JPH02119418A - Photodetection circuit for photoelectric switch - Google Patents

Photodetection circuit for photoelectric switch

Info

Publication number
JPH02119418A
JPH02119418A JP27391588A JP27391588A JPH02119418A JP H02119418 A JPH02119418 A JP H02119418A JP 27391588 A JP27391588 A JP 27391588A JP 27391588 A JP27391588 A JP 27391588A JP H02119418 A JPH02119418 A JP H02119418A
Authority
JP
Japan
Prior art keywords
circuit
amplifier
midpoint
transistor
variable resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27391588A
Other languages
Japanese (ja)
Inventor
Toshibumi Fukuyama
福山 俊文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASUTETSUKUSU KK
Takenaka Electronic Ind Co Ltd
Astex Co Ltd
Original Assignee
ASUTETSUKUSU KK
Takenaka Electronic Ind Co Ltd
Astex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASUTETSUKUSU KK, Takenaka Electronic Ind Co Ltd, Astex Co Ltd filed Critical ASUTETSUKUSU KK
Priority to JP27391588A priority Critical patent/JPH02119418A/en
Priority to US07/421,529 priority patent/US5117118A/en
Priority to DE3934774A priority patent/DE3934774C2/en
Publication of JPH02119418A publication Critical patent/JPH02119418A/en
Priority to US07/551,497 priority patent/US5030822A/en
Priority to US07/551,490 priority patent/US5034600A/en
Priority to US07/551,498 priority patent/US5059782A/en
Priority to US07/551,499 priority patent/US5059809A/en
Priority to US07/551,501 priority patent/US5030821A/en
Priority to US07/551,500 priority patent/US5034601A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect an object efficiently by connecting a midpoint of a variable resistor provided between power supplies to a transistor-(TR) of one photodetector in the case of amplifying a photo current caused through the use of two photodetectors at a differential amplifier circuit. CONSTITUTION:As a midpoint voltage is increased, a current flowing to a diode d2 connected in parallel with a transistor(TR) q33 is increased and then a resistive component caused at a tangential line of a voltage current characteristic of the diode is decreased attended therewith, resulting in absorbing a current to the TR q33. Thus, the sensitivity of the photodetector at the side of the TR is decreased and the sensitivity balance of two photodetectors PD1, PD2 is changed. Since the midpoint potential of the variable resistor is given to an output side of a TR q39 of a constant current source of an AC amplifier, as the midpoint level is increased, the gain of the AC amplifier 1 is lowered, and as the midpoint level is close to zero conversely the gain of the AC amplifier is increased. Thus, an object is detected efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光電スイッチの受光素子によって生じた光電
流を検出信号として処理するための受光回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light receiving circuit for processing a photocurrent generated by a light receiving element of a photoelectric switch as a detection signal.

〔従来の技術〕[Conventional technology]

一般に光電スイッチでは一定波長の光を受けた場合に受
光素子によって生じた光電流を増幅し、一定レベル以上
にある信号を検出信号として物体の存否を判定するもの
であるが、光源までの距離や光源自体の強弱という原因
によって、電流の増幅方法を一定にした場合には不都合
が生じる。即ち、能動素子を用いた場合の増幅について
は、和動増幅と、差動増幅の手段があるが、光電流が弱
い場合には差動増幅は適さないし、反対に光電流が強い
場合にはより精度の高い差動増幅を採用するほうが好ま
しい。従うて、光電スイッチにおいては両増幅手段を適
宜切り換えることができるように電気回路を構成する。
Generally, a photoelectric switch amplifies the photocurrent generated by a photodetector when receiving light of a certain wavelength, and uses a signal above a certain level as a detection signal to determine the presence or absence of an object. Due to the strength of the light source itself, problems arise when the current amplification method is kept constant. In other words, there are summative amplification and differential amplification methods for amplification using active elements, but differential amplification is not suitable when the photocurrent is weak, and conversely, when the photocurrent is strong, it is not suitable. It is preferable to employ differential amplification with higher precision. Therefore, in the photoelectric switch, the electric circuit is configured so that both amplification means can be switched as appropriate.

