JPH0211666B2 - - Google Patents

Info

Publication number
JPH0211666B2
JPH0211666B2 JP477683A JP477683A JPH0211666B2 JP H0211666 B2 JPH0211666 B2 JP H0211666B2 JP 477683 A JP477683 A JP 477683A JP 477683 A JP477683 A JP 477683A JP H0211666 B2 JPH0211666 B2 JP H0211666B2
Authority
JP
Japan
Prior art keywords
synthetic resin
mirror
curvature
radius
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP477683A
Other languages
Japanese (ja)
Other versions
JPS59129235A (en
Inventor
Minoru Oomoto
Hiroshi Tamura
Mitsuo Hirano
Shigeo Matsumaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Gas Chemical Industry Co Ltd
Original Assignee
Kyowa Gas Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Gas Chemical Industry Co Ltd filed Critical Kyowa Gas Chemical Industry Co Ltd
Priority to JP477683A priority Critical patent/JPS59129235A/en
Publication of JPS59129235A publication Critical patent/JPS59129235A/en
Publication of JPH0211666B2 publication Critical patent/JPH0211666B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、合成樹脂製曲面鏡の製造方法に関
するものであり、詳しくは、形状安定性のよい合
成樹脂製曲面鏡の製造方法に関するものである。 合成樹脂製鏡は、従来より軽量であること、破
損し難いことおよび機械加工の容易なことなどの
理由でデイスプレイ、インテリア又は雑貨分野で
使用されている。さらに最近では、自動車など車
両の軽量化に伴い、従来のガラス製鏡よりも、軽
量で破損し難い車両用の合成樹脂鏡の実用化が要
望されている。このような合成樹脂製の鏡は、例
えばメタクリル樹脂板の表面を十分に清浄にした
上で、その表面にアルミニウム等の金属を真空蒸
着し、その真空蒸着膜を保護するために合成樹脂
塗料で被覆することにより得られている。必要に
応じて、指紋、ホコリ、泥などの汚れを布で拭う
時のキズにより鏡が見にくくなるのを防ぐために
基板を予め表面硬化処理にしておく場合もある。 しかしながら、透湿性のないガラス製ミラーと
異なり、従来の合成樹脂鏡は主として使用する環
境の温度、湿度の影響をうけて、曲面鏡の曲率半
径を一定に保つことが困難であり、未だ実用の域
に達していない。 即ち、第1図に示す様にミラー本体1の外面
を、ミラー本体の擦傷防止用の表面硬化膜2を形
成し、背面にアルミニウム等の反射膜3を設け、
湿気、空気、塩化物よりアルミニウムが侵されな
いようにバツクコート膜4を設ける。このバツク
コート膜は反射膜3の端部3′をも覆つて被覆膜
4′を形成する。このミラー本体1をアクリル樹
脂等の透明合成樹脂材料にすると、一般に吸湿性
があることと、バツクコート膜4を設けた側には
防湿性が高いことのため、ミラー本体には、バツ
クコート膜面4以外の表面からのみ湿気が吸収さ
れ、その表面が膨張し凸面的に反つて形状が変化
し、例えば凸面鏡の場合は、第1図に示す曲率半
径rが著しく減少してしまい、精度ある曲面鏡を
得る上で問題がある。 本発明者等は、このような状況に鑑み、合成樹
脂鏡のバツクコート膜以外の表面からの一方向よ
りの湿気の吸収により、曲率半径が変動すること
に着目し、金属薄膜を形成さらにその上にバツク
コート膜を形成する前に、所望の形状に成形、表
面硬化で加熱処理をさけて低含水率になつている
合成樹脂基体を、使用環境の平衡含水率になるよ
