JPH02118501A - Lens for projection type television - Google Patents

Lens for projection type television

Info

Publication number
JPH02118501A
JPH02118501A JP27064988A JP27064988A JPH02118501A JP H02118501 A JPH02118501 A JP H02118501A JP 27064988 A JP27064988 A JP 27064988A JP 27064988 A JP27064988 A JP 27064988A JP H02118501 A JPH02118501 A JP H02118501A
Authority
JP
Japan
Prior art keywords
lens
multilayer film
film
thickness
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27064988A
Other languages
Japanese (ja)
Inventor
Koji Hirata
浩二 平田
Hiroki Yoshikawa
博樹 吉川
Isao Yoshizaki
吉崎 功
Shigeru Inaoka
滋 稲岡
Shigeru Mori
森 繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27064988A priority Critical patent/JPH02118501A/en
Publication of JPH02118501A publication Critical patent/JPH02118501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Electric Information Into Light Information (AREA)
  • Lenses (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To shut off the spuriousness of a phosphor and to eliminate chromatic aberrations so as to greatly improve focusing performance by forming multilayered films which are varied in transmittance by wavelengths of rays on one face of a constituting lens element. CONSTITUTION:The focusing performance of the projection type television is most largely affected by the focusing property of the green enlarged image with which the specific visual sensitivity is max. The red and blue spuriousness, however, exists in the actual light emission of the phosphor with respect to the green reference wavelength. The multilayered films (multilayered filters) which are varied in the transmittance by the wavelengths of rays and have the transmittance of wavelength selectivity are, thereupon, formed of the coating films on the incident surface of the 3rd lens 3 which constitutes the lens system. The spuriousness of the phosphor is shut off in this way and the chromatic aberrations are eliminated, by which the focusing performance is greatly improved.

Description

【発明の詳細な説明】 〔韮東上の利用分野〕 本発明は投写形テレビ装置に適した投影レンズに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of Niratojo] The present invention relates to a projection lens suitable for a projection television apparatus.

〔従来の技術〕[Conventional technology]

一般に、投写形テレビは、光源となる投写管の輝度が高
(、各レンズエレメントでの反射により発生する不要光
によってスクリーン上の拡大像のコントラストが大幅に
低下する。そこでこの解決末として、各レンズエレメン
トに反射防止膜をコーティングして対処している。この
種のコーティングに関連するものとして、例えは、特開
昭60−126601  号、tF!j開昭60−11
704号公報等が挙げられる。
In general, in projection TVs, the brightness of the projection tube that is the light source is high (and the contrast of the enlarged image on the screen is significantly reduced due to unnecessary light generated by reflection from each lens element. This is countered by coating the lens element with an anti-reflection film. For example, examples related to this type of coating include JP-A-60-126601 and tF!j JP-A-60-11.
Publication No. 704 and the like can be mentioned.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した従来技術の投写形テレビ用レンズでは、反射防
止膜を多数1設けるC以下コーティングと呼ぶ)ことに
より可視領域(580nm 〜740nm )の元腺、
透過率を上げることにより不要反射光を低減してコント
ラストの向上のみを考えフォーカス向上については何ら
考慮していなかった。従来、プaジエクシ冒ンテレビの
フォーカス性Nil:及ヒ明るさを支配する緑色投写管
の螢光体には、第7図に示すように、545rLmの主
波長の他に、宵、赤のスプリアスが存在し、これにより
結像面で色収差示発生し高n組な画像が得られなかった
。そこで本発明の目的は、コーティングによりフォーカ
ス性能を向上させることにある。
In the above-mentioned prior art projection television lenses, a large number of anti-reflection films (referred to as below C coatings) are used to provide light in the visible range (580 nm to 740 nm).
The focus was only on improving contrast by reducing unnecessary reflected light by increasing transmittance, but no consideration was given to improving focus. Conventionally, the phosphor of the green projection tube, which controls the brightness of the TV, has a main wavelength of 545rLm, as well as a red spurious signal in the evening, as shown in Figure 7. This caused chromatic aberrations to occur on the imaging plane, making it impossible to obtain high-n images. Therefore, an object of the present invention is to improve focusing performance by coating.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、緑色映像を拡大投写するレンズの各レンズ
エレメントの少なくとも一面に、フィルター特性を持つ
多層膜コーティングを施こすことにより、スプリアスで
ある青、赤の元を遮断でき色収差のない高WI細な映像
を得ることか可能となる。ここで、投写レンズを構成す
るレンズエレメントに入射する光線はレンズ面に対して
垂直圧入射するわけではない。この為、垂直入射の光に
対して膜厚を最適化した多層膜厚コーテイングでは、光
線が斜めから入射した場合には、所望のフィルター特性
が得られなくなり、透過率かレンズ各部で異なりスクリ
ーン上で輝度のむらとなって表われる。この為に、他の
2色〔青、赤〕の映像光と合成した場合には、色むらと
なって表われる。そこで、この多層膜の層厚をレンズ面
各部で、それぞれ最適値とすることにより、前述の色む
らな押えかつ、スプリアスを遮断して色収尭を低減する
ことが可能となる。
The above purpose is to provide a high WI fine resolution without chromatic aberration that can block the sources of spurious blue and red by applying a multilayer coating with filter properties to at least one surface of each lens element of the lens that enlarges and projects a green image. It becomes possible to obtain a clear image. Here, the light rays that enter the lens elements constituting the projection lens do not enter the lens surface under pressure perpendicularly. For this reason, a multilayer coating with a film thickness optimized for vertically incident light will not be able to obtain the desired filter characteristics if the light rays are incident obliquely, and the transmittance will vary depending on each part of the lens. This appears as uneven brightness. For this reason, when combined with image light of two other colors (blue and red), color unevenness appears. Therefore, by setting the layer thickness of this multilayer film to an optimum value at each portion of the lens surface, it becomes possible to suppress the aforementioned color unevenness, block spurious waves, and reduce color convergence.