また、光電流の増幅手段の次段には、検出回路で処理す
ることができる程度に信号を電圧増幅するための交流ア
ンプを設けるが、この交流アンプのゲインを変化するこ
とができればより便利であるため、ゲイン調整回路によ
って増幅信号をコントロールしているが、これは上述の
増幅手段とは別の回路で行っている。
In addition, an AC amplifier is provided at the next stage of the photocurrent amplification means to amplify the voltage of the signal to the extent that it can be processed by the detection circuit, but it would be more convenient if the gain of this AC amplifier could be changed. Therefore, the amplified signal is controlled by a gain adjustment circuit, but this is done by a circuit separate from the above-mentioned amplification means.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の受光回路では、それぞれの機能は別の回路に
よって処理しているが、最近の集積回路の進歩に伴って
、光電スイッチにおいても可能な限りの回路を集積回路
化し、故障の少ない、信頼性の高い機器を提供する必要
が生じるようになった。
In the conventional photodetector circuits mentioned above, each function is processed by a separate circuit, but with recent advances in integrated circuits, photoelectric switches are now integrated with as many circuits as possible to provide reliability and reliability with fewer failures. There is now a need to provide highly functional equipment.

しかし、集積回路はその内部に多くの機能を与えるよう
にしようとすればそれだけ端子数が増加するが、その分
ICチップ形状が大きくなり、小型化できないという矛
盾が生じる他、端子数が増加すればする程ワイヤボンデ
ィングの点数が増加し、振動による断線のおそれ等が多
くなり、機器の信頼性が低下するという問題がある。と
ころが、従来の光電スイッチの回路では各機能毎に別の
回路を構成しているので、各機能毎に1つづつの外部端
子を設けざるを得なかった。
However, if an integrated circuit is to have more functions inside, the number of terminals will increase accordingly, but the shape of the IC chip will also become larger, creating a contradiction in that miniaturization is not possible. The problem is that the longer the wire bonding, the more the number of wire bonding points, the greater the risk of wire breakage due to vibration, and the lower the reliability of the device. However, in the conventional photoelectric switch circuit, a separate circuit is configured for each function, so it is necessary to provide one external terminal for each function.

また、本発明では2つの受光素子を用いることを予定し
ているが、この場合には両者の感度バランスを変化させ
れば2次元上での検出が可能となり、検出対象までの距
離を特定することができるので、感度バランス調整用の
回路を設けることが好ましいが、集積回路化のためには
上述の回路との共用端子にしなければならない。
Furthermore, in the present invention, it is planned to use two light receiving elements, but in this case, two-dimensional detection will be possible by changing the sensitivity balance between the two, and the distance to the detection target will be determined. Therefore, it is preferable to provide a circuit for adjusting the sensitivity balance, but in order to integrate the circuit, the terminal must be shared with the above-mentioned circuit.

本発明は、上記従来の課題を解決し、光電流の増幅手段
の切り換えと、受光素子の感度バランスの調整、および
交流アンプのゲイン調整を1つの可変抵抗によって処理
し、1本の配線で複数の機能を奏するようにした、集積
回路化に適した光電スイッチの受光回路を提供すること
を目的とする。
The present invention solves the above-mentioned conventional problems, and processes the switching of photocurrent amplification means, the adjustment of the sensitivity balance of the light receiving element, and the gain adjustment of the AC amplifier using one variable resistor, so that multiple It is an object of the present invention to provide a light receiving circuit for a photoelectric switch that is suitable for integration into an integrated circuit and has the following functions.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するために、電源間に設けた可
変抵抗と、2つの受光素子PDI・PD2と、これらの
受光素子によって生じた光電流を増幅する差動増幅回路
と、この差動増幅回路で生じた信号を増幅する交流アン
プとを有し、上記可変抵抗の中点と差動増幅回路の一方
の受光素子PDI側のトランジスタq33とを接続する
と共に、この一方の受光素子にダイオードq2を並列に
接続し、さらに上記可変抵抗の中点と交流アンプの定電
流源トランジスタq39の出力側とを接続するという手
段を用いた。
In order to achieve the above object, the present invention includes a variable resistor provided between power supplies, two light receiving elements PDI and PD2, a differential amplifier circuit that amplifies the photocurrent generated by these light receiving elements, and a differential amplifier circuit that amplifies the photocurrent generated by these light receiving elements. It has an AC amplifier that amplifies the signal generated in the amplifier circuit, and connects the midpoint of the variable resistor to the transistor q33 on one of the light receiving elements PDI side of the differential amplifier circuit, and also connects a diode to this one light receiving element. q2 were connected in parallel, and the midpoint of the variable resistor was further connected to the output side of the constant current source transistor q39 of the AC amplifier.

