JPH02119954A - Dielectric particle-packed bed filter device - Google Patents

Dielectric particle-packed bed filter device

Info

Publication number
JPH02119954A
JPH02119954A JP63268184A JP26818488A JPH02119954A JP H02119954 A JPH02119954 A JP H02119954A JP 63268184 A JP63268184 A JP 63268184A JP 26818488 A JP26818488 A JP 26818488A JP H02119954 A JPH02119954 A JP H02119954A
Authority
JP
Japan
Prior art keywords
dielectric
particle
particle layer
particles
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63268184A
Other languages
Japanese (ja)
Other versions
JP2675359B2 (en
Inventor
Akira Mizuno
彰 水野
Toshiaki Mitsusaka
三坂 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP26818488A priority Critical patent/JP2675359B2/en
Publication of JPH02119954A publication Critical patent/JPH02119954A/en
Application granted granted Critical
Publication of JP2675359B2 publication Critical patent/JP2675359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/145Inertia

Landscapes

  • Electrostatic Separation (AREA)

Abstract

PURPOSE:To generate a stable partial electric discharge in a dielectric-particle bed by placing the bed of particles having smaller diameter at the inlet side or outlet side of a gas current, and placing the bed of particles having larger diameter at the middle of the gas current to form the dielectric-particle bed. CONSTITUTION:A discharge electrode 12 for charging the dust and bacteria contained in a gas is provided on the inlet side of a gas current, dielectric particles are packed on the downstream side of the gas current, a voltage is impressed on the dielectric-particle bed to collect dust and bacteria, and a partial electric discharge is generated in the dielectric-particle bed to sterilize the collected bacteria. In this case, the bed 16 of the particles having smaller diameter is placed on the inlet side or outlet side of the gas current, and the bed 18 of the particles having larger diameter is placed at the middle of the gas current to form the dielectric-particle bed. As a result, a partial electric discharge is stably generated in the dielectric-particle bed, and the collection rate of dust and bacteria and the sterilization rate are increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、誘電体粒子充填署フィルタ装置に係り、特に
ガス流の入口側にガス中に含まれる塵埃や細菌を帯電す
る帯電部を有し、ガス流の後流側に誘電体粒子を充填し
、誘電体粒子層に電圧を印加して塵埃や細菌を捕集する
と共に、誘電体粒子層内で部分放電を起こすことによっ
て捕集した細菌を殺す誘電体粒子充填層フィルタ装置に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a dielectric particle filling station filter device, and in particular has a charging section on the gas flow inlet side that charges dust and bacteria contained in the gas. The downstream side of the gas flow is filled with dielectric particles, and a voltage is applied to the dielectric particle layer to collect dust and bacteria, as well as by causing partial discharge within the dielectric particle layer. This invention relates to a dielectric particle packed bed filter device that kills bacteria.

〔従来の技術〕[Conventional technology]

従来のこの種誘電体粒子充填層フィルタ装置の誘電体粒
子層部分は、直径2 +++m程度の粒子径の略均−な
誘電体粒子を20叩程度の厚さの層として積層し、その
両面に設けた金網電極に、粒子層内で部分放電を起こさ
せ、且つ、その金網電極間で短絡の起きない範囲の高電
圧を加えるように構成されている。
The dielectric particle layer portion of the conventional dielectric particle packed layer filter device of this type is made by laminating dielectric particles having a diameter of about 2 +++ m as a layer with a thickness of about 20 layers. The wire mesh electrodes are configured to cause partial discharge within the particle layer and to apply a high voltage within a range that does not cause a short circuit between the wire mesh electrodes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記のような従来技術においては、金網
電極に高電圧を印加したとき、電界強度(V / cm
 )は、誘電体充填層の両端で強く、誘電体充填層の中
間部に行くに従って減少し、中間部の大部分で略一定と
なる。しかも、印加する電圧は、誘電体充填層内で部分
放電を発生する電圧よりも高く、しかも金網電極間の短
絡電圧以下でなければならない。従って、誘電体粒子層
の金網電極に近い部分での部分放電が強く、粒子層の中
間部まで広く部分放電が発生しない。また、粒子層内の
部分放電開始電圧と金wJ電極間の短絡電圧の差が小と
なり、安定に塵埃の捕集と殺菌ができる電圧範囲が狭い
という欠点があった。
However, in the conventional technology as described above, when a high voltage is applied to the wire mesh electrode, the electric field strength (V/cm
) is strong at both ends of the dielectric filling layer, decreases toward the middle of the dielectric filling layer, and becomes approximately constant in most of the middle. Furthermore, the applied voltage must be higher than the voltage that causes partial discharge within the dielectric filling layer and must be lower than the short-circuit voltage between the wire mesh electrodes. Therefore, the partial discharge is strong in the portion of the dielectric particle layer near the wire mesh electrode, and the partial discharge does not occur widely up to the middle portion of the particle layer. In addition, the difference between the partial discharge inception voltage within the particle layer and the short-circuit voltage between the gold wJ electrodes becomes small, resulting in a drawback that the voltage range in which dust can be stably collected and sterilized is narrow.

