JPH02119650A - Air-fuel ratio control method for transient period - Google Patents

Air-fuel ratio control method for transient period

Info

Publication number
JPH02119650A
JPH02119650A JP27385988A JP27385988A JPH02119650A JP H02119650 A JPH02119650 A JP H02119650A JP 27385988 A JP27385988 A JP 27385988A JP 27385988 A JP27385988 A JP 27385988A JP H02119650 A JPH02119650 A JP H02119650A
Authority
JP
Japan
Prior art keywords
fuel
engine
fuel injection
amount
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27385988A
Other languages
Japanese (ja)
Inventor
Keiichi Yamaguchi
桂一 山口
Morihito Asano
守人 浅野
Atsuhiro Hayashi
早矢仕 篤洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP27385988A priority Critical patent/JPH02119650A/en
Publication of JPH02119650A publication Critical patent/JPH02119650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enhance the accuracy of controlling an air-fuel ratio to improve emission, etc. by permitting the state of an engine immediately before shifting to be reflected in subsequent fuel control when accelerated and decelerated states shift each other. CONSTITUTION:An electrically controlled fuel injection device 2 loaded on an engine 1 is provided with a fuel injection valve 4 loaded on an intake pipe 3, and an electronic control device 5 for controlling the fuel injection valve 4. The electronic control device 5 controls the fuel injection valve 4 based on each detection signal from various sensors 12, 14 for detecting the operating state of the engine 1. In this instance, when the engine 1 decelerates during controlling the fuel injection quantity to increase it, the remaining increased amount of fuel injection quantity is reflected in fuel control for decreasing, and the decreased amount of fuel for deceleration is increased. On the other hand, when the engine 1 accelerates during controlling the fuel injection quantity to decrease it, the remaining decreased amount of the fuel injection quantity is reflected in fuel control for acceleration, and the increased amount of fuel for acceleration is increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子制御燃料噴射装置を備えた自動車等のエ
ンジンに好適に採用可能な過渡時の空燃比制御方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transient air-fuel ratio control method that can be suitably employed in engines such as automobiles equipped with an electronically controlled fuel injection device.

[従来の技術] この種のエンジンでは、第8図に概略的に示すように、
エンジンが定常状態から加速状態に移行して吸気圧が上
昇すると、吸気圧の変動に対応させて燃料噴射量を加速
増量すると共に、移行後の空燃比を理論空燃比付近に維
持するための増量調節を行うようにしている。
[Prior Art] In this type of engine, as schematically shown in FIG.
When the engine shifts from a steady state to an accelerating state and the intake pressure increases, the fuel injection amount is accelerated and increased in response to the change in intake pressure, and the amount is increased to maintain the air-fuel ratio after the transition near the stoichiometric air-fuel ratio. I'm trying to make adjustments.

一方、第9図に概略的に示すように、エンジンが定常状
態から減速状態に移行して吸気圧が低下すると、吸気圧
の変動に対応させて燃料噴射量を減速減量するとともに
、移行後の空燃比を理論空燃比付近に維持するための減
量調節を行うようにしている。
On the other hand, as schematically shown in Fig. 9, when the engine shifts from a steady state to a deceleration state and the intake pressure decreases, the fuel injection amount is decelerated and reduced in response to the change in intake pressure, and the A reduction adjustment is made to maintain the air-fuel ratio near the stoichiometric air-fuel ratio.

[発明が解決しようとする課題] ところが、このような構成によれば、第10図に概略的
に示すように、エンジンが加速状態へ移行して燃料噴射
量が増量調節されている途中に、エンジンが減速状態に
移行して吸気圧が低下すると、それに伴って燃料噴射量
の減量調節が行われる。このため、エンジンが減速状態
に移行する直前の残存増量分A等に起因して燃料の減速
減量が充分に行われないことになる。しかも、エンジン
が加速状態に移行した場合には、燃料の加速増量によっ
て吸気管内がウェット状態にあるため、かかる状態から
減速状態に移行した場合には、上記残存増量分Aに相当
する量よりも更に多くの減量Cが必要となる。すなわち
、このような構成によると、エンジンが加速状態から減
速状態に移行した場合には、減速状態に応じた適切な減
量調節が行われないため、第12図に概略的に示すよう
に、空燃比A/Fがオーバリッチとなる。このため、減
速時の燃料消費量が充分に低減されず、エミッションや
ドライバビリティ等が悪化する原因となっている。
[Problems to be Solved by the Invention] However, according to such a configuration, as schematically shown in FIG. 10, while the engine shifts to an acceleration state and the fuel injection amount is adjusted to increase, When the engine shifts to a deceleration state and the intake pressure decreases, the fuel injection amount is adjusted to decrease accordingly. For this reason, due to the residual increase amount A immediately before the engine shifts to the deceleration state, the deceleration reduction in fuel will not be sufficiently performed. Moreover, when the engine shifts to an acceleration state, the inside of the intake pipe is in a wet state due to the accelerated increase in fuel, so when the engine shifts from this state to a deceleration state, the amount corresponding to the remaining increase A is Even more weight loss C is required. That is, according to such a configuration, when the engine shifts from an acceleration state to a deceleration state, an appropriate weight reduction adjustment according to the deceleration state is not performed. The fuel ratio A/F becomes overrich. For this reason, fuel consumption during deceleration is not sufficiently reduced, causing deterioration in emissions, drivability, and the like.

