JPH02117782A - Method for welding t-joint by electron beam welding - Google Patents

Method for welding t-joint by electron beam welding

Info

Publication number
JPH02117782A
JPH02117782A JP26724488A JP26724488A JPH02117782A JP H02117782 A JPH02117782 A JP H02117782A JP 26724488 A JP26724488 A JP 26724488A JP 26724488 A JP26724488 A JP 26724488A JP H02117782 A JPH02117782 A JP H02117782A
Authority
JP
Japan
Prior art keywords
electron beam
welding
sides
web
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26724488A
Other languages
Japanese (ja)
Inventor
Nobutaka Yurioka
百合岡 信孝
Yukihiko Horii
堀井 行彦
Kunio Koyama
邦夫 小山
Masahiro Obara
昌弘 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26724488A priority Critical patent/JPH02117782A/en
Publication of JPH02117782A publication Critical patent/JPH02117782A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of spike defects and to improve quality by irradiating metal plates with electron beam at the same time from both sides of a web and integrating molten metal pools formed by irradiation of the respective electron beam. CONSTITUTION:A flange 1 and the web 2 are formed in a T-shape by two metal plates and the electron beam irradiates at the same time from both sides of the web 2 and crossing of the formed molten metal pools is integrated. As a result, the width of the tip of penetration can be extended by synergism of the electron beam 3 from the respective sides and the spike defects can be prevented. Further, narrowing of the penetration width can be reduced by effect of electron beam energy from the facing sides which is effective for preventing the generation of lack of fusion.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子ビーム溶接で金属のTまたはH型の継手を
溶接する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of welding metal T- or H-shaped joints by electron beam welding.

従来の技術 近年、鋼等の金属の溶接に電子ビーム溶接の使用が拡大
している。これは電子ビーム溶接は溶接補助材がほとん
ど不要であること、エネルギー密度が他の溶接、例えば
アーク溶接に比較して非常に高く、厚い物でも容易に溶
接できること、溶接ひずみが小さいこと、離れた位置か
らの電子ビーム照射で溶接でき、狭い奥の部分も溶接で
きること等の理由によるものと考えられ苛−る。
BACKGROUND OF THE INVENTION In recent years, the use of electron beam welding for welding metals such as steel has expanded. This is because electron beam welding requires almost no welding auxiliary materials, has a much higher energy density than other welding methods such as arc welding, can easily weld even thick materials, has small welding strain, and This is thought to be due to the fact that it is possible to weld by electron beam irradiation from a certain position, and it is possible to weld even in narrow deep areas.

しかし電子ビーム溶接にも短所がおる0例えば電子ビー
ムは磁気により湾曲し、このため鋼等の着磁性材料を溶
接する場合、この被溶接材に残留する磁気により電子ビ
ームが偏り、目的とした位置での溶接ができなくなる場
合がある。また一方電子ビームの照射は直線的で、湾曲
を意図する照射等は非常に困難である。このため第2図
に示すようにフランジ1とウェブ2を付き合わせたT型
継手を電子ビーム溶接しようとするときフランジに平行
に電子ビームを照射するのではフランジ表面が損傷する
ため溶接できない。
However, electron beam welding also has its disadvantages.For example, the electron beam is curved by magnetism, so when welding magnetized materials such as steel, the residual magnetism in the welding material causes the electron beam to be biased, causing it to reach the desired position. Welding may become impossible. On the other hand, electron beam irradiation is linear, and it is very difficult to irradiate with a curved shape. Therefore, when attempting to electron beam weld a T-shaped joint in which a flange 1 and a web 2 are brought together as shown in FIG. 2, if the electron beam is irradiated parallel to the flange, the flange surface will be damaged and welding will not be possible.

そこで特開昭58−18888号公報、特開昭48−4
5448号公報等で各種方法が示されている0例えば第
5図に示すように斜め上方から電子ビームを照射し、片
側を溶接した後、もう一方の斜め上から電子ビームを照
射し溶接する方法、第3図に示すようにフランジに凸部
5を付け、フランジ部の電子ビームによる損傷の防止方
法、第4図に示すようにフラングの裏側から電子ビーム
を照射し溶接する等がある。
Therefore, JP-A-58-18888, JP-A-48-4
Various methods are shown in Publication No. 5448, etc.0 For example, as shown in Figure 5, a method in which an electron beam is irradiated diagonally from above to weld one side, and then the other is irradiated diagonally from above to weld. As shown in FIG. 3, there is a method of attaching a convex portion 5 to the flange to prevent damage to the flange by the electron beam, and as shown in FIG. 4, welding is performed by irradiating the flange with an electron beam from the back side.

