JPH02117070A - Manufacture of electrolytic tile for fuel cell - Google Patents

Manufacture of electrolytic tile for fuel cell

Info

Publication number
JPH02117070A
JPH02117070A JP63268225A JP26822588A JPH02117070A JP H02117070 A JPH02117070 A JP H02117070A JP 63268225 A JP63268225 A JP 63268225A JP 26822588 A JP26822588 A JP 26822588A JP H02117070 A JPH02117070 A JP H02117070A
Authority
JP
Japan
Prior art keywords
electrolyte
tile
temperature
bulk density
tiles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63268225A
Other languages
Japanese (ja)
Inventor
Mitsuo Fukutomi
三雄 福富
Hideo Uemoto
英雄 上本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP63268225A priority Critical patent/JPH02117070A/en
Publication of JPH02117070A publication Critical patent/JPH02117070A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make it possible to obtain a high bulk density by adding moisture to raw material powder and hot-pressing it. CONSTITUTION:Raw material is made to contain moisture at 0.5-5wt.% and molded in a tile shape by hot press. It is desired that the hot press is performed at a temperature of 110-150 deg.C and under a pressure of 70-200kg/cm<2>. Thereby, it is possible to mold the raw material at a low temperature and under a low pressure without an organic binder, and to obtain as high a bulk density as approx. 87% of the theoretical density.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、原料に水分を含ませ、・低温、低圧のホッ
トプレスによりち密な電解質タイルを製造する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for manufacturing dense electrolyte tiles by impregnating raw materials with water and hot pressing at low temperature and low pressure.

従来技術 従来、ペースト形電解質タイルの製造方法には、以下に
述べる方法があった。
Prior Art Conventionally, there have been methods for producing paste-type electrolyte tiles as described below.

(a)  ホットプレス法(高温高圧型)これは、原料
に含まれている炭酸塩(Li2 CO3、に2003 
)の共晶温度(485℃)付近の温度、圧力300kg
/a1以上の条件でホットプレス成形する方法である。
(a) Hot press method (high temperature and high pressure type) This is a hot press method (high temperature and high pressure type).
) temperature near the eutectic temperature (485℃), pressure 300kg
This is a method of hot press molding under conditions of /a1 or higher.

(b)  ホットプレス法(低温低圧型)この方法は、
原料に熱可塑性の有機バインダーを10!1%以上添加
し、有機バインダーの軟化する温度(100℃〜200
℃)においてプレス成形(圧力50〜200kg/c+
/)するものである。
(b) Hot press method (low temperature, low pressure type) This method is
10% or more of thermoplastic organic binder is added to the raw material, and the temperature at which the organic binder softens (100°C to 200°C) is
Press molding (pressure 50 to 200 kg/c+
/).

(c)   ドクターブレード法 この方法は、通常のセラミックシートを製造する方法と
同じで、原料に有機バインダーを10重量%以上添加し
、さらに有機溶剤を加えてスラリーを作製し、シート上
に流し込む方法である。
(c) Doctor blade method This method is the same as the method for manufacturing ordinary ceramic sheets, in which 10% by weight or more of an organic binder is added to the raw materials, an organic solvent is further added to create a slurry, and the slurry is poured onto the sheet. It is.

発明が解決しようとする問題点 (a)のホットプレス法(高温高圧型)によれば、理論
密度の90%以上のち密な電解質タイルが得られる。し
かし、冷却時に収縮による割れが発生しやすく、大型化
(1m角以上)には不向きであった。また高温でホ・ノ
ドプレスするため、成形サイクル時間が長く、量産化が
困難であった。
According to the hot press method (high temperature and high pressure type) of problem (a) to be solved by the invention, a dense electrolyte tile having a theoretical density of 90% or more can be obtained. However, cracks were likely to occur due to shrinkage during cooling, making it unsuitable for larger sizes (1 m square or more). Additionally, since hot-nod pressing was performed at high temperatures, the molding cycle time was long, making mass production difficult.

(b)のホットプレス法(低温低圧型)によれば、理論
密度の75%の電解質タイルが得られる。また大型(1
m角)電解質タイルが製造できる。さらに、低温でプレ
スを行うため、成形サイクル時間が短くてすむ。しかし
、有機バインダーを10重量%以上含んでいるため、脱
脂の工程が必要になり、脱脂中に割れが発生しやすかっ
た。
According to the hot press method (low temperature, low pressure type) of (b), an electrolyte tile with a theoretical density of 75% can be obtained. Also large (1
(m square) electrolyte tiles can be manufactured. Furthermore, since pressing is performed at low temperatures, the molding cycle time can be shortened. However, since it contains 10% by weight or more of an organic binder, a degreasing step is required and cracks are likely to occur during degreasing.

