の流入
負荷量(β/l・日)は、この装置での供給量をd当た
りに換算したものである。この結果、本発明装置では浄
化水(C)のT−Nの目標処理水質を10mg/lとし
た場合、2507!/n?−日程度の流入負荷量及び高
速処理に十分耐え得ることが判明した。これは、施工面
精やコストを勘案して実用に十分耐え得るものである。
Raw water (A) is artificial sewage (N O:l -N 36.6
mg/e-1-P O, +-P21.4 mg/l)
Sono supply was carried out as shown in the remarks column in the table, and these were carried out continuously for a total of three and a half months. Moreover, the inflow load amount (β/l·day) in Table 2 is the amount supplied by this device converted into per d. As a result, in the device of the present invention, when the target treated water quality of purified water (C) TN is 10 mg/l, 2507! /n? It has been found that this method can sufficiently withstand an inflow load of about -100 days and high-speed processing. This is sufficient for practical use in consideration of construction quality and cost.

上記実施例に示した装置は、易透水・嫌気性土壌6をジ
ュート製袋体13に充填して土壌ブロック化して使用し
たものであるが、勿論これに限定されるものではない。
In the apparatus shown in the above embodiment, the easily permeable and anaerobic soil 6 is filled into a jute bag 13 to form a soil block, but the present invention is of course not limited to this.

例えば、第3図に示すように透水・好気性土壌5と易透
水・嫌気性土壌6を層状に多段化(図では2段)した汚
水浄化装置18も十分な脱窒能力を発揮させることが可
能である。
For example, as shown in FIG. 3, a sewage purification device 18 in which permeable aerobic soil 5 and easily permeable anaerobic soil 6 are layered in multiple stages (two stages in the figure) can also exhibit sufficient denitrification capacity. It is possible.

この汚水浄化装置18は、汚水撒水管1の周りに礫19
を充填し浄化層4との間にネット20を配設したもので
ある。浄化層4の上部を占める透水・好気性土壌5とし
ては、前記したゼオライトの他、マサ土、砂等が使用で
きる。浄化層4の下部の易透水・嫌気性土壌6としては
、マサ土や砂等に鉄粒を5%程度混入した改良土壌が使
用できる。さらに、炭素源として前記炭素率(C/N比
)の高い物質を混入する。その他、汚水の供給源として
汚水槽や汚水枡も考えられる。
This sewage purification device 18 has gravel 19 around the sewage sprinkling pipe 1.
A net 20 is arranged between the cleaning layer 4 and the cleaning layer 4. As the permeable aerobic soil 5 occupying the upper part of the purification layer 4, in addition to the above-mentioned zeolite, masa soil, sand, etc. can be used. As the easily permeable and anaerobic soil 6 in the lower part of the purification layer 4, improved soil made by mixing about 5% iron particles into masa soil, sand, etc. can be used. Further, the substance having a high carbon ratio (C/N ratio) is mixed as a carbon source. In addition, sewage tanks and cesspits are also possible sources of sewage water.

要は、本発明は透水・好気性土壌5と易透水・嫌気性土
壌6の層やブロックを組み合わして浄化層4とし、且つ
易透水・嫌気性土壌6として透水性に優れた土壌に鉄粒
その他の還元剤を混入したものであり、汚水浄化装置の
他の部分の構成には何ら限定さるものではない。
In short, the present invention combines layers or blocks of permeable/aerobic soil 5 and easily permeable/anaerobic soil 6 to form a purification layer 4, and also adds iron to the highly permeable soil as the easily permeable/anaerobic soil 6. It is a mixture of grains and other reducing agents, and there are no limitations to the structure of other parts of the sewage purification device.