〔作用〕[Effect]

一般に、投写形テレビのフォーカス性能は、赤、青、緑
の5つの拡大像のうち比視感展が最大である緑色拡大像
のフォーカス性能に最も大きく影響される。そこでレン
ズ設計では、緑螢光体の主波長に最も近いg線(546
,1ル扉)を基率波長としている。しかしながら、実際
の螢光体の発光は、単一波長のみではない。−船釣な緑
色螢光体の発光スペクトル分布は、第7図に示すように
540 nm近傍の主1−&の他に490 nrn近傍
に第1スプリアス、59 Q nm近傍に第2スプリア
ス、620 nm近傍に比3スプリアスが存在する。こ
の為、スクリーン上で、軸上及び倍率の色収差が生じフ
ォーカス性能を低下させていた。ここで、本発明の投写
形テレビ用レンズは、構成するレンズエレメントの少な
くとも一面に施けたフィルター特性を有するコーテイン
グ膜により、前記した螢光体のスプリアスを遮断するこ
とにより色収差を無(す。この為に、〕オーカス性能は
、大幅に向上する。一方、色むらについても、フィルタ
ーの透過率の選定を、画面中ることにより6部で若干押
えた設計とし、逆に画面周辺の物点からの光について透
過率を上げることにより、画面全領域での輝度むらが減
少する。
In general, the focus performance of a projection television is most greatly influenced by the focus performance of the green enlarged image, which has the largest relative luminosity among the five enlarged images of red, blue, and green. Therefore, when designing the lens, we focused on the g-line (546
, 1 door) is taken as the fundamental wavelength. However, actual phosphors emit light at not only a single wavelength. - As shown in Fig. 7, the emission spectrum distribution of the green phosphor is as follows: In addition to the main wavelength near 540 nm, there is a first spurious near 490 nm, a second spur near 59 Q nm, and a second spurious near 620 nm. Ratio 3 spurious exists near nm. For this reason, axial and lateral chromatic aberrations occur on the screen, degrading focus performance. Here, the projection television lens of the present invention eliminates chromatic aberration by blocking the above-mentioned spurious of the phosphor with a coating film having filter properties applied to at least one surface of the lens element. Therefore, the orcus performance is greatly improved.On the other hand, regarding color unevenness, the transmittance of the filter is selected slightly in the 6th part by selecting the transmittance in the middle of the screen, and vice versa. By increasing the transmittance of light, uneven brightness over the entire screen area is reduced.