本発明はこのような事情に鑑みてなされたもので、誘電
体粒子層内で部分放電が安定に発生し、塵埃や細菌の捕
集率と殺菌率が高い誘電体粒子充填層フィルタ装置を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a dielectric particle-filled layer filter device in which partial discharge occurs stably within the dielectric particle layer and has a high dust and bacteria collection rate and sterilization rate. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、誘電体粒子層の部分放電開始電圧が誘電体粒
子の粒径が大きい程低いということに着目して、誘電体
粒子に粒子径の異なる誘電体粒子をガス流に沿って積層
し、ガスの入口側又は出口側の少なくとも一方に粒子径
の小さい粒子層を、又誘電体粒子層の中間に、粒子径の
大きい粒子層を積層するよう構成することにより、前記
従来の技術の問題を解決するものである。
The present invention focuses on the fact that the partial discharge inception voltage of a dielectric particle layer decreases as the particle size of the dielectric particles increases, and the present invention stacks dielectric particles of different particle sizes on a dielectric particle along a gas flow. The problem of the conventional technology can be solved by arranging a particle layer with a small particle size on at least one of the gas inlet side or the outlet side, and a particle layer with a large particle size in the middle of the dielectric particle layer. This is to solve the problem.

〔作用〕[Effect]

本発明は、誘電体粒子充填フィルタ装置において、粒子
層に粒径の異なる誘電体を使用することにより、部分放
電の発生電界強度の分布を変えている。即ち、電界強度
が高くなる粒子層の両端側(ガス流の入口側及び出口側
)のうち少なくとも一方に粒子径の小さい粒子層を、ガ
ス流の中間に粒子径の大きい粒子を含む粒子層を積層し
、粒子層の中間部でも部分放電が発生するようにし、電
離したイオン、オゾンを多量に発生させ殺菌効果を高め
るようにしたものである。
According to the present invention, in a dielectric particle-filled filter device, the distribution of electric field intensity generated by partial discharge is changed by using dielectrics having different particle sizes in the particle layer. That is, a particle layer with a small particle size is provided at least on one of both ends of the particle layer where the electric field strength increases (inlet side and outlet side of the gas flow), and a particle layer containing particles with a large particle size is placed in the middle of the gas flow. The particle layers are stacked so that partial discharge occurs even in the middle part of the particle layer, and a large amount of ionized ions and ozone are generated to enhance the sterilizing effect.