用〕 可変抵抗の中点はOvから電源電圧まで連続的に電圧を
可変できるが、Ovにした場合には差動増幅回路の一方
側のトランジスタq33に至るまでのスイッチング機能
を有する素子は全てカノトオツの状態になる。そこで2
つの受光素子の光電流はそれぞれ増幅トランジスタで等
分に増幅され、その合計の電流が増幅電流となる。次に
、中点電圧を上昇するとトランジスタq33の電位が上
昇するため、本来の差動増幅回路の機能を発揮し、2つ
の増幅トランジスタは差動増幅を行う。
] The voltage at the midpoint of the variable resistor can be varied continuously from Ov to the power supply voltage, but if it is set to Ov, all the elements with switching functions up to transistor q33 on one side of the differential amplifier circuit are completely turned off. becomes the state of So 2
The photocurrents of the two light-receiving elements are equally amplified by respective amplification transistors, and the total current becomes the amplified current. Next, when the midpoint voltage is increased, the potential of the transistor q33 is increased, so that the original function of the differential amplification circuit is exhibited, and the two amplification transistors perform differential amplification.

また、中点電圧を上昇させてゆくとトランジスタq33
に並列に接続されたダイオードd2に流れる電流値も大
きくなり、これに伴ってダイオードの接線抵抗が減少す
るため、トランジスタq33への電流が吸収される。従
って、このトランジスタ側の受光素子の感度が低下し、
2つの受光素子の感度バランスが変化する。
Also, as the midpoint voltage increases, transistor q33
The value of the current flowing through the diode d2 connected in parallel with the transistor q33 also increases, and the tangential resistance of the diode decreases accordingly, so that the current flowing to the transistor q33 is absorbed. Therefore, the sensitivity of the light receiving element on this transistor side decreases,
The sensitivity balance of the two light receiving elements changes.

さらに、可変抵抗の中点電位を交流アンプの定電流源の
トランジスタq39の出力側に与えているので、中点電
位が高くなれば交流アンプのゲインは低下し、反対に中
点電位を零に近づける程交流アンプのゲインは太き(な
る。
Furthermore, since the midpoint potential of the variable resistor is applied to the output side of transistor q39 of the constant current source of the AC amplifier, as the midpoint potential increases, the gain of the AC amplifier decreases, and conversely, the midpoint potential becomes zero. The closer you get, the thicker the gain of the AC amplifier becomes.

〔実 施 例〕〔Example〕

本発明の一実施例を電気回路図に従ってさらに詳述する
と、第1図中、1は受光信号をある程度に増幅処理した
後に検出信号の電圧レベルまで増幅するための差動増幅
形の交流アンプ、2は増幅後の検出信号を示す。また、
aは受光回路と可変抵抗VRとを接続する配線、b−c
は電源ラインである。
An embodiment of the present invention will be described in more detail with reference to an electric circuit diagram. In FIG. 1, reference numeral 1 denotes a differential amplification type AC amplifier for amplifying the received light signal to a certain extent and then amplifying it to the voltage level of the detection signal; 2 shows the detection signal after amplification. Also,
a is the wiring connecting the light receiving circuit and the variable resistor VR, b-c
is the power line.