〔実施例〕〔Example〕

以下、本発明を図に示す実施例ともに説明する。 Hereinafter, the present invention will be explained with reference to embodiments shown in the drawings.

第1図、第2図、第5図は、%顔昭65−85070号
に示したレンズ装置において軸上及び相対胸高0.4.
相対胸高0.8の物点から発した光線がレンズ内部の各
レンズエレメントの、どの部分を通過するかを示した断
面図である。第1図には、説明の都合上平行平板11を
記入しである。次K 第4図r第5図、第6図は、第5
レンズ3の物側面へ入射する映像光の入射角の分布を示
したものである。
FIGS. 1, 2, and 5 show that the lens device shown in %Kai No. 85070/1986 has an axial and relative chest height of 0.4.
FIG. 2 is a cross-sectional view showing which part of each lens element inside the lens a light ray emitted from an object point with a relative chest height of 0.8 passes through. In FIG. 1, a parallel plate 11 is shown for convenience of explanation. Next K Figure 4 r Figures 5 and 6 are
It shows the distribution of the incident angle of the image light incident on the object side of the lens 3.

領域■は、入射角が0反から10度未満、領域■は入射
角が10度以上20度未満、領域■は入射角が20度以
上50度未満、領域■は入射角が30度以上40度未満
、領域Vは入射角が40度以上の領域を示している。
Region ■ has an incident angle of 0 degrees to less than 10 degrees, region ■ has an incident angle of 10 degrees to less than 20 degrees, region ■ has an incident angle of 20 degrees to less than 50 degrees, and region ■ has an incident angle of 30 degrees to 40 degrees. The area V indicates an area where the incident angle is 40 degrees or more.

ここで本発明では、第7図に示した緑螢光体の発光スペ
クトル特性にある第1.第2.第5スプリアスの遮断を
レンズ面、C本実施例では、果3レンズ3の入射面)に
、波長選択性の透過率を有する多層膜(以下、多層膜フ
ィルターと呼ぶ)を施すことによって実現する。これに
よって色収差がな(なりフォーカス向上の効果がある。
Here, in the present invention, the first aspect of the emission spectrum characteristics of the green phosphor shown in FIG. Second. Blocking of the fifth spurious is achieved by applying a multilayer film (hereinafter referred to as a multilayer film filter) having wavelength-selective transmittance to the lens surface (in this example, the incident surface of the third lens 3). . This eliminates chromatic aberration (and has the effect of improving focus).

次に具体的な多層膜フィルターの特性を第8図及び第9
図に示す。纂8図の実森は、C株)HOYA製のシアン
フィルターDF−Cの特性を示したものである。又、第
9図の実線も同様に(休)EOYA製のイエo −フィ
ルターDF−Yの特性を示したものである。一般に、多
層膜フィルターのカット波長λCは多層膜フィルターを
構成する各膜厚ハに対して1次の関数となっており、多
層膜フィルターへの入射角θが変化すると、実効的な膜
厚lルt1、In’ = IrL/capθとなって新
らたなカッha長λC′もλC′=λC/CO!θとな
る。88図に示した実線以外の特性は、光線がそれぞれ
の入射角θで多層膜フィルターに入射した場合、実線と
同じ特性となる為に必要なフィルター特性(ただし入射
角θ=0°での特性〕を示している。この図よ0光稼の
入射角θが大きい部分の膜厚は薄くてる必要があること
が判る。
Next, the characteristics of specific multilayer filters are shown in Figures 8 and 9.
As shown in the figure. The block diagram in Fig. 8 shows the characteristics of the cyan filter DF-C manufactured by HOYA (C stock). Similarly, the solid line in FIG. 9 also shows the characteristics of the EOYA filter DF-Y. In general, the cut wavelength λC of a multilayer filter is a linear function with respect to the thickness of each film constituting the multilayer filter, and as the angle of incidence θ to the multilayer filter changes, the effective film thickness l t1, In' = IrL/capθ, and the new capacitance λC' is also λC' = λC/CO! becomes θ. Characteristics other than the solid lines shown in Figure 88 are the filter characteristics necessary to achieve the same characteristics as the solid lines when light rays enter the multilayer filter at each incident angle θ (however, the characteristics at the incident angle θ = 0°) ] From this figure, it can be seen that the film thickness needs to be thin in the part where the incident angle θ of zero light operation is large.