〔実施例〕〔Example〕

以下添付図面に従って本発明に係る好ましい実施例を詳
説する。
Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図に右いて矢印IOは塵埃や細菌などを含む空気(
ガス)の流れであり、26はフィルタの外筒であり、そ
の外筒の中に誘電体粒子層16.18を有し、16は粒
径の小さい粒子層、18は粒径の大きい粒子層であり、
2層がガス流に沿って積層されている。この粒子層16
及び18の両面に金1!電極20及び22が設置されて
おり、この金wJ電極には、交流高圧電#+24が接続
されている。又、この誘電体粒子層16.18の前方に
塵埃、細菌等を帯電するための放電極12が設置され、
この放電極12と金網電極20の間には、直流高圧電源
14が接続されている。又、金網電極20は接地されて
いる。又、ガスを装置外に導くために、ファン28がフ
ィルタの出口に設置されている。
The arrow IO on the right side of Figure 1 indicates air containing dust and bacteria (
26 is the outer cylinder of the filter, which has a dielectric particle layer 16.18, 16 is a particle layer with a small particle size, and 18 is a particle layer with a large particle size. and
Two layers are stacked along the gas flow. This particle layer 16
And 1 gold on both sides of 18! Electrodes 20 and 22 are installed, and an AC high voltage electric current #+24 is connected to this gold wJ electrode. Further, a discharge electrode 12 for charging dust, bacteria, etc. is installed in front of this dielectric particle layer 16, 18,
A DC high voltage power source 14 is connected between the discharge electrode 12 and the wire mesh electrode 20. Further, the wire mesh electrode 20 is grounded. A fan 28 is also installed at the outlet of the filter to guide the gas out of the device.

以上の構成において、塵埃、細菌を含むガスが矢印10
の方向からフィルタ内に入ってくると、その空気中の塵
埃、細菌は放電極12のコロナ放電によって、正又は負
に帯電させられ、誘電体粒子層16.18に取り込まれ
る。
In the above configuration, the gas containing dust and bacteria is
When entering the filter from this direction, the dust and bacteria in the air are charged positively or negatively by the corona discharge of the discharge electrode 12, and are taken into the dielectric particle layer 16.18.

また、誘電体粒子16.18内の電界強度は、隣合う粒
子間のわずかな空間に電界が集中するため、強い電界が
得られ、そのわずかな空間に極部的な空気の電離による
放電(部分放電)が発生し、高濃度のイオンやオゾンに
より、前記粒子116.18に取り込まれたガス中の細
菌は誘電体に捕集されると共に破壊され、清浄となった
ガスは、前記ファン28を通して出口から出ていく。
In addition, the electric field strength within the dielectric particles 16.18 is concentrated in the small space between adjacent particles, so a strong electric field is obtained, and in that small space there is a discharge due to local air ionization ( Due to the high concentration of ions and ozone, the bacteria in the gas trapped in the particles 116.18 are captured on the dielectric material and destroyed, and the purified gas is transferred to the fan 28. Go out through the exit.

このように空気中の細菌等を破壊するためには、粒子層
16.18に部分放電を起こさせねばなちない。以下そ
の原理について説明する。
In order to destroy bacteria and the like in the air in this way, it is necessary to cause partial discharge in the particle layers 16 and 18. The principle will be explained below.

第2図のグラフは、粒径d+  d2、dz  (d+
>62 >dj )に印加される電界強度(k V/c
m)とその粒子層を流れる電流密度(m A / ct
 )との関係を実験的に示した図である。電流密度は、
粒子間に起こっている部分放電の量が増加すれば、それ
に比例的に増加する。従って、誘電体粒子層に電流が流
れていれば、部分放電が起こっていると考えられる。ま
た、同図においては、粒径d1d、 、d、はd+  
>dz  >dz であり、それぞれに対応する部分放
電開始電界強度E、 、E2、E、はE l< E 2
 < E sであるから、粒径の大きい粒子層の方が、
粒径の小さい粒子層よりも、部分放電開始電界強度は低
いことが実験結果より明るかとなった。
The graph in Figure 2 shows the particle size d+ d2, dz (d+
>62 >dj ) applied electric field strength (k V/c
m) and the current density flowing through the particle layer (m A / ct
) is a diagram experimentally showing the relationship between The current density is
If the amount of partial discharge occurring between particles increases, it will increase proportionally. Therefore, if current flows through the dielectric particle layer, it is considered that partial discharge is occurring. In addition, in the same figure, the particle diameter d1d, , d, is d+
>dz >dz, and the corresponding partial discharge initiation electric field strengths E, , E2, E, are E l< E 2
< E s, so the particle layer with larger particle size is
The experimental results clearly show that the partial discharge initiation electric field strength is lower than that of a particle layer with a small particle size.