[発明の効果コ 以上詳述したように、本発明の汚水浄化方法は、透水性
土壌に還元剤を混入した易透水・嫌気性土壌を使用し、
この土壌層に供給した汚水中の酸素を消費させることに
より土壌層を強制的に嫌気状態とし、脱窒菌の活性を向
上させて脱窒効果を飛躍的に向上せしめるものである。
[Effects of the Invention] As detailed above, the sewage purification method of the present invention uses easily permeable anaerobic soil in which a reducing agent is mixed into permeable soil,
By consuming the oxygen in the wastewater supplied to this soil layer, the soil layer is forced into an anaerobic state, which improves the activity of denitrifying bacteria and dramatically improves the denitrification effect.

更に、この易透水・嫌気性土壌と透水・好気性土壌とを
多段に組み合わせて、透水・好気性土壌中で汚水中のS
S分等の有機物の好気的分解や除去を行わせると同時に
アンモニア態窒素の硝化をはかり、易透水・嫌気性土壌
中で脱窒及び脱燐させて汚水の総合的な浄化を図るもの
である。
Furthermore, by combining this permeable, anaerobic soil and permeable, aerobic soil in multiple stages, S in wastewater can be reduced in permeable, aerobic soil.
This system performs aerobic decomposition and removal of organic matter such as S, simultaneously nitrifies ammonia nitrogen, and performs denitrification and dephosphorization in easily permeable and anaerobic soil for comprehensive purification of wastewater. be.

従って、嫌気性土壌層の透水性向上とあいまって装置の
汚水処理可能容量を大幅に増大させ、高負荷運転が可能
となり、装置をコンパクト化できるため、施工場所の選
定を含めて施工及びコスト面でも従来にない優れた効果
を奏するものである。
Therefore, in combination with the improved water permeability of the anaerobic soil layer, the wastewater treatment capacity of the equipment is greatly increased, high-load operation is possible, and the equipment can be made more compact. However, it has an unprecedented effect.

又本発明の汚水浄化装置は、嫌気性土壌として入手が部
用な砂やマサ土を使用し、還元剤としても鉄粒等を用い
るので、安価且つ容易に構築できるとともに、使用する
土壌全体が透水性に優れており、コンパクトな装置で大
量の汚水を処理することができる。また、易透水・嫌気
性土壌をジュート製袋体等に充填してブロック化すると
、易透水・嫌気性土壌層全体として見ると還元剤と透水
性土壌との混合割合の均一化が図れるとともに、取り扱
いが筒中になる利点がある。
In addition, the sewage purification device of the present invention uses sand and masa soil, which are readily available as anaerobic soil, and uses iron grains as a reducing agent, so it can be constructed inexpensively and easily, and the entire soil used is It has excellent water permeability and can treat large amounts of wastewater with a compact device. In addition, by filling easily permeable and anaerobic soil into jute bags and forming blocks, it is possible to equalize the mixing ratio of the reducing agent and permeable soil when looking at the entire easily permeable and anaerobic soil layer. It has the advantage of being handled inside the cylinder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の汚水浄化原理を説明する概略図、第2
図は本発明にかかる実験室規模の汚水浄化装置の一例を
示しくa)は縦断面図、(blは同図(alにおけるX
−X線部分で断面した装置の縦断面図、第3図は実験室
規模の汚水浄化装置の他の例を示しくalは縦断面図、
(b)は同図(a)における’y’−Y線部分で断面し
た装置の縦断面図、第4図は比較例を示しくalは縦断
面図、(blは同図(alにおけるZ−Z線部分で断面
した装置の縦断面図である。 1・・・・・・汚水撒水管 2・・・・・・被覆土壌層 4・・・・・・浄化層 5・・・・・・透水・好気性土壌 6・・・・・・易透水・嫌気性土壌 9・18・・・・・・汚水浄化装置 13・・・・・・ジュート製袋体 14・・・・・・易透水・嫌気性土壌ブロックA・・・
・・・汚水(原水) B・・・・・・処理水 C・・・・・・浄化水 第1回 第4回
Figure 1 is a schematic diagram explaining the principle of sewage purification of the present invention, Figure 2
The figure shows an example of a laboratory-scale sewage purification device according to the present invention.
- A vertical cross-sectional view of the device taken along the X-ray section; Figure 3 shows another example of a laboratory-scale sewage purification device; al is a vertical cross-sectional view;
(b) is a vertical cross-sectional view of the device taken along the 'y'-Y line in Figure (a), Figure 4 shows a comparative example, al is a vertical cross-sectional view, (bl is a vertical cross-sectional view of the same figure (al) It is a vertical cross-sectional view of the device taken along the line -Z. 1... Sewage water pipe 2... Covering soil layer 4... Purification layer 5... - Permeable/aerobic soil 6... Easy permeable/anaerobic soil 9, 18... Sewage purification device 13... Jute bag body 14... Easy Permeable/anaerobic soil block A...
... Sewage (raw water) B ... Treated water C ... Purified water 1st 4th