また、第11図に概略的に示すように、エンジンが減速
状態へ移行して燃料噴射量が減量調節されている途中に
、エンジンが加速状態に移行して吸気圧が上昇すると、
それに伴って燃料噴射量の増量調節が行われる。このた
め、エンジンが加速状態に移行する直前の残存減量分B
等に起因して燃料の加速増量が不十分となる。しかも、
エンジンが減速状態に移行した場合には、燃料の減速減
量や負圧等によって吸気管内が殆ど乾いた状態にあるた
め、かかる状態から加速状態に移行した場合には、上記
残存域n分Bに相当する出よりも更に多くの増量が必要
となる。すなわち、前述のような構成によると、エンジ
ンが減速状態から加速状態に移行した場合には、加速状
態に応じた適切な増量調節が行われないため、第13図
に概略的に示すように、空燃比A/Fがリーンとなる。
Further, as schematically shown in FIG. 11, if the engine shifts to an accelerating state and the intake pressure increases while the engine shifts to a decelerating state and the fuel injection amount is being reduced,
Accordingly, the fuel injection amount is adjusted to increase. Therefore, the remaining weight loss B just before the engine shifts to acceleration state
Due to such reasons, the acceleration increase in fuel becomes insufficient. Moreover,
When the engine shifts to a deceleration state, the inside of the intake pipe is almost dry due to deceleration loss of fuel, negative pressure, etc., so when the engine shifts from such a state to an acceleration state, the remaining region n B is reached. More volume increase than the corresponding output would be required. That is, according to the above-mentioned configuration, when the engine shifts from a deceleration state to an acceleration state, an appropriate increase adjustment according to the acceleration state is not performed, so as schematically shown in FIG. The air-fuel ratio A/F becomes lean.

このため、加速時のエミッションや加速応答性等が悪化
する原因となっている。
This causes deterioration in emissions during acceleration, acceleration response, etc.

かかる不具合に対処するために、本発明の先行技術とし
て、例えば特開昭58−150033号公報に示される
ように、エンジンが加速状態に移行して燃料の増量調節
を実行している最中に、エンジンが減速状態に移行した
場合には、残存増量分をクリアして新たに要求の有った
減速減量を実行し、エンジンが減速状態に移行して燃料
の減量調節を実行している最中に、エンジンが加速状態
に移行した場合には、残存減員分をクリアして新たに要
求の有った加速増量を実行するようにしているものもあ
る。
In order to deal with this problem, as a prior art of the present invention, for example, as shown in Japanese Patent Laid-Open No. 58-150033, when the engine is in an acceleration state and the fuel increase adjustment is being performed, , when the engine enters a deceleration state, the remaining amount of increase is cleared and the newly requested deceleration reduction is executed. Among them, when the engine shifts to an acceleration state, there is a system that clears the remaining reduction amount and executes a newly requested acceleration increase.

しかしながら、エンジンが加速状態から減速状態に移行
した場合と、減速状態から加速状態に移行した場合とで
は、吸気管内の燃料状況が異なるため、このような構成
によっても、前述のような不具合を確実に解消すること
は難しい。
However, since the fuel situation in the intake pipe is different when the engine transitions from acceleration to deceleration and when it transitions from deceleration to acceleration, even with this configuration, it is possible to prevent the above-mentioned problems. difficult to resolve.

本発明は、以上のような課題を一挙に解消することを目
的としている。
The present invention aims to solve the above problems all at once.

[課題を解決するための手段] 本発明は、かかる目的を達成するために、エンジンが加
速状態に移行した場合に燃料噴射量を増量調節し、エン
ジンが減速状態に移行した場合に燃料噴射量を減量調節
するように構成した過渡時の空燃比制御方法において、
燃料噴射量の増量調節途中にエンジンが減速状態に移行
した場合には、燃料噴射量の残存増量分を減量調節に反
映させて減速減酋分を増加し、燃料噴射量の減量調節途
中にエンジンが加速状態に移行した場合には、燃料噴射
量の残存減員分を加速調節に反映させて加速増量分を増
加するようにしたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention increases the fuel injection amount when the engine shifts to an acceleration state, and increases the fuel injection amount when the engine shifts to a deceleration state. In a transient air-fuel ratio control method configured to reduce the amount of
If the engine enters a deceleration state during the adjustment to increase the fuel injection amount, the remaining increase in the fuel injection amount is reflected in the reduction adjustment and the deceleration reduction amount is increased. The present invention is characterized in that when the vehicle enters an acceleration state, the remaining reduction in the fuel injection amount is reflected in the acceleration adjustment to increase the acceleration increase.