しかしこれらの方法にも一長一短がある。第5図に示す
斜め上から溶接する方法はそれぞれの溶接においてスパ
イク欠陥6と称する気孔が発生するため、溶接条件また
適用可能材料に多くの制約がある。このスパイク欠陥は
電子ビーム溶接に特徴的に発生する欠陥である。電子ビ
ーム溶接は電子ビームの照射で溶融が起こり、このとき
発生するガス成分等の力でキーホールが形成される、こ
のキーホールは電子ビームの移動に伴って移動する。一
方溶易嘴した金属はそれまでに形成されていたキーホー
ル内に流れ込み凝固し溶接が進行する。
However, these methods also have advantages and disadvantages. In the method of welding from above diagonally as shown in FIG. 5, pores called spike defects 6 are generated in each weld, so there are many restrictions on welding conditions and applicable materials. This spike defect is a defect characteristically occurring in electron beam welding. In electron beam welding, melting occurs when irradiated with an electron beam, and a keyhole is formed by the force of the gas components generated at this time. This keyhole moves as the electron beam moves. On the other hand, the molten metal flows into the previously formed keyhole, solidifies, and welding progresses.

このときキーホール先端が狭く鋭い、またガスが存在す
る、あるいは凝固速度が速い等で溶融金属が充分流れ込
まず気孔が発生する。これをスパイク欠陥と称している
At this time, the tip of the keyhole is narrow and sharp, gas is present, or the solidification rate is fast, so molten metal does not flow sufficiently and pores are generated. This is called a spike defect.

第5図の先に溶接する側のスパイク欠陥は施工法を工夫
することで後から溶接する側からの電子ビームで再溶解
されスパイク欠陥を防止することができる。しかし後か
ら溶接した所に再度スパイク欠陥が形成される。このた
めスパイク欠陥防止のために電子ビームを大きい振幅で
振動する等の、スパイク欠陥防止方法が提案されている
が、電子ビームの振幅を大きくするとビード外観が劣悪
となる。またこれでも完全に気孔を防止できない等の問
題がある。
By devising a construction method, the spike defects on the side to be welded first in FIG. 5 can be remelted by the electron beam from the side to be welded later, thereby preventing spike defects. However, spike defects are formed again at later welded locations. For this reason, methods for preventing spike defects have been proposed, such as vibrating an electron beam with a large amplitude, but increasing the amplitude of the electron beam deteriorates the appearance of the bead. Further, even with this method, there is a problem that pores cannot be completely prevented.

これに対してスパイク欠陥を防止するため第3図のフラ
ンジに凸部5を付は貫通溶接を可能とする方法がある。
On the other hand, in order to prevent spike defects, there is a method of attaching a convex portion 5 to the flange as shown in FIG. 3 to enable penetration welding.

しかしあまり小さい凸部ではフランジ面からの磁気の影
響を受はビームが曲がるためフランジの大きさ、残留磁
気量等にとって凸部はある程度の高さを確保しなければ
ならない、そしてこの凸部は目標より厚い板から削り出
す、あるいは板を製造する時の圧延で付ける等が必要で
経費が高い。
However, if the convex part is too small, the beam will be bent due to the influence of magnetism from the flange surface, so the convex part must have a certain height depending on the size of the flange, the amount of residual magnetism, etc., and this convex part is the target. It is expensive because it requires cutting from a thicker plate or rolling it during the manufacture of the plate.

また第4図に示すフランジ裏側からの溶接は電子ビーム
の溶接幅が小さいため、厚いウコブ材を完全に溶接する
ためには、多数バス溶接しなければならない、又フラン
ジが厚い場合はフランジを溶かすための多くのエネルギ
ーを損失する。
In addition, when welding from the back side of the flange shown in Figure 4, the welding width of the electron beam is small, so in order to completely weld thick Ukobu material, multiple bus welds must be performed, and if the flange is thick, the flange must be melted. lose a lot of energy.

発明が解決しようとする課題 上記したように電子ビーム溶接を使用してT型継手を溶
接するときの種々の問題に対して、これまで多くの提案
がなされているが、まだ大型の構造物のための大型材の
T型組手溶接に適用する場合は各種の課題がある。特に
板厚30mmを越えるような大型のT型組手溶接での課
題は大きい。
Problems to be Solved by the Invention As mentioned above, many proposals have been made to solve various problems when welding T-joints using electron beam welding, but there are still many proposals for welding T-joints using electron beam welding. There are various problems when applying this method to T-type welding of large materials. This is especially a big problem when welding large T-shaped welds with a plate thickness exceeding 30 mm.