89図も同様に、実意以外の特性は、光線がそれぞれの
入射角θで多層膜フィルターに入射した場合、実線と同
じ特性となる為に必要なフィルター特性(ただし入射角
θ=0°での特性)を示している。そこで、例えば、相
対胸高0(軸上)のフォーカス性能を向上する為に、第
2スプリアス。
Similarly, in Figure 89, the characteristics other than the actual characteristics are the filter characteristics necessary to obtain the same characteristics as the solid line when the light rays enter the multilayer filter at each incident angle θ (however, at the incident angle θ = 0°) characteristics). Therefore, for example, in order to improve the focusing performance at relative chest height of 0 (on-axis), the second spurious.

及び第5スプリアスを第8図の実線で示す特性のフィル
ターにより減挾させると第3スプリアスは8優から0.
8%に減衰する。又第2スゲリアスも20%から16%
に減衰する。同様に、第1スプリアスを減衰させるには
、第9図の実線で示す特性のフィルターにより40%か
ら2%へ減款可能となる。ここで第5レンズ入射面側に
施す多層膜フィルターの特性は、光軸上は、実線で示さ
れたものすなわちθ=0°、領域Iはθ=5°、領域■
はθ=15°、領域mはθ=25°、領域■はθ=55
°で示された特性を持つようにフィルターの各膜の膜厚
に分布をつける。入射角θ=D°の部分でのフィルター
各膜の膜厚をInとすれば、領域■ではjrL′=jn
/cos5°、領域■においてはb′=!ψoz55°
とするとよい。物点が元軸外の場合も第5図、第6図に
示すように、各領域でコーティングの膜厚を変更すれば
よい。第10図、第11図は前述した特願昭65−85
070  号に示したレンズ装置のフォーカス性能とし
て500 T V本のMTFが、スプリアスを遮断する
ことによりどのように変化するかを計算した結果である
。第10因はザジタル、第11図はメリディオナルMT
Fについて示している。
When the fifth spurious is reduced by a filter with the characteristics shown by the solid line in FIG. 8, the third spurious becomes 8.0 to 0.0.
Attenuates to 8%. Also, the second Sgelias is 20% to 16%.
attenuates to Similarly, in order to attenuate the first spurious, it is possible to reduce it from 40% to 2% by using a filter with the characteristics shown by the solid line in FIG. Here, the characteristics of the multilayer filter applied to the entrance surface of the fifth lens are as shown by the solid line on the optical axis, that is, θ = 0°, area I is θ = 5°, and area ■
is θ=15°, area m is θ=25°, area ■ is θ=55
Distribute the thickness of each membrane in the filter so that it has the characteristics shown in degrees. If the film thickness of each filter film at the part where the angle of incidence θ=D° is In, then in the area ■, jrL'=jn
/cos5°, b'=! in region ■! ψoz55°
It is good to say. Even when the object point is off the original axis, the thickness of the coating may be changed in each region, as shown in FIGS. 5 and 6. Figures 10 and 11 are the above-mentioned patent application filed in 1986-85.
This is the result of calculating how the MTF of 500 TV lines changes as a focus performance of the lens device shown in No. 070 by cutting off spurious. The 10th cause is Zagital, and Figure 11 is Meridional MT.
It shows about F.

この中で1は設計値を示し、2はスプリアス6を完全に
遮断した場合のMTF示し、3はスプリアス2及び3を
完全に遮断した場合のMTFを示す。
Among them, 1 indicates the design value, 2 indicates the MTF when spurious 6 is completely blocked, and 3 indicates the MTF when spurious 2 and 3 are completely blocked.

さらに4は、スプリアス1〜5を完全に遮断した状態、
すなわち色収差0の場合のMTFを示している。同図よ
り明らかなように多層膜フィルターによる色収差低減が
フォーカス性能の大幅な向上が得られた。
Furthermore, 4 is a state in which spurious signals 1 to 5 are completely blocked,
That is, it shows the MTF in the case of zero chromatic aberration. As is clear from the figure, the reduction of chromatic aberration by the multilayer filter resulted in a significant improvement in focus performance.