[作用] このような構成によれば、エンジンが定常状態から加速
状態に移行すると、燃料の加速増量が行われると共に、
加速終了後の空燃比が調節され、エンジンが定常状態か
ら減速状態に移行すると、燃料の減速減量が行われると
共に、減速終了後の空燃比が調節される。
[Operation] According to such a configuration, when the engine shifts from a steady state to an acceleration state, the amount of fuel is increased for acceleration, and
The air-fuel ratio after the end of acceleration is adjusted, and when the engine shifts from a steady state to a deceleration state, the amount of fuel is reduced during deceleration, and the air-fuel ratio after the end of deceleration is adjusted.

そして、エンジンが加速状態へ移行して燃料噴射量が増
量調節されている途中に、エンジンが減速状態に移行す
ると、移行する直前の残存増量分が燃料の減量調節に反
映される。すなわち、増量分が残った状態から燃料の減
速減量が実行されると、残存増量分よりも更に大きな値
によって減速減量分が増加され、減速時の燃料噴射量が
吸気圧等に対応した量よりも更に絞られることになる。
Then, when the engine shifts to a deceleration state while the engine shifts to an acceleration state and the fuel injection amount is adjusted to increase, the amount of increase remaining immediately before the shift is reflected in the fuel reduction adjustment. In other words, when deceleration reduction of fuel is executed with the increased amount remaining, the deceleration reduction amount is increased by an even larger value than the remaining increased amount, and the fuel injection amount during deceleration becomes less than the amount corresponding to the intake pressure etc. will be further narrowed down.

また、エンジンが減速状態へ移行して燃料噴射量が減量
調節されている途中に、エンジンが加速状態に移行する
と、移行する直前の残存減員分が燃料の増量調節に反映
される。すなわち、減量分が残った状態から燃料の加速
増量が実行されると、残存減量骨よりも更に大きな値に
よって加速増量分が増加され、加速時の燃料噴射量が吸
気圧等に対応した量よりも更に増量されることになる。
Furthermore, if the engine shifts to an accelerating state while the engine is shifting to a decelerating state and the fuel injection amount is being adjusted to decrease, the remaining amount of fuel injection immediately before the transition is reflected in the fuel increase adjustment. In other words, when an accelerated fuel increase is executed from a state where a reduced amount remains, the accelerated increased amount is increased by an even larger value than the remaining reduced amount, and the fuel injection amount during acceleration becomes less than the amount corresponding to the intake pressure, etc. will be further increased.

[実施例] 以下、本発明の一実施例を第1図から第7図を参照して
説明する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 7.

第1図に概略的に示したエンジン1は、自動車に搭載さ
れるもので、電子制御燃料噴射装置2を備えている。電
子制御燃料噴射装置2は、吸気管3に装着した燃料噴射
弁4と、この燃料噴射弁4の作動を制御する電子制御装
置5とを具備してなり、前記燃料噴射弁4から燃焼室6
へ供給する燃料の噴射量を、各種センサ等の情報に基づ
いて前記電子制御装置5により調節するようにしたもの
である。
An engine 1 schematically shown in FIG. 1 is installed in an automobile and includes an electronically controlled fuel injection device 2. The engine 1 shown schematically in FIG. The electronically controlled fuel injection device 2 includes a fuel injection valve 4 attached to an intake pipe 3 and an electronic control device 5 that controls the operation of the fuel injection valve 4.
The injection amount of fuel supplied to the engine is adjusted by the electronic control device 5 based on information from various sensors and the like.

燃料噴射弁4は、電磁コイルを内蔵しており、その電磁
コイルに前記電子制御装置5から噴射信号aが印加され
ると、燃料噴射時間に相当する量の燃料を吸気ポート近
傍に噴射するようになっている。
The fuel injection valve 4 has a built-in electromagnetic coil, and when the injection signal a is applied to the electromagnetic coil from the electronic control device 5, the fuel injection valve 4 injects an amount of fuel corresponding to the fuel injection time into the vicinity of the intake port. It has become.