第5図の斜め上からそれぞれ別々に電子ビームの照射で
は前述したスパイク欠陥の発生が大きい。
When electron beams are irradiated separately from diagonally above in FIG. 5, the spike defects described above are more likely to occur.

第3図の凸部の加工は経費の増大が大きく、第4図のフ
ランジ裏面からの溶接は数パス以トの溶接が必要である
。これに対して本発明はスパイク欠陥発生を防止し、仮
組時の凸部を不要にして高品質で、経済的なT型継手の
溶接を実現するものである。
Machining the convex portion shown in FIG. 3 requires a large increase in cost, and welding from the back side of the flange shown in FIG. 4 requires several passes or more. In contrast, the present invention prevents the occurrence of spike defects, eliminates the need for protrusions during temporary assembly, and realizes high-quality, economical welding of T-shaped joints.

課題を解決するための手段 本発明の要旨は、電子ビーム溶接によるT型継手の溶接
において、ウェブの両側に電子ビーム発生装置を丸首し
、ウェブの両側から同時に電子ビームを照射し、それぞ
れの電子ビームの照射で形成される溶融金属のプールの
先端が交わることを特徴とする電子ビーム溶接によるT
型継手の溶接方法にある。なお本発明でいうT型継手は
H型継手を含むものとする5 作用 第1図に示すように金属板2枚でフランジ1とウェブ2
を構成し、これに対してウェブの両側から電子ビーム3
を同時に照射し溶接する。前述したように、このとき電
子ビームを一方が凝固したあと他方を照射した場合はス
パイク欠陥の発生等の問題がある。スパイク欠陥は前述
したように、狭く鋭い溶は込み先端に起因する。このた
め両方向から同時に電子ビームを照射して、それぞれの
電子ビームの照射で形成される溶融金属のプールが交わ
り一体化すれば、それぞれからの電子ビームの相乗作用
により溶は込み先端の幅を広くすることができる。また
溶融金属の流れ込みも双方から行われるためスパイク欠
陥が防止できる。
Means for Solving the Problems The gist of the present invention is that in welding a T-shaped joint by electron beam welding, an electron beam generator is round-necked on both sides of the web, and electron beams are irradiated from both sides of the web at the same time. T by electron beam welding characterized by the intersection of the tips of the molten metal pool formed by beam irradiation
It is in the welding method of type joints. Note that the T-type joint in the present invention includes an H-type joint.5 As shown in FIG.
and an electron beam 3 is emitted from both sides of the web.
irradiate and weld at the same time. As mentioned above, if the electron beam is irradiated to one side after solidifying the other, there are problems such as the occurrence of spike defects. As mentioned above, spike defects are caused by narrow and sharp weld penetration tips. Therefore, if electron beams are irradiated from both directions at the same time, and the pools of molten metal formed by each electron beam intersect and become unified, the synergistic effect of the electron beams from each will widen the width of the melting tip. can do. Further, since molten metal flows from both sides, spike defects can be prevented.

さらにこの方法によれば第5図に示すような融合不良7
の防止にも効果がある。電子ビーム溶接はもともと溶け
こみ幅の狭いことが特徴であるが、表面部より溶は込み
が深くなるほどエネルギーが消費されるため、幅が狭く
なる傾向にある。このため開光線に対して斜めにビーム
を照射すると第5図に示すように融合不良7が発生しや
すい、これに対して電子ビームを両側から同時に照射す
れば対面からの電子ビームエネルギーの効果で溶は込み
幅の狭くなることが低減でき、融合不良発生防止に効果
がある。
Furthermore, according to this method, fusion failure 7 as shown in FIG.
It is also effective in preventing. Electron beam welding is originally characterized by a narrow penetration width, but the deeper the penetration from the surface, the more energy is consumed, so the width tends to become narrower. For this reason, if the beam is irradiated obliquely to the open beam, poor fusion 7 will likely occur as shown in Figure 5.On the other hand, if the electron beam is irradiated from both sides simultaneously, the effect of the electron beam energy from the opposite side will It is possible to reduce the narrowing of the welding width, which is effective in preventing the occurrence of fusion defects.

それぞれの電子ビーム照射位置の関係であるが。The relationship is between the respective electron beam irradiation positions.