Claims (1)

【特許請求の範囲】 1、金属鉄を混入した土壌或いは充填材の層に汚水を供
給して汚水中の酸素を消費することにより土壌或いは充
填材の層を嫌気的雰囲気に保ち、脱窒菌の活性を向上さ
せて脱窒を効果的に行わせることを特徴とする汚水の浄
化方法。 2、汚水を透水・好気的な土壌或いは充填材の層に通水
して汚水中のアンモニア態窒素を硝化させたのち、金属
鉄を混入した土壌或いは充填材の層に浸透させて脱窒さ
せることを特徴とする汚水の浄化方法。 3、金属鉄とともに、炭素源を混入するものである請求
項1又は請求項2記載の汚水の浄化方法。 4、汚水供給源の下方に、透水・好気的な土壌或いは充
填材の層又はブロックと、金属鉄を混入した土壌或いは
充填材の層又はブロックとを組み合わして配置したこと
を特徴とする汚水の土壌式浄化装置。
[Claims] 1. Supplying sewage to a layer of soil or filler mixed with metallic iron and consuming oxygen in the sewage to maintain the soil or filler layer in an anaerobic atmosphere and inhibit denitrifying bacteria. A method for purifying wastewater characterized by improving activity and effectively performing denitrification. 2. Sewage is passed through a layer of permeable, aerobic soil or filler material to nitrify the ammonia nitrogen in the wastewater, and then passed through a layer of soil or filler mixed with metallic iron for denitrification. A method for purifying sewage characterized by: 3. The method for purifying wastewater according to claim 1 or 2, wherein a carbon source is mixed together with metallic iron. 4. A combination of a layer or block of permeable/aerobic soil or filler and a layer or block of soil or filler mixed with metallic iron is placed below the sewage supply source. Soil-type sewage purification equipment.
JP27035988A 1988-10-26 1988-10-26 Sewage purification method and apparatus Expired - Fee Related JP2835394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27035988A JP2835394B2 (en) 1988-10-26 1988-10-26 Sewage purification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27035988A JP2835394B2 (en) 1988-10-26 1988-10-26 Sewage purification method and apparatus

Publications (2)

Publication Number Publication Date
JPH02119992A true JPH02119992A (en) 1990-05-08
JP2835394B2 JP2835394B2 (en) 1998-12-14

Family

ID=17485174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27035988A Expired - Fee Related JP2835394B2 (en) 1988-10-26 1988-10-26 Sewage purification method and apparatus

Country Status (1)

Country Link
JP (1) JP2835394B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678923A1 (en) * 1991-07-08 1993-01-15 Paris Eaux Gestion WATER DENITRIFICATION PROCESS USING METAL IRON AND INSTALLATION FOR ITS IMPLEMENTATION
WO1998049106A1 (en) * 1997-04-25 1998-11-05 The University Of Iowa Research Foundation Fe(o)-based bioremediation of aquifers contaminated with mixed wastes
US6719902B1 (en) 1997-04-25 2004-04-13 The University Of Iowa Research Foundation Fe(o)-based bioremediation of aquifers contaminated with mixed wastes
US7776217B2 (en) * 2008-04-16 2010-08-17 William Lucas Bioretention system and method
CN104229987A (en) * 2014-09-05 2014-12-24 河海大学 Method for removing nitrogen substance in water by biological denitrification
JP2017221872A (en) * 2016-06-13 2017-12-21 独立行政法人石油天然ガス・金属鉱物資源機構 Apparatus for clarifying water to be treated and method for clarifying water to be treated
CN113880359A (en) * 2021-10-20 2022-01-04 深圳顺天环保实业有限公司 Sewage treatment system for micro-power biological ecological purification