ここで、2分割されたフォトダイオードPDI、PD2
はそれぞれトランジスタq33、q34による一対の差
動増幅回路に入力されているが、いま外部の可変抵抗V
Rの電圧をOv、即ち、可変抵抗器の中点をGND側に
位置させた場合にはトランジスタq31、q36、q3
2、q33およびダイオードd1、d2は全て力・7ト
オフの状態となり、回路上無視することができる。一方
トランジスタq35とq41とはカレントミラーを構成
しているので、トランジスタq35にはトランジスタQ
41と同じ大きさの電流が流れようとするが、ここで抵
抗r36 > r3Bの条件に設定しておくと、トラン
ジスタq35には規定の定電流を流すことができなくな
るため、飽和してしまい、オンのときと同じ状態になり
、トランジスタq35のインピーダンスはほとんど零に
なる。従って、フォトダイオードPDI、PD2で発生
した光電流はそれぞれトランジスタq33、q34で等
分に増幅され、コレクタ電流は共にダイオードd3、d
4で抵抗r36に集められるので、結果として再出力を
増幅した後に加算した値とする和動増幅回路として機能
する。
Here, the photodiodes PDI and PD2 are divided into two.
are input to a pair of differential amplifier circuits formed by transistors q33 and q34, respectively, but now an external variable resistor V
When the voltage of R is Ov, that is, the middle point of the variable resistor is located on the GND side, the transistors q31, q36, q3
2, q33 and diodes d1, d2 are all in a power-off state and can be ignored in terms of the circuit. On the other hand, transistors q35 and q41 constitute a current mirror, so transistor q35 has transistor Q.
A current of the same magnitude as 41 is about to flow, but if we set the condition that resistor r36 > r3B, it will no longer be possible to flow the specified constant current to transistor q35, so it will become saturated. The state is the same as when it is on, and the impedance of transistor q35 becomes almost zero. Therefore, the photocurrents generated in the photodiodes PDI and PD2 are equally amplified by the transistors q33 and q34, respectively, and the collector currents are both amplified by the diodes d3 and d.
4 is collected in the resistor r36, and as a result, it functions as a summation amplifier circuit which amplifies the output again and then adds the value.

これに対し、可変抵抗VRを調整して配線aの印加電圧
を電源電圧まで上昇させてゆくと、トランジスタQ31
のエミッタ電位とトランジスタq33のコレクタ電位は
上昇し、トランジスタq33を通じてq35のカレント
ミラーに電流が供給されるため、トランジスタq33と
q34とは差動増幅器の動作を行う。即ち、トランジス
タq33のベースが正の入力側、トランジスタq34の
ベースが負の入力側にある。従って、電流値が大きくな
るとダイオードd2と並列に接続されたフォトダイオー
ドPDIの起電流はダイオードd2の接線抵抗の減少に
伴って吸収され、その出力は小さくなる。第2図にダイ
オードd2の接線抵抗値の変化を示す。ここで、曲線は
ダイオードd2の電流〜電圧特性、直線はそれぞれの電
流値における接線抵抗である。このように配線aの電圧
を外部の可変抵抗VRの操作によって電a電圧に近づけ
てゆくと、フォトダイオードPillの感度を下げるこ
とができるので、適当な電圧を印加することによってフ
ォトダイオードPDIとPD2とのバランスを調整する
ことができ、検出域を面として捉えるいわば2次元的な
検出が可能となる。
On the other hand, when the voltage applied to the wiring a is increased to the power supply voltage by adjusting the variable resistor VR, the transistor Q31
The emitter potential of transistor q33 and the collector potential of transistor q33 rise, and current is supplied to the current mirror of q35 through transistor q33, so that transistors q33 and q34 operate as a differential amplifier. That is, the base of transistor q33 is on the positive input side, and the base of transistor q34 is on the negative input side. Therefore, when the current value increases, the electromotive current of the photodiode PDI connected in parallel with the diode d2 is absorbed as the tangential resistance of the diode d2 decreases, and its output becomes smaller. FIG. 2 shows changes in the tangential resistance value of the diode d2. Here, the curve is the current-voltage characteristic of the diode d2, and the straight line is the tangential resistance at each current value. In this way, by bringing the voltage of wiring a closer to the electric voltage a by operating the external variable resistor VR, the sensitivity of photodiode Pill can be lowered, so by applying an appropriate voltage, photodiodes PDI and PD2 can be adjusted. This allows for two-dimensional detection in which the detection area is treated as a surface.

また、さらに他の機能として、受光回路の次段にある交
流アンプ1のゲインを可変抵抗VRの変化によって調整
することができる。ここに交流アンプ1の定電流源であ
るトランジスタq39のエミッタ電位は抵抗r39を通
して配vAaに接続されているので、配線aの電位がO
v、即ち可変抵抗νRの中点がGND側のときにトラン
ジスタq39の定電流源にるので、トランジスタq33
のベースは抵抗r34を通して固定電位の2VF(ダイ
オードの順方向電圧)に維持され、これが差動増幅回路
のバイアス点になる。従って、配線aの電位が2VFに
なるまではフォトダイオードPDI、PD2の出力の加
算を行い、2VFを越えれば減算の動作を行う回路を実
現することができる。
Furthermore, as another function, the gain of the AC amplifier 1 at the next stage of the light receiving circuit can be adjusted by changing the variable resistor VR. Since the emitter potential of the transistor q39, which is a constant current source of the AC amplifier 1, is connected to the wiring vAa through the resistor r39, the potential of the wiring a becomes O.
When v, that is, the middle point of variable resistance νR, is on the GND side, it becomes a constant current source for transistor q39, so transistor q33
The base of is maintained at a fixed potential of 2VF (forward voltage of the diode) through the resistor r34, and this becomes the bias point of the differential amplifier circuit. Therefore, it is possible to realize a circuit that adds the outputs of the photodiodes PDI and PD2 until the potential of the wiring a reaches 2VF, and performs a subtraction operation once it exceeds 2VF.