両方の溶融金属プール先端が交わるためには、電子ビー
ム溶接の溶融金属プールが小さいこともあり、溶接進行
方向に対して20mm以内、溶接直角方向に対しては5
mm以内の範囲で両方から照射する必要がある。但しこ
の範囲は電子ビームの照射条件、移動速度等の入熱条件
に太きく影響される。高い入熱の場合は可能範囲は大き
くなり1人熱が小さくなれば可能範囲は小さくなる。
In order for the tips of both molten metal pools to intersect, the molten metal pool in electron beam welding may be small, within 20 mm in the direction of welding progress, and within 5 mm in the direction perpendicular to welding.
It is necessary to irradiate from both sides within a range of mm. However, this range is greatly influenced by electron beam irradiation conditions, heat input conditions such as movement speed. If the heat input is high, the possible range becomes large, and if the heat input per person is small, the possible range becomes small.

また照射方向については溶接進行方向に対しては若干前
あるいは後方にするとよい、電子ビームは貫通力が高い
ため局所的にギャップが大きい所等があった場合、電子
ビームが被溶接体を貫通し、対向する電子ビーム発生装
置を損傷することも考えられ、若干前方、あるいは後方
に向は照射するとよい。
In addition, the direction of irradiation should be slightly in front or behind the direction of welding progress.The electron beam has a high penetrating power, so if there is a locally large gap, the electron beam may penetrate the workpiece. It is also possible to damage the opposing electron beam generator, so it is better to irradiate slightly forward or backward.

また3台以上の電子ビーム発生装置を使用しても本発明
を達成できる。気孔防止、能率向上等を目的として同一
溶接線上に2代の電子ビーム溶接機を設置し、溶接する
ことも提案されている。これの応用でウェブを挟み相対
する位置に1台と2台あるいは2台ずつ電子ビーム発生
装置を設置し溶接することも可能である。
The present invention can also be achieved using three or more electron beam generators. It has also been proposed to install two generations of electron beam welding machines on the same welding line and perform welding for the purpose of preventing porosity and improving efficiency. As an application of this, it is also possible to weld by installing one and two or two electron beam generators at opposing positions across the web.

またこの方法は、板厚80mmを趙えるような極厚板の
突き合わせ溶接にも効果がある。このような極厚板は電
子ビームのta力あるいは気孔欠陥防止等を考慮して、
両面から電子ビームを照射して溶接する場合がある。こ
のとき一方からの電子ビーム溶接が凝固したあと反対側
の溶接をすると先行した溶接のスパイク欠陥はその後か
らの溶接で修復されるが後からのスパイク欠陥は残る。
This method is also effective for butt welding of extremely thick plates, such as those with a thickness of 80 mm. Such extremely thick plates are manufactured by taking into account the tacking force of the electron beam and the prevention of pore defects.
Welding may be performed by irradiating electron beams from both sides. At this time, when the electron beam welding from one side is solidified and welding is performed on the opposite side, the spike defects from the previous weld are repaired by the subsequent welding, but the spike defects from the subsequent weld remain.

このため前述したビーム振動幅の拡大等の対策が必要で
ある。これに対して両側から同時に電子ビームを照射し
溶接すれば、溶は込み先端を容易に大きくでき、しかも
表面ビード形状を損なうことなくスパイク欠陥を防止で
きる。
Therefore, it is necessary to take measures such as expanding the beam vibration width as described above. On the other hand, if welding is performed by irradiating electron beams from both sides simultaneously, the welding tip can be easily enlarged, and spike defects can be prevented without damaging the surface bead shape.

実施例 実施例1 第1図に示すように板厚[15mmのフランジ1に板厚
50mmのウェブ2を突き合わせ、これを水平に設置し
、これに対して電子ビーム3を下向き4度、溶接進行方
向5度の方向でウェブの両方向から照射した。偏光レン
ズ4から被溶接体までの距離は両方とも500mmでお
こなった。電子ビーム照射条件は両方とも同一で、加速
電圧+00kv、電流150mA、ビーム振動は1kH
z、振幅±1mm(被溶接体表面位置で)、電子ビーム
焦点は概略被溶接体表面とし、溶接速度は35cm/m
inでおこなった。その結果ビード外観は良好で融合不
良、気孔の発生もなく、良好な溶接ができた。
Examples Example 1 As shown in Fig. 1, a web 2 with a plate thickness of 50 mm is butted against a flange 1 with a plate thickness of 15 mm, and this is installed horizontally. The web was irradiated from both sides in a 5 degree direction. The distance from the polarizing lens 4 to the object to be welded was 500 mm in both cases. The electron beam irradiation conditions were the same for both: acceleration voltage +00kV, current 150mA, beam vibration 1kHz.
z, amplitude ±1 mm (at the surface position of the object to be welded), electron beam focus is approximately on the surface of the object to be welded, welding speed is 35 cm/m
It was done in. As a result, the bead appearance was good, and there were no fusion defects or pores, and good welding was achieved.

