JPH0211907B2 - - Google Patents
Info
- Publication number
- JPH0211907B2 JPH0211907B2 JP56044070A JP4407081A JPH0211907B2 JP H0211907 B2 JPH0211907 B2 JP H0211907B2 JP 56044070 A JP56044070 A JP 56044070A JP 4407081 A JP4407081 A JP 4407081A JP H0211907 B2 JPH0211907 B2 JP H0211907B2
- Authority
- JP
- Japan
- Prior art keywords
- charging
- humidity
- developing bias
- bias voltage
- initial value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 108091008695 photoreceptors Proteins 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/06—Apparatus for electrographic processes using a charge pattern for developing
- G03G15/065—Arrangements for controlling the potential of the developing electrode
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Developing For Electrophotography (AREA)
- Control Or Security For Electrophotography (AREA)
Description
【発明の詳細な説明】
本発明は、静電記録装置の現像バイアス制御装
置、特に記録体(感光ドラム)の環境変化および
経時変化の補正機能を有し現像バイアス電圧を制
御しながら静電記録を行なう静電記録装置の現像
バイアス制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a developing bias control device for an electrostatic recording device, and in particular has a function of correcting environmental changes and changes over time of a recording medium (photosensitive drum), and performs electrostatic recording while controlling the developing bias voltage. The present invention relates to a developing bias control device for an electrostatic recording device.
従来電子複写機などの静電記録装置では感光ド
ラムの帯電特性が湿度や温度などの環境変動によ
つて変化し、又使用による機械的な疲労などの経
時変化によつて影響を受けるという欠点がある。 Conventional electrostatic recording devices such as electronic copying machines have the drawback that the charging characteristics of the photosensitive drum change due to environmental changes such as humidity and temperature, and are also affected by changes over time such as mechanical fatigue due to use. be.
このような環境変動、経時変化を補正する方法
として従来から感光ドラムの潜像電位を検出して
帯電条件、露光条件、現像条件などの記録条件を
変化させ最適の画像が形成されるように制御する
方法、並びに帯電時間に応じて帯電条件、露光条
件を変えて最適の画像記録が行なえるように制御
する方法が考えられている。一般に還境変化のう
ち耐湿度特性が他の要因に比較して圧倒的な大き
さを占めており、従来の方法のほとんどが耐湿度
特性の向上に向けられている。さらに長時間使用
後には感光ドラムの機械的な疲労、感光特性その
ものの劣化に伴う経時変化があり、そのほかに帯
電開始直後の短時間の帯電特性の変化、又帯電停
止後の帯電特性の変化などがありこれらの帯電特
性の変化も考慮しなければならない。即ち帯電、
露光を繰り返すことによつて帯電特性が定常状態
に回復してくるため、現像バイアス電圧が同一で
は上述した帯電特性を補償していず、画質が劣化
する。このように帯電開始直後の帯電量の変化の
大きさは感光ドラムの吸湿程度に応じて変化する
特性を示すため、これを考慮しないと最適の画像
記録が行なえない。 Conventionally, as a method of correcting such environmental fluctuations and changes over time, the latent image potential of the photosensitive drum is detected and recording conditions such as charging conditions, exposure conditions, and development conditions are changed to form an optimal image. Methods have been proposed in which the charging conditions and exposure conditions are changed in accordance with the charging time to perform control so that optimal image recording can be performed. In general, humidity resistance is by far the largest factor in environmental change compared to other factors, and most conventional methods are aimed at improving humidity resistance. Furthermore, after long-term use, there are mechanical fatigue of the photosensitive drum and changes over time due to deterioration of the photosensitive characteristics themselves.In addition, there are changes in charging characteristics for a short period of time immediately after charging starts, changes in charging characteristics after charging is stopped, etc. Therefore, changes in these charging characteristics must also be taken into account. That is, electrostatic charge,
By repeating exposure, the charging characteristics recover to a steady state, so if the developing bias voltage is the same, the above-mentioned charging characteristics are not compensated for, and the image quality deteriorates. As described above, since the magnitude of the change in the amount of charge immediately after the start of charging exhibits a characteristic that changes depending on the degree of moisture absorption of the photosensitive drum, optimal image recording cannot be performed unless this is taken into consideration.