(C)のドクターブレード法によれば、大型電解質タイ
ルが作製しやすく、かつ量産化しやすい利点がある。し
かし、得られるタイルの密度は理論密度の60%程度と
低い値である。また有機バインダーを10重量%以上含
んでいるため、脱脂中に割れが発生しやすい。また密度
が低いため、発電時の電気特性は満足のいくものではな
かった。
The doctor blade method (C) has the advantage that large electrolyte tiles can be easily produced and mass-produced. However, the density of the tiles obtained is as low as about 60% of the theoretical density. Furthermore, since it contains 10% by weight or more of an organic binder, cracks are likely to occur during degreasing. Furthermore, due to the low density, the electrical characteristics during power generation were not satisfactory.

以上のように従来のペースト形電解質タイルの製造方法
ではタイルの大型化が困難であったり、高いカサ密度を
有する電解質タイルが得られなかったり、脱脂工程を必
要とした。
As described above, with the conventional method for manufacturing paste-type electrolyte tiles, it is difficult to make tiles large, electrolyte tiles with high bulk density cannot be obtained, and a degreasing step is required.

脱脂工程を必要とする場合には、脱脂工程中に割れが発
生しやすかった。
When a degreasing process was required, cracks were likely to occur during the degreasing process.

発明の目的 この発明の目的は、有機バインダーなしでも低温低圧で
成形でき、しかも理論密度の87%程度の高いカサ密度
を持つ電解質タイルを製造できる燃料電池用電解質タイ
ルの製造方法を提供することである。
Purpose of the Invention The purpose of the present invention is to provide a method for manufacturing electrolyte tiles for fuel cells that can be molded at low temperature and low pressure without an organic binder, and that can manufacture electrolyte tiles that have a high bulk density of about 87% of the theoretical density. be.

問題点を解決するための手段 本発明の燃料電池用電解質タイルの製造方法は、溶融炭
酸塩型燃料電池用ペースト形電解質タイルの原料に水分
を0.5〜5重量%含ませてタイル状にホットプレス成
形することを特徴とする。
Means for Solving the Problems The method for producing electrolyte tiles for fuel cells according to the present invention involves adding 0.5 to 5% by weight of water to the raw material for paste-type electrolyte tiles for molten carbonate fuel cells and forming them into tiles. It is characterized by hot press molding.

ホットプレスは110℃〜150℃の温度で行うことが
望ましい。温度が110℃より低い場合には高いカサ密
度が得られない。
It is desirable that hot pressing is performed at a temperature of 110°C to 150°C. If the temperature is lower than 110°C, high bulk density cannot be obtained.

一方、温度が160℃以上の場合には、昇温途中で水分
が蒸発して本発明の方法を用いる効果が得られず高いカ
サ密度が得られない。
On the other hand, if the temperature is 160° C. or higher, moisture evaporates during the temperature rise, making it impossible to obtain the effect of using the method of the present invention and a high bulk density cannot be obtained.

マタ、ホットプレスは70kg/cIIr〜200kg
 / cmの圧力で行うのが望ましい。圧力が70 k
g / cdよりも小さい場合には、十分なカサ密度が
得られない。
Mata, hot press 70kg/cIIr~200kg
It is preferable to use a pressure of / cm. pressure is 70k
If it is smaller than g/cd, sufficient bulk density cannot be obtained.

一方、圧力が200kg/adよりも大きい場合にはこ
れ以上カサ密度は向上せず、200kg / ad以上
圧力をかける効果は、見られなかった。
On the other hand, when the pressure was greater than 200 kg/ad, the bulk density did not improve any further, and no effect of applying a pressure of 200 kg/ad or more was observed.

このように、本発明におけるホットプレスは従来の電解
質タイルの製造で行っていたホットプレスにくらべて低
温、低圧で行うとより効果的である。
As described above, the hot pressing in the present invention is more effective when performed at a lower temperature and pressure than the hot pressing used in the production of conventional electrolyte tiles.