次にレンズの周辺部における明るさであるが、多層膜フ
ィルターの特性により、レンズ本来の特性から若干異な
る。第3レンズの入射面に、入射角θ=0°で設計した
多層膜フィルターと入射角θ=15°で設計した多層膜
フィルターとを従来レンズに組込み周辺光量の相対値を
実測した。結果は、第12図に示すよ5にレンズ本来の
特性から若干動かすことが可能となりた。又、第1図の
ごとく、レンズ内部に、ガラス又は合成s脂から成る平
行平板を押入し、この面に前記多層膜フィルターを施こ
しても同様の効果が得られることは言うまでもない。こ
れKより画像輝度がより均一となり色むらを低減するこ
とが可能となる。
Next, the brightness at the periphery of the lens differs slightly from the original characteristics of the lens due to the characteristics of the multilayer filter. A multilayer film filter designed with an incident angle θ=0° and a multilayer film filter designed with an incident angle θ=15° were incorporated into a conventional lens on the incident surface of the third lens, and the relative value of the amount of peripheral light was actually measured. As a result, as shown in FIG. 12, it became possible to slightly move the lens' original characteristics. It goes without saying that the same effect can be obtained by inserting a parallel flat plate made of glass or synthetic resin into the lens as shown in FIG. 1, and applying the multilayer filter to this surface. With K, the image brightness becomes more uniform and color unevenness can be reduced.

矢にレンズ各部で膜厚の異なる多層膜フィルターを、基
板であるガラス又は合成樹脂上に被覆する方法について
述べる。第15図は、本発明の被覆方法を実施する為に
用いる真空蒸着装置の一例を示す縦断面図である。回転
ステージ12の中央部に窓を設げ、この窓の中心にステ
ージの回転軸を設ける。さらにこの軸の延長練上に蒸漕
材料が配置しである。蒸漕を実施する場合は真空チェン
バー17内の空気を真空排気系16で排除し電子銃15
から出発した電子が出界により曲げられ魚屑材料14に
ぶつかる。この時、極部的に発熱し魚屑材料は蒸発する
。この時、蒸気圧により加速された蒸発粒子の速度V′
は、蒸漕材料からの発散角をθとした時、一般にはv’
= vcosθで表わせられる。(ただしVは、蒸発粒
子が蒸漕材料に対して垂直に飛び出した場合の速度) この為に、レンズエレメント19の破蒸着面で単位時間
内に積渣される族7iiF膜の膜厚は前記V′に比例す
る。この為、以上でのべた構造の蒸N’装置とすること
で比較的簡単な方法で、レンズ各部で膜厚の異なる多層
膜フィルターの被覆が可能となる。
A method of coating a glass or synthetic resin substrate with a multilayer filter having different film thicknesses in different parts of the lens will be described below. FIG. 15 is a longitudinal sectional view showing an example of a vacuum evaporation apparatus used to carry out the coating method of the present invention. A window is provided at the center of the rotation stage 12, and the rotation axis of the stage is provided at the center of this window. Furthermore, the steamer material is placed on an extension of this shaft. When using a steam tank, the air in the vacuum chamber 17 is removed by the vacuum exhaust system 16 and the electron gun 15 is removed.
The electrons starting from are bent by the exit field and collide with the fish waste material 14. At this time, heat is generated locally and the fish waste material evaporates. At this time, the velocity of the evaporated particles accelerated by the vapor pressure V'
is generally v' when the divergence angle from the steam tank material is θ
= vcosθ. (However, V is the velocity when the evaporated particles fly out perpendicularly to the vaporization vessel material.) Therefore, the thickness of the group 7iiF film deposited within a unit time on the vapor deposition surface of the lens element 19 is as follows. It is proportional to V'. Therefore, by using the evaporation N' device having the structure described above, it becomes possible to cover each part of the lens with a multilayer filter having different film thicknesses in a relatively simple manner.