本発明は上記点に鑑みてなされたもので、その
目的とするところは、帯電開始時における感光体
の帯電特性の変化を補償し、適正濃度の画像を得
ることが可能な現像バイアス制御装置を提供する
ことにある。 The present invention has been made in view of the above points, and an object thereof is to provide a developing bias control device that can compensate for changes in the charging characteristics of a photoreceptor at the start of charging and obtain an image with an appropriate density. It is about providing.
即ち本発明は、感光体を帯電した後露光するこ
とにより静電潜像を形成しその静電潜像を現像す
ることにより画像を形成する装置において、前記
装置内の湿度を検出する湿度検出手段と、帯電開
始時における前記感光体の帯電特性の変化に応じ
て現像バイアス電圧を制御する制御手段とを有
し、前記制御手段は前記湿度検出手段の出力に基
づいて前記現像バイアス電圧の初期値を設定し、
帯電開始時の前記感光体の帯電特性の変化に応じ
て前記初期値から定常状態における収束値迄連続
的に変化させていくものであつて、更に前記湿度
検出手段により検出される湿度が高い場合は湿度
が低い場合に比べ前記初期値を収束値に近く設定
することを特徴とする静電記録装置の現像バイア
ス制御装置を提供するものである。 That is, the present invention provides a humidity detection means for detecting humidity within the device in an apparatus that forms an image by forming an electrostatic latent image by charging and exposing a photoreceptor and developing the electrostatic latent image. and a control means for controlling a developing bias voltage according to a change in charging characteristics of the photoreceptor at the start of charging, and the controlling means controls an initial value of the developing bias voltage based on the output of the humidity detecting means. and set
When the charging characteristics of the photoreceptor at the start of charging are changed continuously from the initial value to the convergence value in a steady state, and the humidity detected by the humidity detection means is high. provides a developing bias control device for an electrostatic recording device, characterized in that the initial value is set closer to the convergence value than when humidity is low.
次に添付図面を参照して本発明の実施例を詳細
に説明する。 Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
第1図には湿度および帯電履歴を検知して現像
バイアス電圧を制御し、感光ドラムの吸湿特性を
補償する原理が図示されている。t0で帯電を開始
すると現像器の現像ローラーに印加される電圧、
すなわち現像バイアス電圧f(t)は検出されて
湿度(30〜80%)に応じて+50V〜+100Vまで
変化する初期値f(t0)から時定数γ1の指数関数
で最終値+50Vに収束する。t3で帯電を停止する
と現像バイアス電圧f(t3)は時定数γ2で初期値
f(t0)に戻る。この場合γ1は感光ドラムの帯電
時の帯電回復特性に基づいて40秒前後の値が選ば
れ、一方γ2は感光ドラムの停止時の吸湿劣化特性
に応じて5分前後の値が選ばれる。初期値に戻る
前にt=t4で帯電を開始すると現像バイアス電圧
f(t)は初期電圧f(t4)から時定数γ1の指数関
数で最終値50Vに収束してをく。即ち第1図にお
いて破線で示したのは帯電中吸水量低下に基づく
帯電回復特性を示したもので、帯電が回復するこ
とにより現像バイアス電圧を小さくすることがで
き、又一方実線で示したように帯電を停止すると
吸水量が増加し、それに従つて帯電特性は劣化す
るので現像バイアス電圧を増加させなければなら
ないことが理解される。 FIG. 1 illustrates the principle of detecting humidity and charging history, controlling the developing bias voltage, and compensating for the moisture absorption characteristics of the photosensitive drum. When charging starts at t 0 , the voltage applied to the developing roller of the developing device,
In other words, the developing bias voltage f(t) is detected and varies from +50V to +100V depending on the humidity (30 to 80%) from an initial value f(t 0 ) to a final value of +50V using an exponential function with a time constant γ 1 . . When charging is stopped at t 3 , the developing bias voltage f(t 3 ) returns to the initial value f(t 0 ) with a time constant γ 2 . In this case, γ 1 is selected to be around 40 seconds based on the charge recovery characteristics when the photosensitive drum is charged, while γ 2 is selected to be around 5 minutes depending on the moisture absorption deterioration characteristics when the photosensitive drum is stopped. . When charging is started at t= t4 before returning to the initial value, the developing bias voltage f(t) converges from the initial voltage f( t4 ) to the final value of 50V according to an exponential function with a time constant γ1 . In other words, the broken line in FIG. 1 shows the charge recovery characteristic based on the decrease in water absorption during charging, and as the charge recovers, the developing bias voltage can be reduced. It is understood that when charging is stopped at , the amount of water absorbed increases and the charging characteristics deteriorate accordingly, so it is necessary to increase the developing bias voltage.