実施例2 実施態様は実施例1と同様で、電子ビーム照射条件を変
え実施した。一方の照射条件は加速電圧100kv、電
流100mA、照射角度下方4度、溶接進行方向6度で
、もう一方は加速電圧100kV、電流150mA、照
射角度下方4度、溶接進行方向5度の条件とし、溶接進
行方向の角度を変えることにより、溶は込みの浅いもの
の方をlQmm先行させ実施した。また溶接速度は30
cm/minで、その他の条件は実施例1と同条件で実
施した。
Example 2 The embodiment was the same as Example 1, except that the electron beam irradiation conditions were changed. One irradiation condition is an acceleration voltage of 100 kV, a current of 100 mA, an irradiation angle of 4 degrees downward, and a welding direction of progress of 6 degrees, and the other is an acceleration voltage of 100 kV, a current of 150 mA, an irradiation angle of 4 degrees downward, and a direction of welding of 5 degrees, By changing the angle of the welding progress direction, welding was carried out in such a way that the shallower weld penetration preceded the welding by 1Qmm. Also, the welding speed is 30
cm/min, and other conditions were the same as in Example 1.

この結果もビード外観は良好、また気孔、融合不良の欠
陥も認められなかった。
As a result, the bead appearance was good, and no defects such as pores or poor fusion were observed.

比較例 本例は比較例で、実施例1と同様条件の継手を溶接した
。ただし溶接のときの電子ビーム照射の一方をioom
m先行させ、両側からの電子ビーム照射での溶鋼金属プ
ールが交わらない状態で実施した。
Comparative Example This example is a comparative example, in which a joint under the same conditions as Example 1 was welded. However, one side of the electron beam irradiation during welding is
It was carried out in a state where the molten steel metal pools were not intersected by electron beam irradiation from both sides.

その結果ビード外観は良好であったが、後から溶接した
ビードの溶は込み先端に小さな気孔いわゆるスパイク欠
陥が認められた。
As a result, the appearance of the bead was good, but small pores, so-called spike defects, were observed at the tip of the welded bead that was later welded.

発明の効果 本発明によればT壁継手の電子ビーム溶接が容易で、か
つ品質の高いものができる。特にこの方法を大型の鉄構
造物用のT型あるいはH型部材の製造に用いれば、その
品質の向上また構造コストの低減効果は非常に大きく、
産業におよぼす効果が大きい。
Effects of the Invention According to the present invention, electron beam welding of T-wall joints is easy and high quality can be obtained. In particular, if this method is used to manufacture T-shaped or H-shaped members for large steel structures, the effect of improving quality and reducing structural costs will be very large.
It has a great effect on industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はT壁継手の電子ビーム溶接の説明図。 第2図はT型継手溶接の問題点を示す説明図、第3図は
凸部を有する板を使用したT型継手溶接の説明図、第4
図はT壁継手でフランジ裏面から溶接する説明図、第5
図はT型継手溶接で発生するスパイク欠陥、融合不良欠
陥を示す説明図である。 1−φ豐フランジ、2−・・ウェブ 3 II @ψ電
子ビーム照射、4書・囃偏向レンズ、5・・・凸部を付
けたフランジ、6・φ・スパイク欠陥、7・・拳融合不
良。 代理人弁理士  井 上 雅 生 トーーーーーーー」
FIG. 1 is an explanatory diagram of electron beam welding of a T-wall joint. Figure 2 is an explanatory diagram showing the problems of welding a T-shaped joint, Figure 3 is an explanatory diagram of welding a T-shaped joint using a plate with a convex part, and Figure 4 is an explanatory diagram showing the problems of welding a T-shaped joint.
The figure is an explanatory diagram of welding from the back side of the flange with a T-wall joint, No. 5
The figure is an explanatory diagram showing spike defects and poor fusion defects that occur during T-joint welding. 1-φ flange, 2--web 3 II @ψ electron beam irradiation, 4-book/acoustic deflection lens, 5... flange with convex portion, 6-φ spike defect, 7-fist fusion failure . Representative Patent Attorney Masaru Inoue

Claims (1)