又、第14図は、前記したステージの回転軸とステージ
に施けた窓部の中心をずらすことにより、基板上の任意
点を中心として、レンズ各地で膜厚の異なる多層膜フィ
ルターの被覆が可能となる。−方、量産性を向上する為
に%第15図(α)に示すように被蒸7v基板と電子銃
15の間にマスク用の治具21を配置し、この治具に設
げた窓の径:τ、及び治具21と電子銃15の間隔:D
を最適とすることにより必要な膜厚分布を持った多層膜
フィルターを容易に得る。
Furthermore, Fig. 14 shows that by shifting the axis of rotation of the stage mentioned above and the center of the window provided on the stage, it is possible to cover any part of the lens with a multilayer filter with different film thicknesses, centering on any point on the substrate. becomes. - On the other hand, in order to improve mass production, a mask jig 21 is placed between the 7V substrate to be evaporated and the electron gun 15 as shown in Figure 15 (α), and the window provided in this jig is Diameter: τ, and distance between jig 21 and electron gun 15: D
By optimizing , a multilayer filter with the required thickness distribution can be easily obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれは、レンズ設計により色収差の補正が行な
われていないレンズのレンズ形状及び構成をそのまま使
用し、構成レンズエレメントの少なくとも一面にフィル
ター効果を有する多層膜をコーティングする事によって
次の効果がある。
According to the present invention, the following effects can be achieved by using the lens shape and structure of a lens whose chromatic aberration has not been corrected due to the lens design, and by coating at least one surface of the constituent lens elements with a multilayer film having a filter effect. be.

■ 螢光体のスプリアスを遮断することにより色収差を
なくしフォーカスを大幅に向上する。
■ Eliminates chromatic aberration and greatly improves focus by blocking spurious emissions from the phosphor.

■ 周辺光量比を本来の特性から若干変更することがで
き、任意の像高の周辺光量比を見かけ上増加できる。こ
の為、スクリーン上の画像輝度がより均一となって色む
らが低減できる。
(2) The peripheral illumination ratio can be slightly changed from its original characteristics, and the peripheral illumination ratio at any image height can be apparently increased. Therefore, the image brightness on the screen becomes more uniform, and color unevenness can be reduced.

一方、本発明の多711m被覆方法では、レンズ各部で
膜厚の異なる多層膜が比較的安易に実現できる。
On the other hand, with the multi-711m coating method of the present invention, a multilayer film having different film thicknesses in each part of the lens can be relatively easily realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は、本発明の一実施例を示す縦断面図
、第4図乃至第6図は、レンズ面への光線入射角の分布
図、第7図は、緑螢元体の発光スペクトル特性図、第8
図乃至第9図は、フィルターの特性図、第10図乃至第
11図は、それぞれ本発明の実施例に対するMTF特性
図、第12図は、本発明の実施例の周辺光量を示す特性
図、第13因及び第15図は、本発明の方法を実施する
ため圧用いる真空類N装置の一例を示す図、第14図は
本発明の光学多層膜の被覆方法を示す図である。 1:第ルンズ    2:第2レンズ 3:第3レンズ    4:m4レンズ5:内鏡筒  
    6:外鏡筒 7:ブラケット    8:螢光面 9:7エイスバネル  10:冷媒 11:平行平板     12:回転ステージ13:蒸
発粒子     14:蒸漕材料15:を子銃    
  16:真空排気系17:真空チェンバー  18:
抵抗加熱器19:レンズエレメント 第5図 第6図 第3 図 第4図 第7図 第B図 第9図 相対像高 ■転巾tじ 窮14図 回転中lヒ\ 菊)1図 0F 0.2 ○4 0.f;  Oδ ;O 才4]ソて計ブヅEス譜
1 to 3 are longitudinal sectional views showing one embodiment of the present invention, FIGS. 4 to 6 are distribution diagrams of the angle of incidence of light rays on the lens surface, and FIG. 7 is a diagram of the green phosphor element. Emission spectrum characteristic diagram, No. 8
9 to 9 are characteristic diagrams of the filter, FIGS. 10 to 11 are MTF characteristic diagrams for the embodiments of the present invention, and FIG. 12 is a characteristic diagram showing the amount of peripheral light in the embodiments of the present invention, Factor 13 and FIG. 15 are diagrams showing an example of a vacuum type N apparatus using pressure to carry out the method of the present invention, and FIG. 14 is a diagram showing a method of coating an optical multilayer film of the present invention. 1: 1st lens 2: 2nd lens 3: 3rd lens 4: m4 lens 5: Inner barrel
6: Outer barrel 7: Bracket 8: Fluorescent surface 9: 7-eighth panel 10: Refrigerant 11: Parallel plate 12: Rotating stage 13: Evaporation particles 14: Vacuum tank material 15: Sub-gun
16: Vacuum exhaust system 17: Vacuum chamber 18:
Resistance heater 19: Lens element Fig. 5 Fig. 6 Fig. 3 Fig. 4 Fig. 7 Fig. B Fig. 9 Relative image height .2 ○4 0. f; Oδ ; O 4]