このように本発明では検出された感光体ドラム
近傍の湿度に応じて現像バイアス電圧の初期値f
(t0)を変化させるとともに、帯電中ないし帯電
停止時の吸湿量の変化に基づく帯電特性の変化を
考慮して最終的に現像バイアス電圧を制御させる
ものである。 In this way, in the present invention, the initial value f of the developing bias voltage is determined according to the detected humidity near the photoreceptor drum.
(t 0 ) and finally controls the developing bias voltage in consideration of changes in charging characteristics based on changes in moisture absorption during charging or when charging is stopped.
このような現像バイアス制御を行なう具体的な
装置が第2図に図示されている。第2図において
感光ドラム1は例えば表面より絶縁層、光導電
層、導電層の3層で構成されており、この感光ド
ラム1の周りに感光ドラム1を全面帯電させる一
次帯電器2が配置される。この一次帯電器2の次
にドラム回転方向に隣接して二次帯電器(除電
器)3,全面露光ランプ5が配置される。この二
次帯電器3は露光光源(ハロゲンランプ)9によ
り照明された原稿(図示せず)からの反射光線4
によつて露光された感光ドラムの帯電を露光量に
応じて除電させ原稿の静電潜像を感光ドラム1上
に形成する。このように形成された静電潜像は感
度を上げるため全面露光ランプ5によつて全面露
光されてさらに陥調性の良い静電潜像となる。そ
の後感光ドラム上の静電潜像は現像器7に移動し
現像バイアス電圧の印加された現像ローラー8を
介してトナー現像される。 A specific device for performing such developing bias control is shown in FIG. In FIG. 2, the photosensitive drum 1 is composed of three layers, for example, an insulating layer, a photoconductive layer, and a conductive layer from the surface.A primary charger 2 is arranged around the photosensitive drum 1 to charge the entire surface of the photosensitive drum 1. Ru. Next to the primary charger 2, a secondary charger (static eliminator) 3 and a full-surface exposure lamp 5 are arranged adjacent to each other in the direction of rotation of the drum. This secondary charger 3 receives reflected light 4 from an original (not shown) illuminated by an exposure light source (halogen lamp) 9.
The charge on the exposed photosensitive drum is removed according to the amount of exposure, and an electrostatic latent image of the document is formed on the photosensitive drum 1. The electrostatic latent image thus formed is entirely exposed to light by a full-surface exposure lamp 5 in order to increase sensitivity, resulting in an electrostatic latent image with even better contrast. Thereafter, the electrostatic latent image on the photosensitive drum is moved to a developing device 7 and is developed with toner via a developing roller 8 to which a developing bias voltage is applied.