さらに、フォトダイオードPDI、PD2は差動増幅時
には両者共に通常は同じような状態におかれているが、
実使用状態ではフォトダイオードPD2に対してPDI
の感度を下げることができるようにし、検出可能域を可
変にしておく必要がある。このフォトダイオードPDI
、PD2のバランス調整のための構成として、トランジ
スタq42、q43およびダイオードd2を用いた。こ
の構成において配線aの電圧を徐々に上昇させてゆくと
、トランジスタq43のエミッタ電位も上昇してゆくが
、トランジスタQ42に流れる定電流も徐々に大きくな
ってゆく。この電流はダイオードd2に流れるが、電流
が大きくなるに伴ってダイオードd2の接線抵抗ΔRは
減少すは最大電流が流れ、約150mVになればほとん
ど流れなくなる。また、交流アンプ1内の差動増幅回路
の増幅率はトランジスタq39の定電流源に比例するの
で、外部の可変抵抗VRによって交流アンプ1のゲイン
を変化させることが可能となる。従ってこの回路では配
線aに印加する直流電圧によってゲインが可変であるの
で、他の回路からの制御電圧によってゲインをコントロ
ールしたり、遠方から直流電圧を与えてリモートコント
ロールを行うことも可能である。
Furthermore, photodiodes PDI and PD2 are normally placed in the same state during differential amplification, but
In actual use, PDI for photodiode PD2
It is necessary to make it possible to lower the sensitivity of the sensor and to make the detectable range variable. This photodiode PDI
, PD2, transistors q42, q43 and diode d2 are used as a configuration for balance adjustment of PD2. In this configuration, when the voltage of the wiring a is gradually increased, the emitter potential of the transistor q43 is also increased, but the constant current flowing through the transistor Q42 is also gradually increased. This current flows through the diode d2, but as the current increases, the tangential resistance ΔR of the diode d2 decreases until the maximum current flows, and when it reaches about 150 mV, it almost stops flowing. Furthermore, since the amplification factor of the differential amplifier circuit in the AC amplifier 1 is proportional to the constant current source of the transistor q39, it is possible to change the gain of the AC amplifier 1 using an external variable resistor VR. Therefore, in this circuit, the gain is variable depending on the DC voltage applied to the wiring a, so it is possible to control the gain using a control voltage from another circuit, or to perform remote control by applying a DC voltage from a distance.

いまここで本回路を用いて光電スイッチを1チツプのI
Cとして構成することにすれば、配bi aの一部でI
Cの内部回路と外付は回路とに分割するだけで、■端子
で上述の機能を兼用できることになり、端子数の大幅な
削減が可能になる。第3図に本回路を配線aで分割して
集積回路を構成する場合のブロック図を示す。ここにお
いて、3は本発明回路の要部である受光回路、4は同じ
く交流アンプ、CMPI〜3はコンパレータで、CMP
IとCHF2によって安定レベルを判別して安定出力信
号として安定表示回路5に入力すると共に、CMP2に
よって動作レベルを判別して検出信号とし、検出回路6
及び出力回路7に入力する。なお、点線で囲んだ範囲は
IIL回路として構成可能な部分である。
Now, using this circuit, we can convert a photoelectric switch into a one-chip I
If you decide to configure it as C, some part of the distribution
By simply dividing the internal and external circuits of C into circuits, the above-mentioned functions can be shared by the (2) terminals, making it possible to significantly reduce the number of terminals. FIG. 3 shows a block diagram when this circuit is divided by wiring a to form an integrated circuit. Here, 3 is a light receiving circuit which is a main part of the circuit of the present invention, 4 is also an AC amplifier, and CMPI to 3 are comparators.
I and CHF2 determine the stable level and input it as a stable output signal to the stability display circuit 5, and CMP2 determines the operating level and outputs it as a detection signal to the detection circuit 6.
and input to the output circuit 7. Note that the range surrounded by the dotted line is a portion that can be configured as an IIL circuit.

〔発明の効果〕〔Effect of the invention〕

本発明は上述したように2つの受光素子を用い、これら
によって生じた光電流を差動増幅回路で増幅するに際し
、電源間に設けた可変抵抗の中点を一方受光素子側のト
ランジスタに接続しているので、中点電圧に伴って光電
流が小さい場合には和動増幅、光電流が大きい場合には
差動増幅と切り換わり、効率よく物体を検出することが
できる。
As described above, the present invention uses two light-receiving elements, and when amplifying the photocurrent generated by them with a differential amplifier circuit, the midpoint of the variable resistor provided between the power supplies is connected to the transistor on one side of the light-receiving element. Therefore, when the photocurrent is small with the midpoint voltage, the amplification is switched to summative amplification, and when the photocurrent is large, the amplification is switched to differential amplification, making it possible to efficiently detect an object.

また、中点電圧が上昇するに従って2つの受光素子の感
度バランスを変化させることができるので、近い距離の
場合には検出域を特定することができ、いわば2次元的
な検出が可能となった。
In addition, as the midpoint voltage increases, the sensitivity balance of the two light receiving elements can be changed, making it possible to specify the detection area when the distance is close, making it possible to perform two-dimensional detection. .

さらに、可変抵抗の中点電位を交流アンプの定電流源ト
ランジスタの出力側に与えたので、中点電位が低く、和
動増幅を行っている効率の低いときにはアンプのゲイン
を大きく、反対に中点電位が高く、差動増幅を行ってい
るときにはアンプのゲインを抑えることができる等、極
めて効率のよい光電スイッチの受光回路を提供すること
ができた。
Furthermore, since the midpoint potential of the variable resistor is applied to the output side of the constant current source transistor of the AC amplifier, when the midpoint potential is low and the efficiency of summative amplification is low, the gain of the amplifier is increased; When the point potential is high and differential amplification is performed, the gain of the amplifier can be suppressed, making it possible to provide an extremely efficient light receiving circuit for a photoelectric switch.

さらにまた、可変抵抗の中点から引き出された配線の一
部を端子とし、受光回路側をIC化すれば、1つの端子
で複数の機能を有する集積回路を製造することができ、
全体の端子数を削減した信鯨性の高いフォ)ICを提供
することができる。
Furthermore, if a part of the wiring drawn out from the middle point of the variable resistor is used as a terminal and the light receiving circuit side is made into an IC, it is possible to manufacture an integrated circuit having multiple functions with one terminal.
It is possible to provide an IC with high reliability and reduced overall number of terminals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光電スイッチの受光回路を示す回路図
、第2図はダイオードの接線抵抗の変化を示すグラフ、
第3図は本発明回路を用いた光電スイッチの要部ブロッ
ク図である。 尚、図中、1・・・交流アンプ、2・・・検出信号、3
・・・受光回路、4・・・交流アンプ、5・・・安定表
示回路、6・・・検出回路、7・・・出力回路。 以   上
FIG. 1 is a circuit diagram showing the light receiving circuit of the photoelectric switch of the present invention, and FIG. 2 is a graph showing changes in the tangential resistance of the diode.
FIG. 3 is a block diagram of essential parts of a photoelectric switch using the circuit of the present invention. In addition, in the figure, 1... AC amplifier, 2... detection signal, 3
... Light receiving circuit, 4... AC amplifier, 5... Stability display circuit, 6... Detection circuit, 7... Output circuit. that's all

Claims (1)