実施例 電解質タイルの原料としてリチウムアルミネート粉末4
0重量%、炭酸塩(炭酸リチウム/炭酸カリウム=62
/38モル比の混合物)60重量%を、アセトンで湿式
混合した。
Example Lithium aluminate powder 4 as raw material for electrolyte tile
0% by weight, carbonate (lithium carbonate/potassium carbonate = 62
/38 molar ratio mixture) 60% by weight was wet mixed with acetone.

このあとスプレードライヤーで造粒を行った。After this, granulation was performed using a spray dryer.

得られた造粒粉を加湿器に入れて水分を0〜10重量%
の間で吸わせた。
Put the obtained granulated powder into a humidifier and reduce the moisture content to 0 to 10% by weight.
I let him suck it between.

水分を吸わせた造粒粉を1m角の金型に充てんし、温度
80〜180℃、圧力50〜300kg/adの条件で
ホットプレスを30分間行った。
The granulated powder that had absorbed moisture was filled into a 1 m square mold, and hot pressed for 30 minutes at a temperature of 80 to 180°C and a pressure of 50 to 300 kg/ad.

この後、冷却して、電解質タイルを取り出し、カサ密度
の測定を行った。
Thereafter, the electrolyte tile was cooled, taken out, and its bulk density was measured.

第1図に水分量を変化させた場合の水分量と理論密度比
(カサ密度)との関係を示す。
FIG. 1 shows the relationship between the moisture content and the theoretical density ratio (bulk density) when the moisture content is varied.

この結果、水分を添加させる事によってカサ密度の増加
が見られた。水分添加量5重量%では理論密度の87%
まであがった。また5重量%以上水を添加させた場合、
カサ密度は87%より高くならず一定であった。また水
分量が多くなると、水分の蒸発時に発泡を生じ、電解質
タイルにふくらみが発生し、良くなかった。
As a result, an increase in bulk density was observed by adding water. 87% of theoretical density when water content is 5% by weight
It went up to In addition, when 5% by weight or more of water is added,
The bulk density did not rise above 87% and remained constant. Furthermore, when the amount of water increases, foaming occurs when the water evaporates, causing swelling in the electrolyte tile, which is not good.

第2図は、ホットプレス温度を変化させて試験した結果
である。この結果、110〜150℃において最も高い
カサ密度が得られることが明らかになった。160℃以
上においては、昇温途中で水分が蒸発して効果がなかっ
た。
FIG. 2 shows the results of a test at varying hot press temperatures. As a result, it became clear that the highest bulk density was obtained at 110 to 150°C. At temperatures above 160°C, moisture evaporated during the temperature rise, resulting in no effect.

第3図は、プレス圧力を変化させて試験した結果である
。この結果、70kg/ad以上においてカサ密度の増
加が見られる。100 kglcd以上では、一定にな
った。
FIG. 3 shows the results of testing with varying press pressures. As a result, an increase in bulk density is seen at 70 kg/ad or more. Above 100 kglcd, it became constant.

これらの実施例から、水分添加量は、0゜5〜5重量%
、ホットプレス温度は、110〜150℃、プレス圧力
は、70〜200kg/cdにおいて、最もカサ密度の
高い良好な電解質タイルが得られることが明らかになっ
た。
From these examples, the amount of water added is 0.5 to 5% by weight.
It has been revealed that a good electrolyte tile with the highest bulk density can be obtained when the hot pressing temperature is 110 to 150°C and the pressing pressure is 70 to 200 kg/cd.

なお、従来の方法によって製造した電解質タイルと本発
明による方法によって製造した電解質タイルとの比較を
第1表に示した。
Table 1 shows a comparison between electrolyte tiles manufactured by the conventional method and electrolyte tiles manufactured by the method according to the present invention.

このように従来の方法で製造した電解質タイルと本発明
の方法で製造した電解質タイルは、外観および密度、有
機バインダー含有量を調べれば区別可能である。
As described above, electrolyte tiles produced by conventional methods and electrolyte tiles produced by the method of the present invention can be distinguished by examining their appearance, density, and organic binder content.

発明の効果 本発明の燃料電池用電解質タイルの製造方法によれば、
原料粉に水分を添加し、ホットプレスすることにより、
高いカサ密度を持つ、大型の電解質タイルを製造するこ
とができる。
Effects of the Invention According to the method for manufacturing electrolyte tiles for fuel cells of the present invention,
By adding water to raw flour and hot pressing,
Large electrolyte tiles with high bulk density can be manufactured.