さらに感光ドラム1の周辺で適当な場所、例え
ば現像器7と二次帯電器3の間に低抗値変化型の
湿度センサ13が配置される。この湿度センサ1
3には抵抗R8,コンデンサC2を介して発振回
路11からの1000HzIVRMS程度の交流バイアス
電圧が印加される。又湿度センサ13からの出力
は整流回路14に入力され、湿度センサ13から
の信号が直流に変換される。整流回路14の後段
には抵抗R1,R2,コンデンサC1から成る時
定数回路15が接続され、この時定数回路は電子
スイツチ16の開放時にはγ2=R1・C1の時定数
を、又短絡時には、γ1=C1・R1・R2/R1+R2なる2つ
の時定数を有する。時定数回路15の出力はR1
とR2の接続点から取り出され、増幅器18によ
つて増幅され現像バイアス発生回路19に入力さ
れる。この現像バイアス発生回路19の出力は現
像ローラー8に印加され、現像バイアス電圧に制
御する。電子スイツチ16の制御入力17には記
録装置本体のシーケンスコントローラ(図示せ
ず)から感光ドラムの帯電回転中の同期信号が印
加されており、帯電中はR2の一端を接地して時
定数回路の時定数をγ1=C1・R1・R2/R1+R2に、又帯
電停止時にはR2の一端を開放して時定数回路の
時定数をγ2=C1・R1に選び第1図に図示したよ
うな帯電回復特性ないし帯電劣化特性を補償する
手段を実現している。 Further, a humidity sensor 13 of a low resistance value variation type is disposed at an appropriate location around the photosensitive drum 1, for example, between the developing device 7 and the secondary charger 3. This humidity sensor 1
An alternating current bias voltage of about 1000 Hz IVRMS from the oscillation circuit 11 is applied to the circuit 3 via the resistor R8 and the capacitor C2. Further, the output from the humidity sensor 13 is input to a rectifier circuit 14, and the signal from the humidity sensor 13 is converted into direct current. A time constant circuit 15 consisting of resistors R1, R2 and a capacitor C1 is connected to the rear stage of the rectifier circuit 14, and this time constant circuit has a time constant of γ 2 =R1·C1 when the electronic switch 16 is open, and when it is short-circuited, It has two time constants: γ 1 =C1·R1·R2/R1+R2. The output of the time constant circuit 15 is R1
and R2, is amplified by an amplifier 18, and is input to a developing bias generation circuit 19. The output of this developing bias generation circuit 19 is applied to the developing roller 8 and controlled to a developing bias voltage. A synchronizing signal during the charging rotation of the photosensitive drum is applied to the control input 17 of the electronic switch 16 from the sequence controller (not shown) of the recording apparatus main body, and during charging, one end of R2 is grounded to control the time constant circuit. The time constant is set to γ 1 =C1・R1・R2/R1+R2, and when charging is stopped, one end of R2 is opened and the time constant of the time constant circuit is set to γ 2 =C1・R1. A means for compensating for recovery characteristics or charging deterioration characteristics is realized.
第3図には発振回路11,整流回路14,電子
スイツチ16並びに増幅器18の具体的な回路が
図示されている。発振回路11は演算増幅器Q1
を有する正帰還のブロツキング発振回路で、その
発振周波数は湿度センサ13の最適条件である
1KHzになるようにC1,R3の値が選定されて
いる。Q1の出力はスイツチング用トランジスタ
Q2に入力され、さらにQ2の出力はR8,C2
を介して湿度センサ13にバイアス電流として印
加される。湿度センサ13から検出された端子電
圧はインピーダンス変換用の増幅器Q3で低イン
ピーダンスに変換された後直線検波回路Q4で整
流される。この整流出力は抵抗R4,コンデンサ
C3で平滑にされた後、増幅器Q5で増幅され時
定数回路15に接続される。一方電子スイツチ1
6はトランジスタQ6から成り、そのコレクタに
は時定数回路の抵抗R2が接続され、そのベース
には端子17が接続される。さらに時定数回路1
5の出力はQ7で電流増幅された後リミツターD
1,D2で電圧制限された後ボルテージフオロア
ーQ8を介して現像バイアス発生回路19に入力
される。 FIG. 3 shows specific circuits of the oscillation circuit 11, the rectifier circuit 14, the electronic switch 16, and the amplifier 18. The oscillation circuit 11 is an operational amplifier Q1
This is a positive feedback blocking oscillation circuit having a positive feedback blocking oscillation circuit whose oscillation frequency is the optimum condition for the humidity sensor 13.