電子制御装置5は、中央演算処理装置7と、メモリー8
と、入力インターフェース9及び出力インターフェース
10等を備えている。入力インタフェース9には、少な
くとも、サージタンク11に設けた圧力センサ12から
の吸気圧信号すと、触媒コンバータ13の上流に配置し
た酸素センサ14からの信号C等がそれぞれ人力され、
出力インターフェース10からは、前記燃料噴射弁4に
噴射信号aが出力されるようになっている。圧力センサ
12′は、吸気圧が連続的に検出し得るようになってお
り、その吸気圧信号すは図示しないA/D変換機を介し
てデジタル電気信号に変換されるようになっている。酸
素センサ14は、混合気の空燃比がリーン側にあって排
気ガス中の酸素濃度が高い場合には、理論空燃比近傍に
存在する基準値よりも低い起電力を発生し、混合気の空
燃比がリッチ側にあって排気ガス中の酸素濃度が高い場
合には、前記基準値よりも高い起電力を発生し得るよう
に構成されたものである。そして、上記電子制御装置5
は、エンジン冷却水の温度が所定値以上で、エンジン1
が高負荷・高速回転状態でないこと等のフィードバック
制御条件が成立している場合には、前記酸素センサ14
からの信号Cに基づいて混合気の空燃比を理論空燃比近
傍に維持するためのフィードバック制御を行うようにし
である。すなわち、酸素センサ14の起電力が基準値よ
りも低い場合には、前記燃料噴射弁4から燃焼室6へ供
給する燃料の噴射量を増量させ、酸素センサ14の起電
力が基準値よりも高い場合には、前記燃料噴射弁4から
燃焼室6へ供給する燃料の噴射量を絞るように設定しで
ある。
The electronic control unit 5 includes a central processing unit 7 and a memory 8.
, an input interface 9, an output interface 10, etc. The input interface 9 receives at least an intake pressure signal from a pressure sensor 12 provided in a surge tank 11, a signal C from an oxygen sensor 14 located upstream of a catalytic converter 13, and the like.
An injection signal a is output from the output interface 10 to the fuel injection valve 4. The pressure sensor 12' is capable of continuously detecting the intake pressure, and the intake pressure signal is converted into a digital electrical signal via an A/D converter (not shown). When the air-fuel ratio of the air-fuel mixture is on the lean side and the oxygen concentration in the exhaust gas is high, the oxygen sensor 14 generates an electromotive force that is lower than a reference value that exists near the stoichiometric air-fuel ratio, and reduces the air-fuel ratio of the air-fuel mixture. When the fuel ratio is on the rich side and the oxygen concentration in the exhaust gas is high, it is configured to generate an electromotive force higher than the reference value. Then, the electronic control device 5
If the temperature of the engine cooling water is above a predetermined value, the engine 1
When the feedback control conditions such as not being in a high load/high speed rotation state are satisfied, the oxygen sensor 14
Based on the signal C from the air-fuel mixture, feedback control is performed to maintain the air-fuel ratio of the air-fuel mixture near the stoichiometric air-fuel ratio. That is, when the electromotive force of the oxygen sensor 14 is lower than the reference value, the injection amount of fuel supplied from the fuel injection valve 4 to the combustion chamber 6 is increased, and the electromotive force of the oxygen sensor 14 is higher than the reference value. In this case, the amount of fuel injected from the fuel injection valve 4 to the combustion chamber 6 is set to be reduced.

また、この電子制御装置5は、実際に検出した最新の実
吸気圧と前回の実吸気圧とをなまし処理し、そのなまし
処理した吸気圧をエンジン状態の判別等に利用する役割
を担っている。例えば、なまし処理した最新の吸気圧が
前回の吸気圧を上回り、その変化量が設定値を上回った
場合には、エンジン1が加速状態に移行したことを判別
するようになっている。そして、エンジン1の加速判別
が行われると、過渡時空燃比補正係数等を増加させて燃
料の増量調節を行うようにしである。すなわち、吸気圧
の変化量に対応させて燃料の加速増量を行うとともに、
加速終了直後から燃料噴射量を減衰させる等の調節を行
い、混合気の空燃比を理論空燃比近傍にフィードバック
制御するようになっている。過渡時空燃比補正係数は、
第4図に概略的に示すように、過渡判別後の吸気圧の変
化によって急速に増減する急加減速係数F A EWA
に係数を掛けた値と、過渡判別後の吸気圧と最新の吸気
圧との差によって緩慢に増減する緩加減速係数FAEW
Bに係数を掛けた値とを加算した補正係数である。
The electronic control unit 5 also has the role of smoothing the latest actual intake pressure actually detected and the previous actual intake pressure, and using the smoothed intake pressure for determining the engine condition, etc. ing. For example, if the latest intake pressure subjected to the smoothing process exceeds the previous intake pressure and the amount of change exceeds a set value, it is determined that the engine 1 has shifted to an acceleration state. Then, when the acceleration of the engine 1 is determined, the transient air-fuel ratio correction coefficient and the like are increased to adjust the amount of fuel. In other words, the amount of fuel is accelerated and increased in response to the amount of change in intake pressure, and
Immediately after the end of acceleration, adjustments such as attenuating the fuel injection amount are made to feedback control the air-fuel ratio of the air-fuel mixture to near the stoichiometric air-fuel ratio. The transient air-fuel ratio correction coefficient is
As schematically shown in Fig. 4, the sudden acceleration/deceleration coefficient F A EWA rapidly increases or decreases depending on changes in intake pressure after transient discrimination.
A slow acceleration/deceleration coefficient FAEW that increases or decreases slowly depending on the value obtained by multiplying by a coefficient and the difference between the intake pressure after transient discrimination and the latest intake pressure.
This is a correction coefficient obtained by adding a value obtained by multiplying B by a coefficient.

一方、なまし処理した最新の吸気圧が前回の吸気圧を下
回り、その変化量が設定値を上回った場合には、エンジ
ン1が減速状態に移行したことを判別するようになって
いる。そして、エンジン1の減速判別が行われると、過
渡時空燃比補正係数等を減衰させて燃料の減量調節を行
うようにしてある。すなわち、吸気圧の変化量に対応さ
せて燃料の減速減量を行うとともに、減速終了直後から
燃料噴射量を増量させる等の調節を行い、混合気の空燃
比を理論空燃比近傍にフィードバック制御するようにな
っている。
On the other hand, if the latest intake pressure subjected to the smoothing process is lower than the previous intake pressure and the amount of change exceeds the set value, it is determined that the engine 1 has shifted to a deceleration state. When the deceleration of the engine 1 is determined, the transient air-fuel ratio correction coefficient and the like are attenuated to adjust the amount of fuel. In other words, the amount of fuel is reduced during deceleration in response to the amount of change in the intake pressure, and the fuel injection amount is increased immediately after deceleration is completed to feedback control the air-fuel ratio of the air-fuel mixture to near the stoichiometric air-fuel ratio. It has become.