うに調湿することにより、吸湿性透明合成樹脂鏡
の曲率半径の変動の問題を解決し得ることを見出
して本発明を完成したものである。 本発明は形状保持性の良好な合成樹脂製鏡の製
造方法を提供することを目的としたものである。 本発明は合成樹脂製曲面鏡を製造するに当り、
所望の形状に成形し、表面硬化された合成樹脂製
の曲面基板を調湿した後に該曲面基板の表面に金
属薄膜を形成し、続いてバツクコート膜を形成す
ることを特徴とする合成樹脂製曲面鏡の製造方法
である。 この発明で使用される合成樹脂は、アクリル樹
脂、ポリカーボネート、スチレン−メチルメタク
リレート樹脂、アクリロニトリル−スチレン共重
合体、アクリロニトリル−ブタジエン−スチレン
樹脂等があるが透明度が高くしかもその他の光学
的特性及び耐熱性が優れているアクリル樹脂、ポ
リカーボネートが最も適している。例えば
JISD5705車両ミラーの性能試験の中で50℃95%
RH96Hrの耐湿性、90℃1Hrの耐熱水性試験で
は、ミラー基板が吸湿軟化し特に凸面鏡の曲率半
径の変動が大きくなるので、ASTMD648 18.6
Kg/cm2荷重時熱変形温度90℃以上の樹脂が適して
いるが、熱変形湿度100℃であるアクリル樹脂、
熱変形温度120℃であるポリカーボネートがこの
点から好ましい。 ミラー基板は注型板、押出板を真空成形、プレ
ス成形切削加工等により所望の形状に加工して得
るか、成形材料ペレツトを射出成形して得るなど
公知の方法により得ることが出来る。面精度、板
厚寸法、形状寸法、曲率半径の品質が安定して、
生産性がよく、コスト面で有利であることから射
出成形が好ましい。射出成形方法としては、一般
の射出成形方法で差し支えないが、極力成形歪の
発生を抑え、寸法、曲率半径を精度の高い成形品
を得るためには、精密な型温調節器の使用が望ま
しい。 成形に使用する金型は、曲面鏡の曲率半径の変
動を見越して、予め補正されていることが好まし
い。例えば第1図に示すように、真空蒸着、バツ
クコート塗装後のアクリル樹脂凸面鏡の曲率半径
rの経時変化量が△rの場合の凸面鏡金型の曲率
半径RはR=r+△rにするのが好ましい。△r
の値は使用する合成樹脂、成形機及び成形条件に
おいて、曲率半径の経時変化量により決めること
ができる。 次いで、ミラー基板に表面硬化処理を施こす
が、硬化性被覆材料としては、シリコーン系、多
官能アクリル系、ウレタン系、アクリル−ウレタ
ン系等公知の硬化処理剤を使用できるが、耐擦傷
性がすぐれるシリコーン系、多官能アクリル系が
望ましい。 被覆材組成物をミラー基板の表面に塗布するに
は、スプレー塗装、流延塗装、刷毛塗り、浸漬塗
装等の公知の方法による。塗装前にミラー基材の
表面を、有機溶剤による脱脂、超音波洗浄などで
洗浄した方が、ブツのない外観のよいミラーを得
ることができる。 乾燥は、熱硬化法が一般的であり60〜130℃の
場合において30分〜120分かける。この塗膜の好
ましい厚みは1〜30ミクロン、より好ましくは3
〜15ミクロンである。1ミクロン以下では耐摩耗
性が充分でなく、また30ミクロン以上ではクラツ
クが発生しやすくなる。 本発明における調湿は、関係湿度50〜95%であ
り、より好ましくは60〜80%であり、温度は10℃
〜80℃、より好ましくは20℃〜50℃である。関係
湿度50%以下では曲率半径の変動が大きく効果が
少なく、95%以上では表面硬化した基板上に結露
し、この基板に真空蒸着すると美麗な外観を持つ
製品は得られない。温度10℃以下では曲率半径の
変動が大きく効果がなく、80℃以上では基板が変
形するので好ましくない。 金属薄膜被覆は真空蒸着法、イオンプレ−テイ
ング法、スパタリング法等で行う。たとえば表面
硬化膜被覆後調湿した基体を真空蒸着槽に入れ
10-4〜10-5torr真空度で、アルミニウムを100Å
〜500Åの厚みに蒸着する。特に前処理は不用だ
が、ホコリが付着したり、反射膜上にゆず肌状の
肌荒れが発生し良質のミラーが得られない場合が
あるので前処理をする方が好ましい。金属薄膜の
表面に硬化性樹脂膜を塗装し、紫外線、電子線又
は熱などの活性エネルギー源を照射して硬化させ
る。塗装は、ハケ塗り、スプレー塗装、カーテン
フローコート等限定しないが、10〜50μの膜厚に
することが好ましい。 本発明の一実施例を図面に従つて説明する。射
出成形用アクリル樹脂(協和ガス化学工業製パラ
ペツトHR)を、曲率半径1300mmの肉厚3mm凸面
鏡金型で射出成形した。次に成形品をシラン系表
面硬化液中に浸漬し静かに引上げ、熱風恒温槽に
入れ85℃120分放置し架橋硬化し、厚さ10μの塗