Claims (1)

【特許請求の範囲】 1、ブラウン管螢光面上の画像をスクリーン上に拡大投
写する投写形テレビに用いるレンズで、構成するレンズ
エレメントの少なくとも一面に、透過率が光線の波長に
より異なる多層膜を施こし、前記多層膜の膜厚が、レン
ズ全面において不均一であることを特徴とする投写形テ
レビ用レンズ。 2、前記多層膜を構成する各膜の膜厚をln(nは自然
数)とした時、前記レンズ面各部における前記多層膜に
対応する各膜の膜厚ln′が下記式を満足することを特
徴とする請求項1記載の投写形テレビ用レンズ。 ln′=ln/cosθ ただしθは多層膜への光線入射角 3、ブラウン管螢光面上の画像をスクリーン上に拡大投
写する投写形テレビに用いるレンズで、構成するレンズ
エレメントの少なくとも一枚が平行平板であり、少なく
ともどちらか一面に透過率が光線の波長により異なる多
層膜を施こし、前記多層膜の膜厚がレンズ全面に不均一
であることを特徴とする投写形テレビ用レンズ。 4、前記多層膜を構成する各膜の膜厚をln(nは自然
数)とした時、前記レンズ面各部における、前記多層膜
に対応する各膜の膜厚ln′が下記式を満足することを
特徴とする請求項5記載の投写形テレビ用レンズ。 ln′=ln/cosθ ただしθは多層膜への光線入射角 5、ガラスもしくは合成樹脂の基板上に形成された、光
線の波長により異なった透過率を有する複数層から成る
多層膜であり、前記多層膜を構成する各膜の膜厚をln
(nは自然数)とした時、前記基板上各部における前記
多数膜に対応する各膜の膜厚ln′が下記式を満足する
ことを特徴とする光学多層膜。 ln′=ln/cosθ ただしθは多層膜への光線入射角 6、ガラスもしくは、合成樹脂の基板上に光学多層膜を
被覆するに当り、前記被蒸着基板をのせた回転可能なス
テージの回転軸の延長線上に蒸着材料を配置し、前記ス
テージの回転中心には、前記被蒸着基板の蒸着面が露出
するように窓部を設け前記ステージを回転させながら真
空蒸着を行なう光学多層膜の被覆方法。 7、前記回転ステージに設けた窓部の中心を、前記回転
ステージの回転軸とずらしたことを特徴とする請求項6
記載の光学多層膜の被覆方法。 8、前記回転ステージに設けた窓部の開口寸法を適宜選
択し前記被蒸着基板の蒸着面積を可変することを特徴と
する請求項6および請求項7記載の光学多層膜の被膜方
法。
[Claims] 1. A lens used in a projection television that enlarges and projects an image on a fluorescent surface of a cathode ray tube onto a screen, in which a multilayer film whose transmittance varies depending on the wavelength of the light beam is provided on at least one surface of the constituent lens element. A lens for a projection television, characterized in that the thickness of the multilayer film is non-uniform over the entire surface of the lens. 2. When the film thickness of each film constituting the multilayer film is ln (n is a natural number), ensure that the film thickness ln' of each film corresponding to the multilayer film at each part of the lens surface satisfies the following formula. The projection television lens according to claim 1. ln'=ln/cos θ where θ is the angle of incidence of light on the multilayer film, 3; it is a lens used for projection televisions that magnifies and projects the image on the fluorescent surface of a cathode ray tube onto a screen, and at least one of the constituent lens elements is parallel. 1. A projection television lens, which is a flat plate, and has a multilayer film on at least one surface of which the transmittance varies depending on the wavelength of light, and the thickness of the multilayer film is nonuniform over the entire surface of the lens. 4. When the film thickness of each film constituting the multilayer film is ln (n is a natural number), the film thickness ln' of each film corresponding to the multilayer film at each part of the lens surface satisfies the following formula. 6. The projection television lens according to claim 5. ln'=ln/cos θ where θ is the angle of incidence of the light beam to the multilayer film, 5; it is a multilayer film formed on a glass or synthetic resin substrate and consists of multiple layers having different transmittances depending on the wavelength of the light beam; The thickness of each film constituting the multilayer film is ln
(where n is a natural number), an optical multilayer film characterized in that a film thickness ln' of each film corresponding to the multiple films at each part on the substrate satisfies the following formula. ln'=ln/cosθ where θ is the angle of incidence of light rays on the multilayer film, 6, and the rotation axis of the rotatable stage on which the substrate to be deposited is placed when coating the optical multilayer film on a glass or synthetic resin substrate. A method for coating an optical multilayer film, in which a vapor deposition material is arranged on an extension line of the stage, a window is provided at the center of rotation of the stage so that the vapor deposition surface of the substrate to be vapor deposited is exposed, and vacuum vapor deposition is performed while rotating the stage. . 7. Claim 6, characterized in that the center of the window provided on the rotary stage is offset from the rotation axis of the rotary stage.
The method for coating the optical multilayer film described above. 8. The method of coating an optical multilayer film according to claim 6 and claim 7, characterized in that the evaporation area of the substrate to be evaporated is varied by appropriately selecting the opening size of a window provided on the rotary stage.
JP27064988A 1988-10-28 1988-10-28 Lens for projection type television Pending JPH02118501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27064988A JPH02118501A (en) 1988-10-28 1988-10-28 Lens for projection type television