The values of C1 and R3 are selected so that the frequency becomes 1KHz. The output of Q1 is input to the switching transistor Q2, and the output of Q2 is input to R8, C2.
is applied as a bias current to the humidity sensor 13 via. The terminal voltage detected from the humidity sensor 13 is converted to a low impedance by an impedance converting amplifier Q3, and then rectified by a linear detection circuit Q4. This rectified output is smoothed by a resistor R4 and a capacitor C3, and then amplified by an amplifier Q5 and connected to a time constant circuit 15. On the other hand, electronic switch 1
6 consists of a transistor Q6, the collector of which is connected to a resistor R2 of a time constant circuit, and the base of which is connected to a terminal 17. Furthermore, time constant circuit 1
The output of 5 is current amplified by Q7 and then sent to limiter D.
After the voltage is limited by voltages 1 and D2, it is input to the developing bias generation circuit 19 via the voltage follower Q8.
次に以上のように構成された制御装置の動作を
説明する。端子17には複写機本体のシーケンス
コントローラより感光ドラム1の帯電回転と同期
したタイミング信号が印加されている。この場合
回路駆動用の電源の投入タイミングが感光ドラム
1の帯電回転とほぼ一致していると、一定の電
圧、例えば+24Vが端子17に入力される。この
電圧が端子17に印加されれると、スイツチング
用トランジスタQ6が導通してコンデンサC1は
時定数γ1=C・R1・R2/R1+R2で充電を開始し、R1
と
R2の接続点の電圧は指数関数的に低下してゆ
く。この電圧の減少は第1図に関連して既に説明
したように帯電中の吸湿量低下に基づく帯電回復
特性に対応して定められる。この場合湿度が大き
くて湿度センサ13からの出力電圧が大きい場合
には反転増幅器Q4より時定数回路には小さな電
圧が印加されるので第1図に図示したように帯電
開始時t0における初期値は湿度が大きい程現像バ
イアス電圧は小さくなり、このようにして環境条
件特に湿度条件を考慮した補正が行なわれる。 Next, the operation of the control device configured as above will be explained. A timing signal synchronized with the charging rotation of the photosensitive drum 1 is applied to the terminal 17 from a sequence controller of the copying machine main body. In this case, if the timing of turning on the power for driving the circuit substantially coincides with the charging rotation of the photosensitive drum 1, a constant voltage, for example +24V, is input to the terminal 17. When this voltage is applied to terminal 17, switching transistor Q6 becomes conductive and capacitor C1 starts charging with time constant γ 1 =C・R1・R2/R1+R2, and R1
The voltage at the connection point between R2 and R2 decreases exponentially. As already explained in connection with FIG. 1, this decrease in voltage is determined in response to the charging recovery characteristic based on the decrease in the amount of moisture absorbed during charging. In this case, when the humidity is high and the output voltage from the humidity sensor 13 is high, a small voltage is applied to the time constant circuit from the inverting amplifier Q4, so that the initial value at t 0 at the start of charging is shown in FIG. The higher the humidity, the lower the developing bias voltage becomes. In this way, correction is performed taking environmental conditions, particularly humidity conditions, into consideration.
つまり、帯電開始直後における感光体の帯電電
位は時間とともに所定の時定数で徐々に定常状態
迄低下していく帯電特性を示すが、この帯電特性
は湿度によつても変化し、湿度が高い程初期の帯
電電位は小さく初期の帯電電位から定常状態にな
る迄の時間も短い。 In other words, the charging potential of the photoreceptor immediately after the start of charging shows a charging characteristic that gradually decreases to a steady state with a predetermined time constant over time, but this charging characteristic also changes depending on the humidity, and the higher the humidity The initial charging potential is small and the time from the initial charging potential to a steady state is short.