膜を形成した後、30℃、80%RHの条件で40Hr調
湿した。次に真空蒸着槽に入れ、5×10-5Torr
の真空度でアルミニウム蒸着し、厚さ約0.02μの
膜を形成し、次にバツクコート塗料をアルミニウ
ム薄膜の上にスプレー塗装し、75℃、24時間加熱
し厚さ約30μの塗膜を形成し、凸面鏡を得た。第
2図は、上記手順で作つた凸面鏡の曲率半径の変
動量(△r)の経時変化を示す。前記実施例の平
衡値は150mmであるが、上記手順から調湿工程を
省略した場合の平衡値は300mmであり、曲率半径
の変動量(△r)は調湿により約1/2になつてい
る。 上記のように表面硬化−調湿−真空蒸着の手順
により形状寸法保持性の良好な曲面鏡が得られる
がこの点につき以下製造方法と併せて説明する。
第1表は本発明の製造工程説明図であるが、
The present invention relates to a method for manufacturing a synthetic resin curved mirror, and more particularly, to a method for manufacturing a synthetic resin curved mirror with good shape stability. Synthetic resin mirrors are used in the fields of displays, interiors, and miscellaneous goods because they are lighter than conventional ones, hard to break, and easy to machine. Furthermore, recently, as vehicles such as automobiles become lighter, there has been a demand for practical use of synthetic resin mirrors for vehicles that are lighter and more difficult to break than conventional glass mirrors. Such mirrors made of synthetic resin, for example, are made by thoroughly cleaning the surface of a methacrylic resin plate, then vacuum-depositing a metal such as aluminum on the surface, and applying synthetic resin paint to protect the vacuum-deposited film. It is obtained by coating. If necessary, the substrate may be subjected to surface hardening treatment in advance to prevent scratches from wiping dirt such as fingerprints, dust, and mud with a cloth, making it difficult to see the mirror. However, unlike non-moisture-permeable glass mirrors, conventional synthetic resin mirrors are mainly affected by the temperature and humidity of the environment in which they are used, making it difficult to maintain a constant radius of curvature. The area has not been reached. That is, as shown in FIG. 1, a hardened surface film 2 is formed on the outer surface of the mirror body 1 to prevent scratches on the mirror body, and a reflective film 3 made of aluminum or the like is provided on the back surface.