さらに、上記電子制御装置5には、第2図に概略的に示
すように、エンジン1が加速状態へ移行して燃料噴射量
が増量調節されている途中に、エンジン1が減速状態に
移行すると、移行する直前の残存増量分F工を燃料の減
量調節に反映させるようにしである。すなわち、上記増
量分F1が残った状態から燃料の減速減量が実行される
と、残存増量分F1よりも更に大きな値によって減速減
量分を増加し、減速時の燃料噴射量が吸気圧等に対応し
た量よりも更に絞られるように設定しである。一方、第
3図に概略的に示すように、エンジン1が減速状態へ移
行して燃料噴射量が減量調節されている途中に、エンジ
ン1が加速状態に移行すると、移行する直前の残存減量
性F2を燃料の増量調節に反映させるようにしである。
Furthermore, as schematically shown in FIG. 2, the electronic control device 5 is configured to control the engine 1 when the engine 1 shifts to a deceleration state while the engine 1 shifts to an acceleration state and the fuel injection amount is adjusted to increase. , the remaining amount of increase F just before the transition is reflected in the fuel reduction adjustment. That is, when deceleration reduction of fuel is executed from a state where the above-mentioned increase amount F1 remains, the deceleration reduction amount is increased by an even larger value than the remaining increase amount F1, and the fuel injection amount during deceleration corresponds to the intake pressure etc. It is set so that the amount is narrowed down even more than the amount specified. On the other hand, as schematically shown in FIG. 3, when the engine 1 shifts to an accelerating state while the engine 1 shifts to a decelerating state and the fuel injection amount is adjusted to be reduced, the remaining amount of fuel injection amount immediately before the shift occurs. This is done so that F2 is reflected in the fuel increase adjustment.

すなわち、上記減量分F2が残った状態から燃料の加速
増量が実行されると、残存減量性F2よりも更に大きな
値によって加速増量分を増加し、加速時の燃料噴射量が
吸気圧等に対応した量よりも更に増量されるように設定
しである。
That is, when an acceleration increase of fuel is executed from a state where the above-mentioned reduction amount F2 remains, the acceleration increase amount is increased by a value even larger than the remaining reduction amount F2, and the fuel injection amount during acceleration corresponds to the intake pressure etc. The amount is set to be increased further than the amount specified.

そして、このような制御を実行するために、上記電子制
御装置5には、第5図に概略的に示すようなプログラム
を設定しである。先ず、ステップ51では、吸気圧の変
化量が設定値に満たない場合に0にセットされる急加減
速係数FAEWAが0か否か、換言すれば、エンジン1
が過渡状態にあるか否かを判別する。そして、急加減速
係数FAEWAが0にセットされている場合には、エン
ジン1が定常状態にあるのを判別し、急加減速係数FA
EWAが0にセットされていない場合には、エンジン1
が過渡状態にあるのを判別してステップ52へ進む。ス
テップ52では、急加減速係数FAEWAが正か負かを
判別し、正であると判断した場合にはエンジン1が減速
状態にあると判断してステップ56へ進み、負であると
判断した場合には、エンジン1が加速状態にあると判断
してステップ53へ進む。ステップ53では、緩加減速
係数FAEWBが負か否かを判別し、負である場合には
加速時であると判断し、負でない場合には、エンジン1
が減速状態に移行したと判断してステップ54へ進む。
In order to execute such control, a program as schematically shown in FIG. 5 is set in the electronic control device 5. First, in step 51, whether the sudden acceleration/deceleration coefficient FAEWA, which is set to 0 when the amount of change in intake pressure is less than a set value, is 0 or not, in other words, the engine 1
Determine whether or not is in a transient state. If the sudden acceleration/deceleration coefficient FAEWA is set to 0, it is determined that the engine 1 is in a steady state, and the sudden acceleration/deceleration coefficient FA
If EWA is not set to 0, engine 1
It is determined that is in a transient state and the process proceeds to step 52. In step 52, it is determined whether the sudden acceleration/deceleration coefficient FAEWA is positive or negative, and if it is determined to be positive, it is determined that the engine 1 is in a deceleration state and the process proceeds to step 56, and if it is determined to be negative In step 53, it is determined that the engine 1 is in an accelerating state, and the process proceeds to step 53. In step 53, it is determined whether the slow acceleration/deceleration coefficient FAEWB is negative or not. If it is negative, it is determined that the acceleration is being performed, and if it is not negative, it is determined that the engine
It is determined that the vehicle has shifted to a deceleration state, and the process proceeds to step 54.

ステップ54では、緩加減速係数FAEWBの値を負の
値に反転させ、その値に係数KAを掛けた値を番地FA
EWBKにセットしてステップ5つへ進む。
In step 54, the value of the slow acceleration/deceleration coefficient FAEWB is inverted to a negative value, and the value obtained by multiplying this value by the coefficient KA is set at the address FA.
Set it to EWBK and proceed to step 5.