そこで、本実施例のように、粒径の小さい粒子層16と
粒径の大きい粒子層18の2層を空気流方向に積層した
場合、粒子層内の部分放電開始電界強度の空気流方向の
分布は、第3図の点線で示されるE、 、El となり
部分放電を起こす電界強度が誘電体粒子層の中央部で低
くすることができる。また、点線E、−E、の折点は、
小さい粒径と大きい粒径との粒子層の境界に対応する。
Therefore, when two layers, the particle layer 16 with a small particle size and the particle layer 18 with a large particle size, are laminated in the air flow direction as in this embodiment, the partial discharge inception electric field strength in the particle layer changes in the air flow direction. The distribution becomes E, , El shown by the dotted line in FIG. 3, and the electric field strength that causes partial discharge can be lowered at the center of the dielectric particle layer. Also, the breaking points of dotted lines E and -E are
It corresponds to the boundary between particle layers of small and large particle sizes.

第3図で、横軸はアース側金網電極からの距離、縦軸は
電界強度(K V / cm )である。Eo は、粒
子層にある電圧をかけたときの空気流方向の電界強度分
布である。従って、この図より印加電界強度E0 と粒
径の小さい粒子の部分放電開始電界強度E、と粒径の大
きな粒子の部分放電開始電界強度E+  とが、Eo 
 >E3 、Eo  >El  となる部分ではその部
分の電界強度が、部分放電開始電圧より強いので、部分
放電が起こっていることになる。
In FIG. 3, the horizontal axis is the distance from the ground wire mesh electrode, and the vertical axis is the electric field strength (K V /cm ). Eo is the electric field strength distribution in the air flow direction when a certain voltage is applied to the particle layer. Therefore, from this figure, the applied electric field strength E0, the partial discharge initiation electric field strength E for particles with a small particle size, and the partial discharge initiation electric field strength E+ for particles with a large particle size are Eo
>E3 and Eo >El, the electric field strength at that portion is stronger than the partial discharge inception voltage, which means that a partial discharge is occurring.

即ち、第3図のDl 0区間はE。<E、であるので、
部分放電が起こっていないか弱い。且つ粒子層の池の部
分では、部分放電が起きている。一方、一種類の粒径の
みの部分放電開始電界強度は第3図のE2 でどこでも
一定である。従って、印加電界強度E。とこの粒子の部
分放電開始電界強度E2がEO<E2 となるD2 の
区間では部分放電が起こらず、2種類の粒径の誘電体粒
子を組み合わせた方が、その粒子層の中間部位で広く部
分放電が起こっている。
That is, the Dl 0 section in FIG. 3 is E. <E, so
Partial discharge is absent or weak. Moreover, partial discharge occurs in the pond part of the particle layer. On the other hand, the partial discharge initiation electric field strength for only one type of particle size is constant everywhere at E2 in FIG. Therefore, the applied electric field strength E. Partial discharge does not occur in the section D2 where the partial discharge initiation electric field strength E2 of the particles satisfies EO<E2, and it is better to combine dielectric particles of two types of particle sizes, since the partial discharge can be spread widely in the middle part of the particle layer. A discharge is occurring.

更に、第3図でDl の区間では、部分放電が起こって
いないか弱いので、その部分で絶縁されており、誘電体
粒子層全体がアーク放電により短絡する危険も少なくす
ることもできる。
Furthermore, in the section Dl in FIG. 3, partial discharge does not occur or is weak, so insulation is provided in that section, and the risk of short-circuiting of the entire dielectric particle layer due to arc discharge can also be reduced.

第3図より明らかなように、印加電界強度E。As is clear from FIG. 3, the applied electric field strength E.

は、粒子層に前記絶縁部、部分放電発生部位を確保しつ
つ、一種類の粒子層のときよりも高くすることができる
。粒径の小さい粒子層の部分放電開始電界強度E、が従
来の1種類の中間の大きさの粒子層の部分放電開始電界
強度E2 より大とできるからである。
can be made higher than in the case of a single type of particle layer while ensuring the insulating portion and partial discharge generation site in the particle layer. This is because the partial discharge starting electric field strength E of a particle layer with a small particle size can be made larger than the partial discharge starting electric field strength E2 of one type of conventional particle layer with an intermediate size.