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212386A (en) * 1985-03-16 1986-09-20 Toshiyuki Wakatsuki Method and apparatus for purifying sewage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212386A (en) * 1985-03-16 1986-09-20 Toshiyuki Wakatsuki Method and apparatus for purifying sewage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678923A1 (en) * 1991-07-08 1993-01-15 Paris Eaux Gestion WATER DENITRIFICATION PROCESS USING METAL IRON AND INSTALLATION FOR ITS IMPLEMENTATION
WO1998049106A1 (en) * 1997-04-25 1998-11-05 The University Of Iowa Research Foundation Fe(o)-based bioremediation of aquifers contaminated with mixed wastes
US6719902B1 (en) 1997-04-25 2004-04-13 The University Of Iowa Research Foundation Fe(o)-based bioremediation of aquifers contaminated with mixed wastes
US7776217B2 (en) * 2008-04-16 2010-08-17 William Lucas Bioretention system and method
CN104229987A (en) * 2014-09-05 2014-12-24 河海大学 Method for removing nitrogen substance in water by biological denitrification
JP2017221872A (en) * 2016-06-13 2017-12-21 独立行政法人石油天然ガス・金属鉱物資源機構 Apparatus for clarifying water to be treated and method for clarifying water to be treated
CN113880359A (en) * 2021-10-20 2022-01-04 深圳顺天环保实业有限公司 Sewage treatment system for micro-power biological ecological purification

Also Published As

Publication number Publication date
JP2835394B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
Blowes et al. Removal of agricultural nitrate from tile-drainage effluent water using in-line bioreactors
Brix Treatment of wastewater in the rhizosphere of wetland plants–the root-zone method
Martin et al. Nutrient reduction in an in-series constructed wetland system treating landfill leachate
JPS5840198A (en) Method and device for biologically purifying waste water
JP2935619B2 (en) Bottom sediment / water quality improvement method and improver set used in the method
JP2002166293A (en) Method to remove nitrogen and phosphor simultaneously from waste water
CN101823792A (en) Device, system and method for vertical multilevel soil permo-treatment of sewage and mixed fillers
CN101343119A (en) Zeolite-acorus calamus artificial wet land sewage treatment system and treatment method
JP4199075B2 (en) Water purification facility
JPH02119992A (en) Method and device for purifying sewage
Van Buuren et al. Primary effluent filtration in small-scale installations
KR102112732B1 (en) Soil type Advanced Purification Circulation Reuse System
JPH038495A (en) Denitrifying and dephosphorizing composition and method for denitrification and dephosphorization
JP3391057B2 (en) Biological nitrogen removal equipment
CN106830575B (en) Water supplementing filter type constructed wetland system and treatment method thereof
JPH07115022B2 (en) Sewage purification method and device
CN108862563A (en) A kind of MBBR technique for nanometer water process
JP3449862B2 (en) Advanced purification method for organic wastewater
Barnard The influence of nitrogen on phosphorus removal in activated sludge plants
JP3222015B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen
KR100534040B1 (en) Method of high-rate denitrification using two reactors in series
JPS6336895A (en) Sewage cleaning device using soil
JPH0779998B2 (en) Sewage treatment method
JPS63240991A (en) Filthy water purifying apparatus
JP2695610B2 (en) Fish and shellfish cultivation method using purified livestock wastewater

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees