JPH02119278A - Bimorph-type piezoelectric actuator - Google Patents

Bimorph-type piezoelectric actuator

Info

Publication number
JPH02119278A
JPH02119278A JP63272722A JP27272288A JPH02119278A JP H02119278 A JPH02119278 A JP H02119278A JP 63272722 A JP63272722 A JP 63272722A JP 27272288 A JP27272288 A JP 27272288A JP H02119278 A JPH02119278 A JP H02119278A
Authority
JP
Japan
Prior art keywords
bimorph
piezoelectric
piezoelectric bimorph
actuator
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63272722A
Other languages
Japanese (ja)
Inventor
Masakane Aoki
真金 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63272722A priority Critical patent/JPH02119278A/en
Publication of JPH02119278A publication Critical patent/JPH02119278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To be accessed at high speed when this actuator is used for an actuator for drive use of an optical pickup system by a method wherein electrodes formed on both the surface and the rear of a piezoelectric bimorph is set to a specific shape in order to prevent a high-order resonance oscillation mode other than a primary-order resonance oscillation mode from being generated. CONSTITUTION:One end of a piezoelectric bimorph 8 whose common electrode 9 has been sandwiched and held between piezoelectric materials 10 from both the surface and the rear surface is set as a fixed end A; a load mass 11 is attached to the side which has been set as a free end B on the other end. In such a bimorph-type piezoelectric actuator, a shape f(x) of electrodes 12 formed on both the surface and the rear of the piezoelectric bimorph 8 is set to a shape obtained after a linear normal function phi1(x) expressing a primary resonance oscillation mode of the piezoelectric bimorph 8 in a state having the load mass 11 has been second-order-differentiated as d<2>phi1(x)/dx<2> at a coordinate axis (x) in a longitudinal direction of the piezoelectric bimorph 8; the electrodes are formed symmetrically on both the surface and the rear of the piezoelectric bimorph 8. Thereby, it is possible to obtain the actuator, for optical pickup use, which can be accessed at high speed and which is small-sized and lightweight.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光記録装置における光ピツクアップ用アクチ
ュエータとして用いられるバイモルフ型圧電アクチュエ
ータに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a bimorph piezoelectric actuator used as an optical pickup actuator in an optical recording device.

従来の技術 従来のバイモルフ型圧電アクチュエータとしては特開昭
60−57547号、特開昭62−205542号公報
に開示されているものがある。これらは1例えば第8図
に示すように、一端がクランプ材1に固定された上下2
枚の三角形状をした圧電バイモルフ2の他端側にレンズ
3を保持したレンズホルダー4が取付けられた構造にな
っている。また、前記圧電バイモルフ2は、共通電極5
を上下両面から圧電材6により挟んだ構造となっており
、それら圧電材6の表面には表面電極7が形成されてい
る。この場合、第9図(a)に示すように1次の共振振
動モードを用いて光ピツクアップ系の制御を行っている
2. Description of the Related Art Conventional bimorph piezoelectric actuators are disclosed in Japanese Patent Laid-Open No. 60-57547 and Japanese Patent Laid-Open No. 62-205542. These are 1, for example, as shown in FIG.
It has a structure in which a lens holder 4 holding a lens 3 is attached to the other end side of a piezoelectric bimorph 2 having a triangular shape. Further, the piezoelectric bimorph 2 has a common electrode 5
is sandwiched between piezoelectric materials 6 from both upper and lower surfaces, and surface electrodes 7 are formed on the surfaces of the piezoelectric materials 6. In this case, as shown in FIG. 9(a), the optical pickup system is controlled using the first-order resonance vibration mode.

発明が解決しようとする課題 上述したようなバイモルフ型圧電アクチュエータを光ピ
ツクアップ用のアクチュエータとして用いる場合には1
次共振振動モードを使用しているわけであるが、この他
に第9図(b)(c)に示すように2次、3次の高次の
使用されない余分な共振振動モードも含まれている。こ
の関係を第7図のようなグラフで示すと、さらに高次の
4次、5次といった共振振動モードまで含んでいること
がわかる。
Problems to be Solved by the Invention When using a bimorph piezoelectric actuator as described above as an actuator for optical pickup,
In addition to this, as shown in Fig. 9(b) and (c), the second-order and third-order higher-order resonance vibration modes that are not used are also included. There is. If this relationship is shown in a graph as shown in FIG. 7, it can be seen that even higher-order resonant vibration modes such as 4th and 5th orders are included.

そこで、このような2次以上の高次な共振振動モードを
抑圧する方法としては、例えば、日本音響学会講演論文
集1−1−1. P、21.1972年、5月、日本音
響学会誌33巻、12号、P、657.1977年、日
本音響学会講演論文集1−2−21. P、755.1
987年、10月 などに記載されているものがある。
Therefore, as a method for suppressing such high-order resonance vibration modes of the second order or higher, for example, see Proceedings of the Acoustical Society of Japan 1-1-1. P, 21. May 1972, Journal of the Acoustical Society of Japan, Volume 33, No. 12, P, 657. 1977, Proceedings of the Acoustical Society of Japan 1-2-21. P, 755.1
There are some written in October 1987.

これらは、圧電バイモルフ2の表面に形成される電極形
状を共振振動モードを表わす規準関数の2階微分のパタ
ーン形状により形成することによってそれら高次の共振
振動モードを抑圧している。このことを、第11図(a
)(b)に基づいて説明する。今、バイモルフ型圧電ア
クチュエータのn次の共振振動モードを表わすn次規準
関数をφn(x) 、そのバイモルフ型アクチュエータ
に発生する電荷の総量をQ、共振振動により誘起される
電荷をQb 、共振振動に関係なく誘起される電荷をQ
oとすると、Q=Qb+Q、       ・・・(1
)Q b = 2 N fj f (x ) ・d”φ
n(x)/dx2・d xで表わせる。
These higher-order resonance vibration modes are suppressed by forming the electrode shape formed on the surface of the piezoelectric bimorph 2 into a pattern shape of the second order differential of the standard function representing the resonance vibration mode. This is shown in Figure 11 (a
) (b). Now, the n-th standard function representing the n-th resonant vibration mode of the bimorph piezoelectric actuator is φn(x), the total amount of charge generated in the bimorph actuator is Q, the charge induced by resonance vibration is Qb, and the resonance vibration The induced charge regardless of Q
If o, then Q=Qb+Q, ...(1
) Q b = 2 N fj f (x) ・d”φ
It can be expressed as n(x)/dx2・dx.

ただし、N:定数 Q:バイモルフ型アクチュエータの 屈曲部分の長さ f (x) :電極形状 とする。However, N: constant Q: Bimorph type actuator Length of bent part f (x): Electrode shape shall be.

この時、f(x)の電極形状を、例えば1次の共振振動
モードを表わす規準関数φ1(x)の2階微分d2φ1
(x)/dx”の形に形成すれば(2)式は2階微分さ
れた規準関数が直交性を示すことから。
At this time, the electrode shape of f (
(x)/dx'', the second-order differentiated standard function of equation (2) shows orthogonality.

1次の共振振動モード以外の高次の共振振動モードは発
生しないことになる。しかし、このような計算方法では
、バイモルフ型の圧電アクチュエータの先端に「負荷質
量」を有した状態での計算を行っていない。従って、負
荷質量としてレンズ等の光学系を負荷質量としてもつよ
うな実際のバイモルフ型の圧電アクチュエータには適用
することができないという問題がある。
Higher-order resonance vibration modes other than the first-order resonance vibration mode will not occur. However, such calculation methods do not perform calculations with a "load mass" at the tip of the bimorph piezoelectric actuator. Therefore, there is a problem in that it cannot be applied to an actual bimorph piezoelectric actuator that has an optical system such as a lens as a load mass.

課題を解決するための手段 そこで、このような問題点を解決するために、本発明は
、圧電バイモルフの表裏両面に形成される電極形状f(
x)を、負荷質量を有した状態における圧電バイモルフ
の1次共振振動モードを表わす1次規準関数φ、(X)
をその圧電バイモルフの長手方向の座標軸Xにて2階微
分d2φ1(x)/dx”してなる形状によりその圧電
バイモルフの表裏両面に対称に形成した。
Means for Solving the Problems Therefore, in order to solve such problems, the present invention provides an electrode shape f (
x) is a first-order criterion function φ, (X) representing the first-order resonant vibration mode of the piezoelectric bimorph in a state with a loaded mass.
was formed symmetrically on both the front and back surfaces of the piezoelectric bimorph in a shape obtained by second-order differential d2φ1(x)/dx'' with respect to the coordinate axis X in the longitudinal direction of the piezoelectric bimorph.

作用 従って、負荷質量を考慮した状態で電極形状を圧電バイ
モルフの表裏両面に形成することができるため、1次共
振振動モード以外の高次の共振振動モードが発生するよ
うなことがなくなり、これにより、光ピツクアップ系の
駆動用アクチュエータに用いた場合に高速アクセスが可
能となり、しかも、従来の光ピツクアップ系の電磁力駆
動用のアクチュエータに比ベコイル、マグネット、及び
Effect: Therefore, since the electrode shape can be formed on both the front and back sides of the piezoelectric bimorph while taking into account the load mass, higher-order resonance vibration modes other than the primary resonance vibration mode will not occur. When used as an actuator for driving an optical pickup system, high-speed access is possible, and moreover, compared to actuators for driving electromagnetic force for conventional optical pickup systems, it is possible to use coils, magnets, and the like.

それらを支えるヨーク等のハウジングを必要としなくな
るため一段と小型で軽量な光ピツクアップ用のアクチュ
エータを得ることが可能となる。
Since there is no need for a housing such as a yoke to support them, it becomes possible to obtain an actuator for optical pickup that is smaller and lighter in weight.

実施例 本発明の第一の実施例を第1図及び第2図、第6図に基
づいて説明する。
Embodiment A first embodiment of the present invention will be explained based on FIGS. 1, 2, and 6.

圧電バイモルフ8は、共通電極9をその上下両面から圧
電材10により挾持してなっており、この圧電バイモル
フ8の一端は固定端Aとされ、これと反対側の位置は自
由端Bとされている。この自由端Bには負荷質量11が
取付けられるようになっている。また、上下2枚の圧電
材10の表面にはそれぞれ電極12が形成されている。
The piezoelectric bimorph 8 has a common electrode 9 sandwiched between piezoelectric materials 10 from its upper and lower surfaces, one end of the piezoelectric bimorph 8 is a fixed end A, and the opposite position is a free end B. There is. A load mass 11 is attached to this free end B. Furthermore, electrodes 12 are formed on the surfaces of the two piezoelectric materials 10, the upper and lower ones.

このような構成において、圧電バイモルフ8の圧電材1
0の表面に電極12を形成する方法について説明する。
In such a configuration, the piezoelectric material 1 of the piezoelectric bimorph 8
A method of forming the electrode 12 on the surface of 0 will be explained.

今、圧電バイモルフ8の共振振動により屈曲する部分の
質量をm。、負荷質量をmb、圧電バイモルフ8の長手
方向の座標軸をXとする。
Now, the mass of the part of the piezoelectric bimorph 8 that bends due to resonance vibration is m. , the load mass is mb, and the longitudinal coordinate axis of the piezoelectric bimorph 8 is X.

この時、圧電バイモルフ8の1次共振振動モードを表わ
す1次規準関数φ□(X)をXにて2階微分d2φ1(
x) / dx” L/て得られる電極形状f (x)
は、f (x)=(sincz1+5inhα1Mco
s(a t/u) x +cosh (a 、/a) 
x )−(cosa、+coshc、)(sin(ai
/u) x+5inh(α、/Q)X)・・・(3) ただし、α1は。
At this time, the second-order differential d2φ1(
x) / dx” L/ electrode shape obtained by f (x)
is f (x)=(sincz1+5inhα1Mco
s(a t/u) x + cosh (a, /a)
x )−(cosa,+coshc,)(sin(ai
/u) x+5inh(α, /Q)X)...(3) However, α1 is.

1 +cos alcosh a□+ (mb/m、 
) ax (cos a、5inh al−sin a
□cosh a、)=0 ・・・(4) の解であり、質量比mb/m、が例えば、0.5の時は
a1勾1.41996 (r a d) 、mb/m、
が1.0の時はα、#1.24792 (rad)など
の値となる。
1 +cos alcosh a□+ (mb/m,
) ax (cos a, 5inh al-sin a
□cosh a, )=0 (4) is the solution, and when the mass ratio mb/m is, for example, 0.5, the a1 slope is 1.41996 (ra d), mb/m,
When is 1.0, the value is α, #1.24792 (rad), etc.

そして、この(4)式からα、の値を決定し、これを(
3)式に入れることにより決定された電極形状f(x)
の様子を第1図に示す。このように電極形状f(x)を
圧電バイモルフ8の上下2枚の圧電材lOの表面に形成
することにより、その振動特性は第6図に示すように1
次共振振動モードのみ発生し、それ以外の余分な高次の
共振振動モードは発生しない、このように100 Hz
から10KHz以上の高域まで直線的に一気に落ちるカ
ーブとなるため、従来、光ピツクアップ用のアクチュエ
ータに用いられるボイスコイル型アクチュエータと同様
の仕様で小型、軽量なアクチュエータで構成することが
できる。
Then, determine the value of α from this equation (4) and convert it into (
3) Electrode shape f(x) determined by entering the equation
The situation is shown in Figure 1. By forming the electrode shape f(x) on the surfaces of the upper and lower piezoelectric materials 1O of the piezoelectric bimorph 8 in this way, the vibration characteristics are changed to 1 as shown in FIG.
In this way, only the next resonance vibration mode occurs, and no other extra high-order resonance vibration modes occur.In this way, at 100 Hz
Since the curve drops straight and at once from 1 to 10 KHz or higher, it is possible to construct a small, lightweight actuator with the same specifications as the voice coil actuator conventionally used in optical pickup actuators.

次に、本発明の第二の実施例を第3図及び第4図に基づ
いて説明する。
Next, a second embodiment of the present invention will be described based on FIGS. 3 and 4.

上下2枚平行に配設された圧電バイモルフ8の一端はク
ランプ材13に固定されており、それらの反対の自由端
とされた側には負荷質量としてのレンズ14を保持した
レンズホルダ15が取付けられている。
One end of the two piezoelectric bimorphs 8 arranged in parallel above and below is fixed to a clamp member 13, and a lens holder 15 holding a lens 14 as a load mass is attached to the opposite free end. It is being

このような構成において、それら上下2枚の圧電バイモ
ルフ8の圧電材10の表面に電極12を形成する方法に
ついて説明する。本実施例の場合にも、圧電バイモルフ
8の共振振動により屈曲する部分の質量をmo、負荷質
量をmb、圧電バイモルフ8の長手方向の座標軸を又と
する。
In such a configuration, a method for forming the electrodes 12 on the surfaces of the piezoelectric materials 10 of the two piezoelectric bimorphs 8, upper and lower, will be described. In the case of this embodiment as well, the mass of the portion of the piezoelectric bimorph 8 bent by resonance vibration is mo, the load mass is mb, and the coordinate axis in the longitudinal direction of the piezoelectric bimorph 8 is straddle.

この時、圧電バイモルフ8の1次共振振動モードを表わ
す1次規準関数φ、(X)をXにて2階微分d2φ、(
x)/dx” L、て得られる電極形状f(x)は、f
 (x)=(cosa、−coshc、)(cos(α
1/Q) x+cosh(α1/Q)X)+(sinα
1+5inhα□)(sin(α1/Q) x+5in
h(α、/Q) x)・・・(5) ただし、α1は、 cosalsinha、+5ina1coSha、−(
mb/mo)ax(1cosa、coshc、)=0 
・・・(6) の解であり、質量比mb/m、が例えば、0.5 の時
はαl勾1.92354 (rad) 、mb/me 
が1.0の時はα1:1.71888 (rad)など
の値となる。この(6)式からα□の値を決定し、これ
を(5)式に代入することにより決定された電極形状f
(x)の様子を第5図に示す。なお、この場合、上下2
枚の圧電バイモルフ8で構成されているため、実際の負
荷質量をMとすると(6)式中のmbの値はmb=M/
2として用いている。
At this time, the second-order differential d2φ, (
x)/dx”L, the electrode shape f(x) obtained is f
(x)=(cosa,-coshc,)(cos(α
1/Q) x+cosh(α1/Q)X)+(sinα
1+5inhα□)(sin(α1/Q) x+5in
h(α,/Q) x)...(5) However, α1 is cosalsinha, +5ina1coSha, -(
mb/mo)ax(1cosa,coshc,)=0
...This is the solution to (6), and when the mass ratio mb/m is, for example, 0.5, the αl slope is 1.92354 (rad), mb/me
When is 1.0, the value is α1:1.71888 (rad). The electrode shape f determined by determining the value of α□ from this equation (6) and substituting it into equation (5)
The state of (x) is shown in FIG. In this case, the upper and lower 2
Since it is composed of two piezoelectric bimorphs 8, if the actual load mass is M, the value of mb in equation (6) is mb=M/
It is used as 2.

また、第二実施例の変形例として同一の負荷質量Mを上
下4枚の圧電バイモルフ8で構成する場合には、(6)
式中のmbの値をmb =M/4として計算することに
より、第5図に示すような電極形状f (x)を得て作
成することができる。
Further, as a modification of the second embodiment, when the same load mass M is composed of four upper and lower piezoelectric bimorphs 8, (6)
By calculating the value of mb in the formula as mb = M/4, the electrode shape f (x) as shown in FIG. 5 can be obtained and created.

上述したような第4図及び第5図に示すような構成にす
ることによって、レンズ光軸の倒れのないフォーカス用
アクチュエータを構成することができると共に、2次以
上の高次共振振動モードは発生せず、第6図に示すよう
な1次の共振振動モードのみを発生させることができる
。なお、本実施例のように、負荷質量の大きさが圧電バ
イモルフ8に比べて大きくない限りは剛体としてではな
く質点として扱うことによって第6図のような良好な振
動特性を得ることができる。
By adopting the configuration shown in FIGS. 4 and 5 as described above, it is possible to construct a focusing actuator that does not tilt the optical axis of the lens, and at the same time, high-order resonance vibration modes higher than second order can be generated. Instead, only the first-order resonance vibration mode as shown in FIG. 6 can be generated. As in this embodiment, as long as the load mass is not larger than the piezoelectric bimorph 8, good vibration characteristics as shown in FIG. 6 can be obtained by treating it as a mass point rather than a rigid body.

発明の効果 本発明は、圧電バイモルフの表裏両面に形成される電極
形状f (x)を、負荷質量を有した状態における圧電
バイモルフの1次共振振動モードを表わす1次規準関数
φ1(x)をその圧電バイモルフの長手方向の座標軸X
にて2階微分d2φx (x)/dx”してなる形状に
よりその圧電バイモルフの表裏両面に対称に形成したの
で、負荷質量を考慮した状態で電極形状f (x)を形
成することができるため。
Effects of the Invention The present invention provides an electrode shape f(x) formed on both the front and back surfaces of a piezoelectric bimorph, with a first-order standard function φ1(x) representing the first-order resonance vibration mode of the piezoelectric bimorph in a state with a load mass. The longitudinal coordinate axis of the piezoelectric bimorph
Since the electrode shape is formed symmetrically on both the front and back sides of the piezoelectric bimorph with the shape formed by the second-order differential d2φx (x)/dx'', the electrode shape f (x) can be formed while taking the load mass into consideration. .

1次共振振動モード以外の高次の共振振動モードが発生
するようなことがなくなり、これにより。
This eliminates the occurrence of higher-order resonance vibration modes other than the primary resonance vibration mode.

光ピツクアップ系の駆動用アクチュエータに用いた場合
に高速アクセスが可能となり、しかも、従来の光ピツク
アップ系の電磁力駆動用のアクチュエータに比ベコイル
、マグネット、及び、それらを支えるヨーク等のハウジ
ングを必要としなくなるため一段と小型で軽量な光ピツ
クアップ用のアクチュエータを得ることが可能となるも
のである。
When used in actuators for driving optical pickup systems, high-speed access is possible, and in addition, compared to actuators for driving electromagnetic force in conventional optical pickup systems, they do not require coils, magnets, or housings such as yokes to support them. Therefore, it becomes possible to obtain an actuator for optical pickup that is smaller and lighter in weight.

特性図、第8図は従来のバイモルフ型圧電アクチュエー
タの斜視図、第9図(a)(b)(c)はその各種共振
振動モードの状態を示す説明図、第10図は従来の電極
形状の様子を示す斜視図、第11図(a)は圧電バイモ
ルフの1次共振振動モードを表わす1次規準関数φ1(
x)の波形図、第11図(b)はその1次規準関数φ1
(x)を2階微分した形を示す波形図である。
Characteristics diagram, Figure 8 is a perspective view of a conventional bimorph type piezoelectric actuator, Figures 9 (a), (b), and (c) are explanatory diagrams showing the states of its various resonance vibration modes, and Figure 10 is a conventional electrode shape. FIG. 11(a) is a perspective view showing the state of the piezoelectric bimorph.
x) waveform diagram, FIG. 11(b) is its linear standard function φ1
FIG. 3 is a waveform diagram showing a second-order differential of (x).

8・・・圧電バイモルフ、9・・・共通電極、10・・
・圧電材、11・・・負荷質量、12・・・電極
8... Piezoelectric bimorph, 9... Common electrode, 10...
・Piezoelectric material, 11... Load mass, 12... Electrode

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例を示す電極形状の平面図
、第2図はそのバイモルフ型圧電アクチュエータの斜視
図、第3図は本発明の第二の実施例を示す電極形状の平
面図、第4図はそのバイモルフ型圧電アクチュエータの
斜視図、第5図はその変形例を示す斜視図、第6図は本
発明の振動特性を示す特性図、第7図は従来の振動特性
を示す出 願 人    株式会社 リ コ 、%、/  図 3J 、3図 JLL図 J5 2図 チ ー第」0場 3月 図
FIG. 1 is a plan view of an electrode shape showing a first embodiment of the present invention, FIG. 2 is a perspective view of the bimorph piezoelectric actuator, and FIG. 3 is a plan view of an electrode shape showing a second embodiment of the present invention. A plan view, FIG. 4 is a perspective view of the bimorph piezoelectric actuator, FIG. 5 is a perspective view showing a modification thereof, FIG. 6 is a characteristic diagram showing the vibration characteristics of the present invention, and FIG. 7 is a conventional vibration characteristic. Applicant Rico Co., Ltd., %, / Figure 3J, Figure 3 JLL Figure J5 Figure 2 Chi No. 0 Scene March Figure

Claims (1)

【特許請求の範囲】[Claims] 共通電極をその上下両面から圧電材により挾持してなる
圧電バイモルフの一端が固定端とされ他端の自由端とさ
れた側に負荷質量が取付けられたバイモルフ型圧電アク
チュエータにおいて、前記圧電バイモルフの表裏両面に
形成される電極形状f(x)を、前記負荷質量を有した
状態における前記圧電バイモルフの1次共振振動モード
を表わす1次規準関数φ_1(x)をその圧電バイモル
フの長手方向の座標軸xにて2階微分d^2φ_1(x
)/dx^2してなる形状により前記圧電バイモルフの
表裏両面に対称に形成したことを特徴とするバイモルフ
型圧電アクチュエータ。
In a bimorph-type piezoelectric actuator, in which a piezoelectric bimorph is formed by sandwiching a common electrode between upper and lower surfaces of the piezoelectric material, one end of the piezoelectric bimorph is a fixed end, and a load mass is attached to the other end, which is a free end. The electrode shape f(x) formed on both surfaces is defined as the linear standard function φ_1(x) representing the first-order resonance vibration mode of the piezoelectric bimorph in a state with the loaded mass, and the coordinate axis x in the longitudinal direction of the piezoelectric bimorph. The second differential d^2φ_1(x
)/dx^2, the bimorph type piezoelectric actuator is characterized in that it is formed symmetrically on both the front and back surfaces of the piezoelectric bimorph.
JP63272722A 1988-10-28 1988-10-28 Bimorph-type piezoelectric actuator Pending JPH02119278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63272722A JPH02119278A (en) 1988-10-28 1988-10-28 Bimorph-type piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63272722A JPH02119278A (en) 1988-10-28 1988-10-28 Bimorph-type piezoelectric actuator