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27064988A JPH02118501A (en) 1988-10-28 1988-10-28 Lens for projection type television

Publications (1)

Publication Number Publication Date
JPH02118501A true JPH02118501A (en) 1990-05-02

Family

ID=17489033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27064988A Pending JPH02118501A (en) 1988-10-28 1988-10-28 Lens for projection type television

Country Status (1)

Country Link
JP (1) JPH02118501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253676B2 (en) * 2011-05-20 2013-07-31 オリンパスメディカルシステムズ株式会社 Endoscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253676B2 (en) * 2011-05-20 2013-07-31 オリンパスメディカルシステムズ株式会社 Endoscope
US9173552B2 (en) 2011-05-20 2015-11-03 Olympus Corporation Endoscope

Similar Documents

Publication Publication Date Title
US4804884A (en) Display tube having improved brightness distribution
US4642695A (en) Projection cathode-ray tube having enhanced image brightness
US5872655A (en) Monolithic linear variable filter and method of manufacture
KR930002112B1 (en) Display tube
US4633131A (en) Halo-reducing faceplate arrangement
JPH0136226B2 (en)
JPH0278139A (en) Projection type television desplay tube having band passage interference filter and device
JPH02118501A (en) Lens for projection type television
JPS63160139A (en) Cathode-ray tube
JPH01254087A (en) Projection type television receiver
US5138222A (en) Projection cathode ray tube having an interference filter
USRE34131E (en) Display tube having improved brightness distribution
US5065071A (en) Monochrome CRT with interference filter having filter layer with reduced transmission and projection color TV incorporating same
US5625492A (en) Color compensation filter
US5166577A (en) Projection cathode-ray tube with interference film
US5144417A (en) Projection type television apparatus
JPH0350592A (en) Projection type image display device and its lens
US5248518A (en) Projection cathode ray tube
US5645461A (en) Method of manufacturing projection cathode ray tube with uniform optical multiple interference film
Cheng et al. New YAG projection tubes having multilayer interference filters
US5031033A (en) Projection television apparatus
JPH03238740A (en) Reflection preventive film of display device
JP2882929B2 (en) Projection optics
JPH03196448A (en) Cathode-ray tube faceplate
JPS6313299B2 (en)