【特許請求の範囲】[Claims] 電子ビーム溶接によるT型継手の溶接において、ウェブ
の両側から同時に電子ビームを照射し、それぞれの電子
ビームの照射で形成される溶融金属プールを一体化させ
ることを特徴とする電子ビーム溶接によるT型継手の溶
接方法。
In welding a T-shaped joint by electron beam welding, an electron beam is irradiated from both sides of the web at the same time, and the molten metal pools formed by each electron beam irradiation are integrated. How to weld joints.
JP26724488A 1988-10-25 1988-10-25 Method for welding t-joint by electron beam welding Pending JPH02117782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26724488A JPH02117782A (en) 1988-10-25 1988-10-25 Method for welding t-joint by electron beam welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26724488A JPH02117782A (en) 1988-10-25 1988-10-25 Method for welding t-joint by electron beam welding

Publications (1)

Publication Number Publication Date
JPH02117782A true JPH02117782A (en) 1990-05-02

Family

ID=17442140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26724488A Pending JPH02117782A (en) 1988-10-25 1988-10-25 Method for welding t-joint by electron beam welding

Country Status (1)

Country Link
JP (1) JPH02117782A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685610A1 (en) * 1994-06-03 1995-12-06 Thyssen Stahl Aktiengesellschaft Girder made of metal, in particular of steel, manufactured from a web and at least one flange, by welding them together using radiant energy and a method of manufacturing the same
CN102762332A (en) * 2010-02-18 2012-10-31 依赛彼集团公司 Method of and apparatus for hybrid welding with multiple heat sources

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437090A (en) * 1977-07-13 1979-03-19 Grace W R & Co Catalyst manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437090A (en) * 1977-07-13 1979-03-19 Grace W R & Co Catalyst manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685610A1 (en) * 1994-06-03 1995-12-06 Thyssen Stahl Aktiengesellschaft Girder made of metal, in particular of steel, manufactured from a web and at least one flange, by welding them together using radiant energy and a method of manufacturing the same
CN102762332A (en) * 2010-02-18 2012-10-31 依赛彼集团公司 Method of and apparatus for hybrid welding with multiple heat sources
KR20130009780A (en) * 2010-02-18 2013-01-23 더 에사브 그룹 아이엔씨. Method of and apparatus for hybrid welding with multiple heat sources
JP2013520320A (en) * 2010-02-18 2013-06-06 ザ・エサブ・グループ・インク Method and apparatus for hybrid welding using multiple heat sources
US8729424B2 (en) 2010-02-18 2014-05-20 The Esab Group, Inc. Hybrid welding with multiple heat sources
CN102762332B (en) * 2010-02-18 2015-07-22 依赛彼集团公司 Method of and apparatus for hybrid welding with multiple heat sources

Similar Documents

Publication Publication Date Title
EP2666579B1 (en) Hybrid laser arc welding process and apparatus
JP5869972B2 (en) Laser-arc combined welding method
DE60100967T2 (en) Hybrid welding process with laser and electric arc, especially for car workpieces and tubes
HUE015524T5 (en) Laser welding with beam oscillation
KR20140008532A (en) Hybrid welding method for t-joint using laser beam welding and arc welding
JP2005334974A (en) Laser welding method
JPH0732180A (en) Laser beam welding method for galvanized steel sheets
JPH10216973A (en) Laser beam welding method for aluminum and aluminum alloy
JP4026452B2 (en) Laser and arc combined welding method and groove shape of welded joint used therefor
JPH02117782A (en) Method for welding t-joint by electron beam welding
US20040226931A1 (en) Gas metal buried arc welding of lap-penetration joints
KR101145654B1 (en) Gas metal buried arc welding of lap-penetration joints
KR20120077082A (en) A laser welding method
JP2005138153A (en) Welding method for aluminum or aluminum alloy material
JP3079798B2 (en) Beam welding method
US20130240490A1 (en) Welding method
JP2004195528A (en) Laser irradiation arc welding method of magnesium or magnesium alloy
JP2002263869A (en) Laser welding method
DE10231784A1 (en) Production of a fusion welding joint using a high energy welding method (laser beam, electron beam) comprises forming a T-shaped seam geometry in which the cross-section on the seam surface has the same width as the depth of the seam
Reutzel et al. Experimental analysis of practical aspects of hybrid welding of thick sections
JP2945294B2 (en) Laser welding method for high carbon steel strip
JPH027755B2 (en)
JPH06254689A (en) Laser beam welding method for beltlike metals
JPS6310233Y2 (en)
JPS59206190A (en) Welding method