一方、ステップ56では、緩加減速係数FAEWBが正
か否かを判別し、正である場合には、減速時であると判
断し、正でない場合には、エンジン1が加速状態に移行
したと判断してステップ57へ進む。ステップ57では
、緩加減速係数FAEWBの値を正の値に反転させ、そ
の値に係数に8を掛けた値を番地FAEWBKにセット
してステップ59へ進む。ステップ59では、番地FA
EWBKにセットした値を過渡時空燃比補正係数FAE
Wに加算し、その値を実際に利用する値として番地FA
EWにセットする。そして、このような制御がエンジン
運転中に繰り返し実行されるようになっている。
On the other hand, in step 56, it is determined whether the slow acceleration/deceleration coefficient FAEWB is positive or not. If it is positive, it is determined that the engine is decelerating, and if it is not positive, it is determined that the engine 1 has transitioned to an acceleration state. After making a judgment, the process proceeds to step 57. In step 57, the value of the slow acceleration/deceleration coefficient FAEWB is inverted to a positive value, the value obtained by multiplying the coefficient by 8 is set in address FAEWBK, and the process proceeds to step 59. In step 59, address FA
The value set in EWBK is used as the transient air-fuel ratio correction coefficient FAE.
Add it to W and use that value as the value to actually use the address FA.
Set to EW. Such control is repeatedly executed during engine operation.

以上のような構成によると、エンジン1が定常状態から
加速状態に移行すると、吸気圧の変化量に対応させて燃
料の加速増量が行われると共に、加速終了直後から燃料
噴射量を減衰させる等の調節が行われ、混合気の空燃比
が理論空燃比近傍にフィードバック制御される。
According to the configuration described above, when the engine 1 shifts from a steady state to an acceleration state, the amount of fuel is accelerated and increased in accordance with the amount of change in intake pressure, and the amount of fuel injection is attenuated immediately after acceleration ends. Adjustment is performed, and the air-fuel ratio of the air-fuel mixture is feedback-controlled to near the stoichiometric air-fuel ratio.

一方、エンジン1が定常状態から減速状態に移行すると
、吸気圧の変化量に対応させて燃料の減速減量が行われ
ると共に、減速終了直後から燃料噴射量が増量させる等
の調節が行われ、混合気の空燃比が理論空燃比近傍にフ
ィードバック制御されることになる。
On the other hand, when the engine 1 shifts from a steady state to a deceleration state, the amount of fuel is reduced during deceleration in accordance with the amount of change in intake pressure, and adjustments such as increasing the fuel injection amount are made immediately after the end of deceleration. The air-fuel ratio of air is feedback-controlled to near the stoichiometric air-fuel ratio.

そして、エンジン1が加速状態へ移行して燃料噴射量が
増量調節されている途中に、エンジン1が減速状態に移
行すると、移行する直前の残存増量分F1が燃料の減量
調節に反映される。すなわち、上記増量分F1が残った
状態から燃料の減速減量が実行されると、残存増量分F
1よりも更に大きな値によって減速減量分が増加され、
減速時の燃料噴射量が吸気圧等に対応した量よりも更に
絞られる(ステップ51〜54→59)。
Then, when the engine 1 shifts to a deceleration state while the engine 1 shifts to an acceleration state and the fuel injection amount is adjusted to increase, the remaining increase amount F1 immediately before the shift is reflected in the fuel reduction adjustment. That is, when deceleration reduction of fuel is executed from a state where the above-mentioned increased amount F1 remains, the remaining increased amount F1
The deceleration reduction amount is increased by a value larger than 1,
The fuel injection amount during deceleration is further reduced than the amount corresponding to the intake pressure, etc. (steps 51 to 54→59).

また、エンジン1が減速状態へ移行して燃料噴射量が減
量調節されている途中に、エンジン1が加速状態に移行
すると、移行する直前の残存減員分F2が燃料の増量調
節に反映される。すなわち、上記減量性F2が残った状
態から燃料の加速増量が実行されると、残存減員分F2
より更に大きな値によって加速増量分が増加され、加速
時の燃料噴射量が吸気圧等に対応した量よりも更に増量
される(ステップ51→52→56→57→59)。
Further, if the engine 1 shifts to an acceleration state while the engine 1 shifts to a deceleration state and the fuel injection amount is adjusted to decrease, the remaining reduction amount F2 immediately before the shift is reflected in the fuel increase adjustment. That is, when accelerated fuel increase is executed from a state where the above-mentioned reduction ability F2 remains, the remaining reduction amount F2
The acceleration increase amount is increased by an even larger value, and the fuel injection amount during acceleration is further increased than the amount corresponding to the intake pressure etc. (steps 51→52→56→57→59).