前記実施例では、空気入口側に粒子径の小さい粒子層を
形成したが、これに限らず入口側、出口側の少なくとも
一方に積層しても本発明の効果を得ることができる。ま
た、各層の境界層に大小粒子の混在層を設けるようにし
てもよい。
In the embodiment described above, a layer of particles having a small particle diameter was formed on the air inlet side, but the present invention is not limited thereto, and the effects of the present invention can be obtained even if the particle layer is laminated on at least one of the inlet side and the outlet side. Furthermore, a mixed layer of large and small particles may be provided in the boundary layer of each layer.

また、第3図において、粒径の小さい粒子層の部分放電
開始電界強度E、は中間の大きさの粒子層の部分放電開
始電界開始E2 よりも高いため、その粒子層に流れる
電流密度は小となり、消費電力を節約することもできる
In addition, in Fig. 3, the partial discharge initiation electric field strength E of the particle layer with a small particle size is higher than the partial discharge initiation electric field intensity E2 of the particle layer with an intermediate size, so the current density flowing through that particle layer is small. Therefore, it is possible to save power consumption.

尚、前記実施例では誘電体粒子層に交流電圧を加えたが
これは直流でもよい。
In the above embodiment, an alternating current voltage was applied to the dielectric particle layer, but a direct current may also be applied.

〔発明の効果〕〔Effect of the invention〕

本発明に係る誘電体粒子充電層フィルタ装置によれば、
粒径の異なる誘電体粒子を積層することで、粒子層の全
体がアーク放電により短絡することを防ぎつつ、誘電体
内の電界を強く保つことができ、且つ広い空気の電離領
域を確保することにより、高効率で塵埃や細菌を捕集殺
菌し、省エネの効果等も得られる。
According to the dielectric particle charged layer filter device according to the present invention,
By stacking dielectric particles with different particle sizes, it is possible to prevent the entire particle layer from short-circuiting due to arc discharge, maintain a strong electric field within the dielectric, and secure a wide air ionization area. It collects and sterilizes dust and bacteria with high efficiency, and also provides energy-saving effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の誘電体粒子充填層フィルタ装
置の軸方向の断面図、第2図はある粒径の粒子層の印加
する電圧とそれに流れる電流の密度との関係を示すグラ
フ、第3図はアース側金網電極からの距離と電界強度(
KV/c、)との関係を示し、部分放電開始電圧E、、
E2、E、  と、一種類の粒径の誘電体粒子を用いた
時の印加電界強度Eo の分布をそれぞれ示すグラフで
ある。 IO・・・ガスの流れを示す矢印、 12・・・放電極
、14・・・直流高圧電源、  16・・・誘電体粒子
層(粒径小)、 18・・・誘電体粒子層(粒径大)、
20.22・・・金網電極、 24・・・交流高圧電源
、28・・・ファン、  26・・・外筒。
FIG. 1 is an axial cross-sectional view of a dielectric particle packed bed filter device according to an embodiment of the present invention, and FIG. 2 is a graph showing the relationship between the voltage applied to a particle layer of a certain particle size and the density of the current flowing therein. , Figure 3 shows the distance from the earth side wire mesh electrode and the electric field strength (
KV/c, ) and the partial discharge inception voltage E, ,
2 is a graph showing the distribution of the applied electric field strength Eo when dielectric particles of one type of particle size are used. IO...Arrow indicating gas flow, 12...Discharge electrode, 14...DC high voltage power supply, 16...Dielectric particle layer (small particle size), 18...Dielectric particle layer (particle size) large diameter),
20.22...Wire mesh electrode, 24...AC high voltage power supply, 28...Fan, 26...Outer cylinder.