従つて帯電開始直後の現像バイアス電圧をこの
帯電特性の変化に合わせて初期値から所定の時定
数で徐々に定常状態迄変化させていくとともに、
更に湿度に応じて現像バイアス電圧の初期値を変
化させ、湿度が高い程現像バイアス電圧の初期値
を小さく、この初期値から定常状態になる迄の時
間も短くなる様現像バイアス電圧を制御すること
により、帯電特性の変化を精度良く補償し、適正
濃度の画像を得ることが可能になる。 Therefore, the developing bias voltage immediately after the start of charging is gradually changed from the initial value to a steady state with a predetermined time constant in accordance with the change in the charging characteristics, and
Further, the initial value of the developing bias voltage is changed according to the humidity, and the higher the humidity is, the smaller the initial value of the developing bias voltage is, and the developing bias voltage is controlled so that the time from this initial value to a steady state is shortened. This makes it possible to accurately compensate for changes in charging characteristics and obtain images with appropriate density.
一方端子17に印加されるタイミング信号がオ
フとなり帯電が停止されるとトランジスタQ6が
遮断してそれまでC1に充電されていた電荷はR
1を介して時定数γ2=C1・R1で放電されてゆく。
この場合の時定数γ2は帯電停止時の吸水量増加に
伴なう帯電劣化を補償するような時定数に選ばれ
る。この場合差動増幅器Q3,Q4,Q5,Q7
はFET入力の4回路内蔵の演算増幅器で構成さ
れておりR5への電流の流入はない。 On the other hand, when the timing signal applied to terminal 17 is turned off and charging is stopped, transistor Q6 is cut off and the charge that had been charged in C1 until then is R
1 and is discharged with a time constant γ 2 =C1·R1.
In this case, the time constant γ 2 is selected to compensate for charging deterioration due to an increase in water absorption when charging is stopped. In this case, differential amplifiers Q3, Q4, Q5, Q7
consists of an operational amplifier with four built-in FET input circuits, and no current flows into R5.
このようにして時定数回路の出力はQ7,Q8
を介して増幅され現像バイアス発生回路19に入
力され現像ローラー8に印加される電圧を制御
し、現像バイアス量を制御する。 In this way, the output of the time constant circuit is Q7, Q8
The voltage that is amplified through the developing bias generating circuit 19 and applied to the developing roller 8 is controlled, thereby controlling the amount of developing bias.
なお湿度検出において較正方法が非常に難かし
い問題となるが、この実施例では湿度センサその
もののバラツキが出力段階で許容できるものとす
ると、回路のバラツキ要因を極力小さくしている
ので較正が全く不必要となる。即ち差動アンプの
出力の変動をトランジスタQ2の一段のスイツチ
ングを介していつたん零V〜12Vの振幅に標準化
しているのでセンサバイアス電流の変動を防止す
ることができ、さらに整流ダイオードの順方向電
圧のバラツキを直線検波回路Q4を用いて標準化
しているので整流出力の変動を防止できる。さら
にFET入力の差動アンプを用いて平滑回路、時
定数回路およびセンサ自身を次の段に結合するよ
うにしているので変動をなくすことができる。
又、使用された差動増幅器はすべて開放利得が80
〜100dBの高利得増幅器を閉ループで使用してい
るため、ゲインは入力および帰還用の抵抗値で決
定され増幅器の利得の変動を補償することができ
る。 The calibration method is a very difficult problem in humidity detection, but in this example, assuming that variations in the humidity sensor itself can be tolerated at the output stage, the cause of circuit variations is minimized, so calibration is not possible at all. It becomes necessary. In other words, fluctuations in the output of the differential amplifier are standardized to an amplitude of 0V to 12V through one-stage switching of transistor Q2, so fluctuations in the sensor bias current can be prevented, and furthermore, in the forward direction of the rectifier diode, fluctuations in the sensor bias current can be prevented. Since voltage variations are standardized using the linear detection circuit Q4, fluctuations in the rectified output can be prevented. Furthermore, since the smoothing circuit, time constant circuit, and sensor itself are coupled to the next stage using a FET input differential amplifier, fluctuations can be eliminated.