Publications (1)

Publication Number Publication Date
JPH02119278A true JPH02119278A (en) 1990-05-07

Family

ID=17517870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63272722A Pending JPH02119278A (en) 1988-10-28 1988-10-28 Bimorph-type piezoelectric actuator

Country Status (1)

Country Link
JP (1) JPH02119278A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448693B1 (en) 1999-10-01 2002-09-10 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
US6455984B1 (en) 1999-10-01 2002-09-24 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
US6472799B2 (en) 1999-10-01 2002-10-29 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
US6525448B1 (en) 1999-10-01 2003-02-25 Ngk Insulators Ltd Piezoelectric/electrostrictive device
US6534899B1 (en) * 1999-10-01 2003-03-18 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
US6538362B1 (en) 1999-10-01 2003-03-25 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
US6671939B2 (en) 1999-10-01 2004-01-06 Ngk Insulators, Ltd. Method for producing a piezoelectric/electrostrictive device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448693B1 (en) 1999-10-01 2002-09-10 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
US6455984B1 (en) 1999-10-01 2002-09-24 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
US6472799B2 (en) 1999-10-01 2002-10-29 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
US6525448B1 (en) 1999-10-01 2003-02-25 Ngk Insulators Ltd Piezoelectric/electrostrictive device
US6534899B1 (en) * 1999-10-01 2003-03-18 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
US6538362B1 (en) 1999-10-01 2003-03-25 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
US6643902B2 (en) 1999-10-01 2003-11-11 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
US6671939B2 (en) 1999-10-01 2004-01-06 Ngk Insulators, Ltd. Method for producing a piezoelectric/electrostrictive device
US6796011B2 (en) 1999-10-01 2004-09-28 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
US6817072B2 (en) 1999-10-01 2004-11-16 Ngk Insulators, Ltd. Method of manufacturing a piezoelectric/electrostrictive device
US6883215B2 (en) 1999-10-01 2005-04-26 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device and method of manufacturing same
US6933658B2 (en) 1999-10-01 2005-08-23 Ngk Insulators, Ltd. Method of manufacturing a piezoelectric/electrostrictive device
US6968603B2 (en) 1999-10-01 2005-11-29 Ngk Insulators, Ltd. Method of producing a piezoelectric/electrostrictive device
US7245064B2 (en) 1999-10-01 2007-07-17 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device
US7358647B2 (en) 1999-10-01 2008-04-15 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device

Similar Documents

Publication Publication Date Title
US6803843B2 (en) Movable-body apparatus, optical deflector, and method of fabricating the same
EP0524629A1 (en) Magnetic head slider support device
JPS5937722A (en) Longitudinal oscillation type piezoelectric oscillator
JPH02119278A (en) Bimorph-type piezoelectric actuator
JPH11191231A (en) Objective lens actuator
US4518831A (en) Transducer with translationally adjustable armature
JPH0313006A (en) Support structure of vibrator
US6683831B2 (en) Objective lens actuator
GB2026284A (en) Seismic transducer
JPH02183584A (en) Bimorph type piezoelectric actuator
JPS62210418A (en) Light beam deflection mirror
JPS60182024A (en) Objective lens driver
JP3355745B2 (en) Driving mechanism of optical axis correction lens
JPH0360383A (en) Bimorph type actuator
JPH08329496A (en) Optical head
JP3277709B2 (en) Two axis actuator
JPH041449Y2 (en)
JPH04188478A (en) Magnetic-head slider support mechanism
JP3392218B2 (en) Optical system support device
JPS60236127A (en) Actuator of optical pickup
JPS6124034A (en) Driver of objective lens
JPH01144241A (en) Actuator for optical head
JPH02121128A (en) Objective lens driving device
JPS60197948A (en) Movable mechanism of optical head
JPH1079129A (en) Objective lens actuator