したがって、以上のような構成によれば、エンジン1が
定常状態から加速又は減速が行われた場合には、それぞ
れの過渡状態に応じて燃料噴射弁4から燃焼室6へ供給
される燃料噴射量が調節されるので、過渡状態での空燃
比の制御精度を高めることができ、ドライバビリティや
エミッションの悪化を有効に抑制することができる。
Therefore, according to the above configuration, when the engine 1 is accelerated or decelerated from a steady state, the amount of fuel injected from the fuel injection valve 4 to the combustion chamber 6 is adjusted depending on each transient state. is adjusted, it is possible to improve the control accuracy of the air-fuel ratio in a transient state, and it is possible to effectively suppress deterioration of drivability and emissions.

そして、エンジン1が加速状態へ移行して燃料の増量調
節が行われている最中に、エンジン1が減速状態に移行
して燃料の減量調節が行われる場合には、増量調節時の
残存増量分F1や吸気管2内の燃料状況が減量調節に反
映されるので、減速状況に応じた適切な減量調節を行う
ことができる。
If the engine 1 shifts to a deceleration state and a fuel reduction adjustment is performed while the engine 1 shifts to an acceleration state and a fuel increase adjustment is performed, the remaining amount is increased at the time of the fuel increase adjustment. Since the minute F1 and the fuel situation in the intake pipe 2 are reflected in the reduction adjustment, it is possible to perform an appropriate reduction adjustment according to the deceleration situation.

このため、第6図に概略的に示すように、エンジン1が
加速状態から減速状態に移行した際の空燃比A/Fのば
らつきが効果的に抑制できると共に、燃料消費台が適切
かつ充分に低減できるので、減速時のエミッションやド
ライバビリティ等が向上できる。
Therefore, as schematically shown in FIG. 6, variations in the air-fuel ratio A/F when the engine 1 shifts from an acceleration state to a deceleration state can be effectively suppressed, and the fuel consumption level can be adjusted appropriately and sufficiently. Since it can be reduced, emissions during deceleration, drivability, etc. can be improved.

また、エンジン1が減速状態へ移行して燃料の減量調節
が行われている最中に、エンジン1が加速状態に移行し
て燃料の増量調節が行われる場合には、減量調節時の残
存減員分F2や吸気管2内の燃料状況が増量調節に反映
されるので、加速状況に応じた適切な増量調節を行うこ
とができる。
In addition, if the engine 1 shifts to an accelerating state and increases the amount of fuel while the engine 1 shifts to a deceleration state and a fuel reduction adjustment is performed, the remaining fuel at the time of the reduction adjustment is Since the minute F2 and the fuel situation in the intake pipe 2 are reflected in the increase adjustment, it is possible to perform an appropriate increase adjustment according to the acceleration situation.

このため、第7図に概略的に示すように、エンジン1が
減速状態から加速状態に移行した際の空燃比A/Fのば
らつきが効果的に抑制できると共に、燃料の増量調節が
適切かつ充分に行えるので、加速時のエミッションや加
速応答性等が向上できる。
Therefore, as schematically shown in FIG. 7, variations in the air-fuel ratio A/F when the engine 1 shifts from a deceleration state to an acceleration state can be effectively suppressed, and the increase in fuel can be adjusted appropriately and sufficiently. Therefore, emissions during acceleration, acceleration response, etc. can be improved.

以上、本発明の一実施例について述べたが、本発明は上
記実施例に限定されないのは勿論である。
Although one embodiment of the present invention has been described above, it goes without saying that the present invention is not limited to the above embodiment.

例えば、燃料の増量調節時の残存増量分を減量調節に反
映させる場合、あるいは減量調節時の残存減員分を増量
調節に反映させる場合に、それぞれの増加率をエンジン
状況やエンジン特性等に応じて適宜変更することにより
、さらに精度の高い制御を行うことも可能である。
For example, when reflecting the remaining increase in fuel amount when increasing the amount of fuel in the reduction adjustment, or when reflecting the remaining reduction in fuel amount when adjusting the amount of fuel in the increase adjustment, the respective increase rates are adjusted according to the engine status, engine characteristics, etc. By making appropriate changes, it is also possible to perform even more precise control.

[発明の効果] 以上詳述したように、本発明では、加速状態及び減速状
態に応じた燃料調節を行うだけでなく、これらの状態に
相互に移行する場合には、移行直前のエンジン状況をも
その後の燃料調節に反映させるようにしているので、過
渡状態における空燃比の制御精度を確実に高めることが
できると共に、過渡時のエミッションやドライバビリテ
ィ等を有効に向上させることができる。
[Effects of the Invention] As detailed above, the present invention not only adjusts fuel according to the acceleration state and deceleration state, but also adjusts the engine status immediately before the transition when mutually transitioning between these states. Since this is reflected in the subsequent fuel adjustment, it is possible to reliably improve the control accuracy of the air-fuel ratio in a transient state, and it is also possible to effectively improve emissions, drivability, etc. in a transient state.