Also, the differential amplifiers used all have an open gain of 80.
Since a high gain amplifier of ~100 dB is used in a closed loop, the gain is determined by the input and feedback resistor values and can compensate for variations in the amplifier gain.
第4図には本発明の他の実施例が図示されてお
り、この実施例の場合には湿度センサ13の常湿
時の抵抗値と同一の抵抗値をもつた標準抵抗器R
6と切り替えスイツチ20が設けられた例で、他
の部分は第2図の実施例と同様でありその説明は
省略する。この実施例の場合整流回路14の入力
を湿度センサ13から抵抗R6に切り替えること
により増幅器18の出力レベルを容易に較正する
ことができる。 FIG. 4 shows another embodiment of the present invention, in which a standard resistor R having the same resistance value as the resistance value of the humidity sensor 13 at normal humidity is shown.
This is an example in which a changeover switch 6 and a changeover switch 20 are provided, and the other parts are the same as those in the embodiment shown in FIG. 2, and a description thereof will be omitted. In this embodiment, the output level of the amplifier 18 can be easily calibrated by switching the input of the rectifier circuit 14 from the humidity sensor 13 to the resistor R6.
又、第4図の実施例の場合には回路のバラツキ
の補正あるいは感光体の吸湿による帯電特性の変
化のバラツキの補正時に環境(湿度)を一定に保
つなどの困難な作業を必要としない利点が得られ
る。 Further, in the case of the embodiment shown in FIG. 4, there is an advantage that difficult work such as keeping the environment (humidity) constant is not required when correcting variations in the circuit or variations in charging characteristics due to moisture absorption of the photoreceptor. is obtained.
以上述べた実施例のほかに感光ドラムの表面電
位を測定する表面電位測定装置を備え、潜像電位
に応じて帯電、露光、現像などの記録条件を制御
する静電記録装置においても湿度センサを設け対
湿度特性と帯電履歴による補償を行なうことによ
つて最適の画像が得られることは明らかである。 In addition to the embodiments described above, a humidity sensor is also used in an electrostatic recording device that is equipped with a surface potential measuring device that measures the surface potential of a photosensitive drum and controls recording conditions such as charging, exposure, and development according to the latent image potential. It is clear that an optimal image can be obtained by performing compensation based on the installation vs. humidity characteristics and charging history.
以上の様に本発明によれば、帯電開始時の帯電
特性に応じて現像バイアス電圧を初期値から収束
値迄連続的に変化させていくとともに、更に装置
内の湿度が高い場合は、低い場合に比べ、初期値
を収束値に近い値に設定する様にしたので、湿度
条件が変動して帯電開始時の帯電特性が変化して
もこれを精度良く補償し適正濃度の画像を得るこ
とが可能になる。 As described above, according to the present invention, the developing bias voltage is continuously changed from the initial value to the convergence value according to the charging characteristics at the start of charging, and furthermore, when the humidity inside the device is high, when it is low, Compared to , the initial value is set to a value close to the convergence value, so even if the charging characteristics at the start of charging change due to fluctuations in humidity conditions, this can be compensated for accurately and images with appropriate density can be obtained. It becomes possible.
第1図は本発明装置で行なわれる制御の原理を
示した線図、第2図は本発明の第一の実施例の構
成を示したブロツク図、第3図は第2図のブロツ
クのさらに詳細な構造を示した回路図、第4図は
本発明の第二の実施例の構成を示したブロツク図
である。
1……感光ドラム、2……一次帯電器、3……
二次帯電器、4……露光光線、5……全面露光ラ
ンプ、7……現像器、8……現像ローラー、9…
…露光光源、16……電子スイツチ。
FIG. 1 is a diagram showing the principle of control performed by the device of the present invention, FIG. 2 is a block diagram showing the configuration of the first embodiment of the invention, and FIG. FIG. 4 is a circuit diagram showing the detailed structure. FIG. 4 is a block diagram showing the structure of a second embodiment of the present invention. 1...Photosensitive drum, 2...Primary charger, 3...