また、有機バインダーを添加しないので、脱脂工程は不
要で脱脂中に割れる心配は全くない。
Furthermore, since no organic binder is added, there is no need for a degreasing process and there is no fear of cracking during degreasing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、電解質タイルを製造する際の水分量と得られ
た電解質タイルの理論密度比の関係を表したグラフ、第
2図は同じくプレス温度と理論密度比の関係を表したグ
ラフ、第3図は同じくプレス圧力と理論密度比の関係を
表したグラフである。 代  理  人   弁理士   1) 辺   徹水
分量ULt) Fig、2 プレス温濱(℃)
Figure 1 is a graph showing the relationship between the moisture content when manufacturing electrolyte tiles and the theoretical density ratio of the obtained electrolyte tile, and Figure 2 is a graph showing the relationship between pressing temperature and theoretical density ratio. Similarly, Figure 3 is a graph showing the relationship between press pressure and theoretical density ratio. Agent Patent attorney 1) Side Water permeability ULt) Fig, 2 Press temperature (℃)

Claims (1)

【特許請求の範囲】[Claims] 溶融炭酸塩型燃料電池用ペースト形電解質タイルの原料
に水分を0.5〜5重量%含ませてタイル状にホットプ
レス成形することを特徴とする電解質タイルの製造方法
A method for producing an electrolyte tile, which comprises hot press-molding the paste-type electrolyte tile material for a molten carbonate fuel cell into a tile by impregnating 0.5 to 5% by weight of water.
JP63268225A 1988-10-26 1988-10-26 Manufacture of electrolytic tile for fuel cell Pending JPH02117070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63268225A JPH02117070A (en) 1988-10-26 1988-10-26 Manufacture of electrolytic tile for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63268225A JPH02117070A (en) 1988-10-26 1988-10-26 Manufacture of electrolytic tile for fuel cell

Publications (1)

Publication Number Publication Date
JPH02117070A true JPH02117070A (en) 1990-05-01

Family

ID=17455650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63268225A Pending JPH02117070A (en) 1988-10-26 1988-10-26 Manufacture of electrolytic tile for fuel cell

Country Status (1)

Country Link
JP (1) JPH02117070A (en)

Similar Documents

Publication Publication Date Title
CN104003668A (en) Hydrophobic fiber-reinforced calcium silicate board and manufacturing method thereof
CN102815921A (en) Clay/straw fiber composite microporous thermal insulation brick and preparation method thereof
CN108529930B (en) Glutinous rice mortar biomass brick and preparation method thereof
CN103910520B (en) Preparation method for aluminium oxide porous ceramic
CN108059450B (en) Environment-friendly cordierite-mullite kiln furniture and manufacturing method thereof
CN110590230B (en) Preparation method of graphite bipolar plate of fuel cell
CN112456955A (en) Basic magnesium sulfate cement-based lightweight porous material and preparation method thereof
JPH02117070A (en) Manufacture of electrolytic tile for fuel cell
CN108658611B (en) Cordierite-combined calcium hexaluminate sagger and preparation method thereof
CN105058541B (en) A kind of cork powder base porous compound material and its preparation method and application
US4328035A (en) Construction of building materials
KR100210584B1 (en) Method manufactring carbon electrode of lithium cell
CN106481015B (en) It is a kind of can pinning boxlike foam glass/glass ceramic composite and preparation method thereof
JPS6120508B2 (en)
JPS59196558A (en) Manufacture of positive tablet
CN114716212B (en) Green building material added with modified coconut shell carbon
CN102875179B (en) Method for sealing heterogeneous ceramic materials for batteries
CN109135171A (en) A kind of thermal insulation material and preparation method thereof that thermal coefficient is low
CN108658486A (en) A technique for preparing heat-insulation wall plate lightweight aggregate using rice husk and sulphate aluminium cement
JPH11263670A (en) Production of high purity boron nitride molding
RU2720139C1 (en) Method of producing molded refractory articles based on zeolite-containing rocks and high-modulus polysilicate
KR100407661B1 (en) Fabrication method of complex-shape refractory material using aluminosilicate fiber
JPS6310110B2 (en)
JP2007001839A (en) Manufacturing method of composition containing magnesia cement
JPS63302932A (en) Method for granulating aluminum residual ash