【特許請求の範囲】[Claims] 1、電源間に設けた可変抵抗VRと、2つの受光素子P
D1・PD2と、これらの受光素子によって生じた光電
流を増幅する差動増幅回路と、この差動増幅回路で生じ
た信号を増幅する交流アンプ1とを有し、上記可変抵抗
の中点と差動増幅回路の一方の受光素子PD1側のトラ
ンジスタq33とを接続すると共に、この一方の受光素
子にダイオードd2を並列に接続し、さらに上記可変抵
抗の中点と上記交流アンプの定電流源トランジスタq3
9の出力側とを接続したことを特徴とする光電スイッチ
の受光回路。
1. Variable resistor VR installed between power supplies and two light receiving elements P
D1 and PD2, a differential amplifier circuit that amplifies the photocurrent generated by these light receiving elements, and an AC amplifier 1 that amplifies the signal generated by this differential amplifier circuit, and the midpoint of the variable resistor and the A transistor q33 on one side of the light receiving element PD1 of the differential amplifier circuit is connected, a diode d2 is connected in parallel to this one light receiving element, and the midpoint of the variable resistor and the constant current source transistor of the AC amplifier are connected. q3
9. A light receiving circuit for a photoelectric switch, characterized in that the output side of the photoelectric switch is connected to the output side of the photoelectric switch.
JP27391588A 1988-10-19 1988-10-28 Photodetection circuit for photoelectric switch Pending JPH02119418A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP27391588A JPH02119418A (en) 1988-10-28 1988-10-28 Photodetection circuit for photoelectric switch
US07/421,529 US5117118A (en) 1988-10-19 1989-10-13 Photoelectric switch using an integrated circuit with reduced interconnections
DE3934774A DE3934774C2 (en) 1988-10-19 1989-10-18 Electrical circuit for a photoelectric switch
US07/551,497 US5030822A (en) 1988-10-19 1990-07-11 Synchronous control circuit for a photoelectric switch using an integrated circuit with reduced interconnections
US07/551,490 US5034600A (en) 1988-10-19 1990-07-11 Detection output circuit for a photoelectric switch integrated circuit with reduced interconnections
US07/551,498 US5059782A (en) 1988-10-19 1990-07-11 Multi-function detection circuit for a photoelectric switch using an integrated circuit with reduced interconnections
US07/551,499 US5059809A (en) 1988-10-19 1990-07-11 Light-responsive device for a photoelectric switch
US07/551,501 US5030821A (en) 1988-10-19 1990-07-11 Multi-function detection circuit for a photoelectric switch using an integrated circuit with reduced interconnections
US07/551,500 US5034601A (en) 1988-10-19 1990-07-11 Stable indicator circuit for photoelectric switch using an integrated circuit with reduced interconnections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27391588A JPH02119418A (en) 1988-10-28 1988-10-28 Photodetection circuit for photoelectric switch

Publications (1)

Publication Number Publication Date
JPH02119418A true JPH02119418A (en) 1990-05-07

Family

ID=17534343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27391588A Pending JPH02119418A (en) 1988-10-19 1988-10-28 Photodetection circuit for photoelectric switch

Country Status (1)

Country Link
JP (1) JPH02119418A (en)

Similar Documents

Publication Publication Date Title
US5936231A (en) Photoelectric sensor circuit comprising an auxiliary photodiode and a current mirror circuit
EP0852435A2 (en) Bias voltage supply circuit for photoelectric converting element, and photodetection circuit
US20090095883A1 (en) Photodetection device and method
JP3062543B2 (en) Optical receiver
US7259363B2 (en) Circuit arrangement and methods for a remote control receiver having a photodiode
JPH02119418A (en) Photodetection circuit for photoelectric switch
US4642453A (en) Apparatus for increasing the dynamic range in an integrating optoelectric receiver
US5821528A (en) Two light intensities difference convert into frequency modulator for parallel photodiodes
US10879856B2 (en) Sensor array with distributed low noise amplifier
EP0460273A1 (en) Gain stabilizing amplifier
JPS5845523A (en) Photometric circuit
JP2928616B2 (en) Photodetector
JPH1188068A (en) Light receiving amplifier circuit
JPH0360516A (en) Photodetecting circuit for photoelectric switch
JP2841743B2 (en) Light emitting and receiving circuit for optical sensor
JP2534113B2 (en) Ranging device
JPH066308A (en) Light reception agc circuit
JPS6181677A (en) Light receiving apparatus
JPS6313534A (en) Bias voltage control circuit
JPH0326331B2 (en)
JP2004304708A (en) Photocurrent/voltage conversion circuit
JPH051791Y2 (en)
JPH04326023A (en) Photoelectric conversion device
JPS6262621A (en) Photoelectric switch
JPH0211014A (en) Photodetecting circuit and optical coupling circuit