Secondary charger, 4...Exposure light beam, 5...Full surface exposure lamp, 7...Developer, 8...Developing roller, 9...
...Exposure light source, 16...Electronic switch.
Claims (1)
潜像を形成しその静電潜像を現像することにより
画像を形成する装置において、 前記装置内の湿度を検出する湿度検出手段と、 帯電開始時における前記感光体の帯電特性の変
化に応じて現像バイアス電圧を制御する制御手段
とを有し、 前記制御手段は前記湿度検出手段の出力に基づ
いて前記現像バイアス電圧の初期値を設定し、帯
電開始時の前記感光体の帯電特性の変化に応じて
前記初期値から定常状態における収束値迄連続的
に変化させていくものであつて、更に前記湿度検
出手段により検出される湿度が高い場合は湿度が
低い場合に比べ前記初期値を収束値に近く設定す
ることを特徴とする静電記録装置の現像バイアス
制御装置。[Scope of Claims] 1. In an apparatus that forms an image by forming an electrostatic latent image by charging a photoreceptor and then exposing it to light, and developing the electrostatic latent image, there is provided a humidity sensor for detecting the humidity inside the apparatus. and a control means for controlling the developing bias voltage according to a change in the charging characteristics of the photoreceptor at the time of starting charging, and the controlling means controls the developing bias voltage based on the output of the humidity detecting means. An initial value is set and continuously changed from the initial value to a convergence value in a steady state according to changes in the charging characteristics of the photoreceptor at the start of charging, and further detected by the humidity detection means. A developing bias control device for an electrostatic recording apparatus, characterized in that when the humidity is high, the initial value is set closer to the convergence value than when the humidity is low.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56044070A JPS57158861A (en) | 1981-03-27 | 1981-03-27 | Control device for developing bias of electrostatic recording device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56044070A JPS57158861A (en) | 1981-03-27 | 1981-03-27 | Control device for developing bias of electrostatic recording device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57158861A JPS57158861A (en) | 1982-09-30 |
JPH0211907B2 true JPH0211907B2 (en) | 1990-03-16 |
Family
ID=12681362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56044070A Granted JPS57158861A (en) | 1981-03-27 | 1981-03-27 | Control device for developing bias of electrostatic recording device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57158861A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2968784B1 (en) | 1998-06-19 | 1999-11-02 | 日本電気株式会社 | Polishing method and apparatus used therefor |
JP5041244B2 (en) * | 2008-08-08 | 2012-10-03 | ブラザー工業株式会社 | Image forming apparatus |
-
1981
- 1981-03-27 JP JP56044070A patent/JPS57158861A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57158861A (en) | 1982-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0442527B1 (en) | An image forming apparatus | |
US5159388A (en) | Image forming apparatus | |
JPS58172654A (en) | Control device of image recording | |
US5684685A (en) | High voltage power supply for image transfer and image forming apparatus using the same | |
US4346986A (en) | Image formation method and apparatus | |
US4375328A (en) | Electrophotographic device with light quantity control | |
JPH0211907B2 (en) | ||
JPH0541993B2 (en) | ||
JPH0211906B2 (en) | ||
JPS6150312B2 (en) | ||
JP3188228B2 (en) | Image density correction device | |
JPH0158509B2 (en) | ||
JPS59157663A (en) | Image recording control method | |
JPS6359143B2 (en) | ||
JPS6240710B2 (en) | ||
JPH09146311A (en) | Image forming device | |
JPS60209765A (en) | Density adjusting device of image forming device | |
JP2526127Y2 (en) | Image quality control device in electrophotographic apparatus | |
US4469429A (en) | Electrophotographic reproducing machine | |
JPH08106185A (en) | Image forming device | |
JPH0413708B2 (en) | ||
JPS6290671A (en) | Exposure level control for copying machine | |
JPS6291931A (en) | Exposure level controller for copying machine | |
JPS6332186B2 (en) | ||
JPH0786709B2 (en) | Copy density adjustment method |