Claims (1)

【特許請求の範囲】[Claims] (1)ガス流の入口側にガス中に含まれる塵埃や細菌を
帯電する帯電部を有し、ガス流の後流側に誘電体粒子を
充填し、誘電体粒子層に電圧を印加して塵埃や細菌を捕
集すると共に、誘電体粒子層内で部分放電を起こすこと
によって捕集した細菌を殺す誘電体粒子充填層フィルタ
装置に於いて、ガス流の入口側又は出口側の少なくとも
一方に粒子径の小さい粒子層を、ガス流の中間に粒子径
の大きい粒子を含む粒子層を積層して前記誘電体粒子層
を構成たことを特徴とする誘電体粒子充填層フィルタ装
置。
(1) A charging part is provided on the inlet side of the gas flow to charge dust and bacteria contained in the gas, dielectric particles are filled in the downstream side of the gas flow, and a voltage is applied to the dielectric particle layer. In a dielectric particle packed bed filter device that collects dust and bacteria and kills the collected bacteria by causing partial discharge within the dielectric particle layer, at least one of the inlet side and the outlet side of the gas flow is used. A dielectric particle packed bed filter device characterized in that the dielectric particle layer is constructed by laminating a particle layer having a small particle size and a particle layer containing particles having a large particle size in the middle of a gas flow.
JP26818488A 1988-10-26 1988-10-26 Dielectric particle packed bed filter device Expired - Lifetime JP2675359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26818488A JP2675359B2 (en) 1988-10-26 1988-10-26 Dielectric particle packed bed filter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26818488A JP2675359B2 (en) 1988-10-26 1988-10-26 Dielectric particle packed bed filter device

Publications (2)

Publication Number Publication Date
JPH02119954A true JPH02119954A (en) 1990-05-08
JP2675359B2 JP2675359B2 (en) 1997-11-12

Family

ID=17455088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26818488A Expired - Lifetime JP2675359B2 (en) 1988-10-26 1988-10-26 Dielectric particle packed bed filter device

Country Status (1)

Country Link
JP (1) JP2675359B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043114A (en) * 2011-08-23 2013-03-04 Mitsubishi Electric Corp Virus and microorganism removal device
KR20190011535A (en) * 2017-07-25 2019-02-07 주식회사 지유디이에스 Electric air filter and apparatus for furifying air using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043114A (en) * 2011-08-23 2013-03-04 Mitsubishi Electric Corp Virus and microorganism removal device
KR20190011535A (en) * 2017-07-25 2019-02-07 주식회사 지유디이에스 Electric air filter and apparatus for furifying air using the same

Also Published As

Publication number Publication date
JP2675359B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
AU595179B2 (en) Ion-wind air transporting arrangement
EP0306489B1 (en) An arrangement for generating an electric corona discharge in air
US7961451B2 (en) Ion generating element, and ion generating apparatus equipped with same
EP1537591B1 (en) Method of handling a fluid and a device therefor.
KR100518387B1 (en) Negative ion operating device for ac
CN108043182A (en) A kind of electric discharge elementary cell stopped using multimedium and reactor and waste gas processing method
CN111457497A (en) Corona discharge plasma air purification device and method
JPH02119954A (en) Dielectric particle-packed bed filter device
EP0223411A2 (en) Ozone purification system and apparatus
CN214210919U (en) Plate-type electrostatic dust collection equipment arc-discharge attenuation device applied to air purifier
JPH04197418A (en) Gas purifying apparatus
US3696269A (en) Air processor
FI84676B (en) Air transporting device
Yasumoto et al. Effect of electrode thickness for reducing ozone generation in electrostatic precipitator
JPS59145314A (en) Diesel particulate collector
KR20220113718A (en) electric dust collector
CA2596605A1 (en) Device for the treatment of a gaseous medium with plasma and method of protecting such a device against inflammation and/or explosion
KR100206774B1 (en) Electrostatic precipitator
KR102244624B1 (en) Radical/anion/electrons generating device using separate electrical discharge compartment and electronic appliances for sterilization/deodorization having the same
Boonseng et al. Harmonic analysis of corona discharge ozone generator using brush electrode configuration
CN212108808U (en) Corona discharge plasma air purification device
CN107377222A (en) A kind of air purifier and air purification method
JP3990655B2 (en) Ion generator
JPS6279859A (en) Corona blower and electrostatic precipitator utilizing said blower
WO2009105072A1 (en) Cermet as a dielectric in a dielectric barrier discharge device