【図面の簡単な説明】 第1図から第7図は本発明の一実施例を示し、第1図は
構成説明図、第2図及び第3図はそれぞれ過渡時におけ
る燃料の制御態様を示す図、第4図は過渡時空燃比補正
係数を示す図、第5図は制御手順を示すフローチャート
図、第6図および第7図はそれぞれ過渡時における空燃
比の変化を示す図である。第8図から第13図は従来例
を示し、第8図から第11図はそれぞれ過渡時における
燃料の制御態様を示す図、第12図および第13図はそ
れぞれ過渡時における空燃比の変化を示す図である。 1・・・エンジン 2・・・電子制御燃料噴射装置 4・・・燃料噴射弁 5・・・電子制御装置 6・・・燃焼室 12・・・圧力センサ F工・・・残存増量分 F2・・・残存減員分
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1 to 7 show an embodiment of the present invention, FIG. 1 is an explanatory diagram of the configuration, and FIGS. 2 and 3 each show a fuel control mode during a transient period. 4 are diagrams showing the air-fuel ratio correction coefficient during transient times, FIG. 5 is a flowchart diagram showing the control procedure, and FIGS. 6 and 7 are diagrams each showing changes in the air-fuel ratio during transient times. FIGS. 8 to 13 show conventional examples, FIGS. 8 to 11 show fuel control modes during transient times, and FIGS. 12 and 13 show changes in air-fuel ratio during transient times, respectively. FIG. 1...Engine 2...Electronically controlled fuel injection device 4...Fuel injection valve 5...Electronic control device 6...Combustion chamber 12...Pressure sensor F work...Remaining increase amount F2.・Remaining reduction in personnel

Claims (1)

【特許請求の範囲】[Claims] エンジンが加速状態に移行した場合に燃料噴射量を増量
調節し、エンジンが減速状態に移行した場合に燃料噴射
量を減量調節するように構成した過渡時の空燃比制御方
法において、燃料噴射量の増量調節途中にエンジンが減
速状態に移行した場合には、燃料噴射量の残存増量分を
減量調節に反映させて減速減量分を増加し、燃料噴射量
の減量調節途中にエンジンが加速状態に移行した場合に
は、燃料噴射量の残存減量分を加速調節に反映させて加
速増量分を増加するようにしたことを特徴とする過渡時
の空燃比制御方法。
In a transient air-fuel ratio control method configured to increase the fuel injection amount when the engine shifts to an acceleration state and to decrease the fuel injection amount when the engine shifts to a deceleration state, If the engine shifts to a deceleration state during the adjustment to increase the fuel injection amount, the remaining increase in the fuel injection amount is reflected in the reduction adjustment to increase the deceleration reduction amount, and the engine shifts to an acceleration state during the adjustment to decrease the fuel injection amount. 1. A method for controlling an air-fuel ratio during a transient period, characterized in that, in this case, the remaining decrease in fuel injection amount is reflected in acceleration adjustment to increase the increase in acceleration.
JP27385988A 1988-10-28 1988-10-28 Air-fuel ratio control method for transient period Pending JPH02119650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27385988A JPH02119650A (en) 1988-10-28 1988-10-28 Air-fuel ratio control method for transient period

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27385988A JPH02119650A (en) 1988-10-28 1988-10-28 Air-fuel ratio control method for transient period

Publications (1)

Publication Number Publication Date
JPH02119650A true JPH02119650A (en) 1990-05-07

Family

ID=17533551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27385988A Pending JPH02119650A (en) 1988-10-28 1988-10-28 Air-fuel ratio control method for transient period

Country Status (1)

Country Link
JP (1) JPH02119650A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828278B1 (en) * 2006-09-08 2008-05-07 오티스 엘리베이터 컴파니 Coupling device for elevator car doors and landing doors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828278B1 (en) * 2006-09-08 2008-05-07 오티스 엘리베이터 컴파니 Coupling device for elevator car doors and landing doors

Similar Documents

Publication Publication Date Title
US4735181A (en) Throttle valve control system of internal combustion engine
WO2009101502A1 (en) Control apparatus for an internal combustion engine
JPS611844A (en) Fuel injection device
JP2018112122A (en) Exhaust emission control system for internal combustion engine
US5213076A (en) Apparatus and method for controlling an internal combustion engine
JPH07166931A (en) Fuel injection controller of engine
JPH02119650A (en) Air-fuel ratio control method for transient period
US6799565B2 (en) Method and system for controlling fuel for an engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPS62342B2 (en)
JPS5848748A (en) Method of controlling air-fuel ratio of internal- combustion engine
KR100298709B1 (en) Method for compensating for map output value when accelerating/decelerating vehicle
JP2984422B2 (en) Air-fuel ratio control method for internal combustion engine
KR20020046747A (en) Devise and the method for engine controlling of vehicle
JP2998370B2 (en) Fuel injection amount control device for internal combustion engine
JP3057373B2 (en) Engine fuel control device
JPH07259609A (en) Air-fuel ratio controller of internal combustion engine
JPH02199242A (en) Correcting method for air-fuel ratio at transition time
JPS59200030A (en) Fuel controller for engine
JPH0868350A (en) Fuel feed cut-off control device for internal combustion engine
JPH039053A (en) Fuel control method for internal combustion engine
JPH04237855A (en) Fuel controller for engine
KR20010059314A (en) Method for complementing an air/fuel accel and reduce speed of turbo charger engine vehicle
JPH02119651A (en) Air-fuel ratio control method for transient period
JPS6022053A (en) Air-fuel ratio feedback control method for electronically controlled fuel injection engine