A back coat film 4 is provided to prevent aluminum from being attacked by moisture, air, and chlorides. This back coat film also covers the end portion 3' of the reflective film 3 to form a coating film 4'. When the mirror body 1 is made of a transparent synthetic resin material such as acrylic resin, it is generally hygroscopic and the side provided with the back coat film 4 has high moisture resistance. Moisture is absorbed only from other surfaces, and the surface expands and warps convexly, changing its shape. For example, in the case of a convex mirror, the radius of curvature r shown in Fig. I have a problem getting the . In view of this situation, the inventors of the present invention focused on the fact that the radius of curvature changes due to the absorption of moisture from one direction from the surface other than the back coat film of a synthetic resin mirror, and formed a thin metal film on top of it. Before forming the back coat film, the synthetic resin substrate is molded into the desired shape and has a low moisture content by avoiding heat treatment by surface hardening, and is then conditioned to have the equilibrium moisture content of the environment in which it will be used. The present invention was completed by discovering that the problem of variations in the radius of curvature of hygroscopic transparent synthetic resin mirrors can be solved. An object of the present invention is to provide a method for manufacturing a synthetic resin mirror with good shape retention. In manufacturing a synthetic resin curved mirror, the present invention includes:
A curved surface made of synthetic resin characterized by forming a curved surface made of synthetic resin into a desired shape, conditioning the surface of the curved surface, forming a metal thin film on the surface of the curved surface substrate, and subsequently forming a back coat film. This is a method for manufacturing mirrors. The synthetic resins used in this invention include acrylic resin, polycarbonate, styrene-methyl methacrylate resin, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene resin, etc., but they have high transparency and other optical properties and heat resistance. Acrylic resin and polycarbonate, which have excellent properties, are most suitable. for example
50℃95% in JISD5705 vehicle mirror performance test
In the humidity resistance test of RH96Hr and the hot water resistance test at 90°C for 1Hr, the mirror substrate absorbs moisture and softens, and the variation in the radius of curvature of the convex mirror in particular increases, so ASTMD648 18.6
Kg/cm 2 Resin with a heat distortion temperature of 90℃ or higher under load is suitable, but acrylic resin with a heat distortion humidity of 100℃,
From this point of view, polycarbonate having a heat distortion temperature of 120°C is preferred. The mirror substrate can be obtained by processing a casting plate or an extrusion plate into a desired shape by vacuum forming, press molding cutting, etc., or by injection molding a molding material pellet, or by other known methods. The quality of surface accuracy, plate thickness dimension, shape dimension, and radius of curvature is stable,
Injection molding is preferred because it has good productivity and is advantageous in terms of cost. General injection molding methods can be used, but in order to minimize molding distortion and obtain molded products with highly accurate dimensions and radius of curvature, it is recommended to use a precision mold temperature controller. . The mold used for molding is preferably corrected in advance in anticipation of variations in the radius of curvature of the curved mirror. For example, as shown in Fig. 1, when the amount of change over time in the radius of curvature r of an acrylic resin convex mirror after vacuum deposition and back coating is △r, the radius of curvature R of the convex mirror mold should be R = r + △r. preferable. △r
The value of can be determined by the amount of change in the radius of curvature over time, depending on the synthetic resin used, the molding machine, and the molding conditions. Next, the mirror substrate is subjected to surface hardening treatment. As the curable coating material, known hardening agents such as silicone, polyfunctional acrylic, urethane, and acrylic-urethane can be used, but scratch resistance is Excellent silicone-based and polyfunctional acrylic-based materials are desirable. The coating composition can be applied to the surface of the mirror substrate by a known method such as spray coating, cast coating, brush coating, or dip coating. If the surface of the mirror base material is cleaned by degreasing with an organic solvent, ultrasonic cleaning, etc. before painting, a mirror with a good appearance and no blemishes can be obtained. Drying is generally carried out by a thermosetting method, and takes 30 to 120 minutes at 60 to 130°C. The preferred thickness of this coating is 1 to 30 microns, more preferably 3 microns.
~15 microns. If it is less than 1 micron, the wear resistance will not be sufficient, and if it is more than 30 microns, cracks will easily occur. Humidity control in the present invention is a relative humidity of 50-95%, more preferably 60-80%, and a temperature of 10°C.
-80°C, more preferably 20°C - 50°C. If the relative humidity is below 50%, the radius of curvature will fluctuate greatly and the effect will be small; if the humidity is above 95%, dew will condense on the surface-hardened substrate, and if vacuum evaporated onto this substrate, it will not be possible to obtain a product with a beautiful appearance. If the temperature is below 10°C, the radius of curvature will fluctuate greatly and there will be no effect, and if it is above 80°C, the substrate will deform, which is not preferable. The metal thin film coating is performed by vacuum evaporation, ion plating, sputtering, or the like. For example, after coating the surface with a hardened film, the humidity-controlled substrate is placed in a vacuum deposition tank.
10-4 to 10-5 torr vacuum and aluminum at 100Å
Deposit to a thickness of ~500 Å. Although pretreatment is not particularly necessary, it is preferable to do so because dust may adhere to the reflective film or a rough surface like orange skin may occur on the reflective film, making it impossible to obtain a high-quality mirror. A curable resin film is coated on the surface of a thin metal film, and cured by irradiation with an active energy source such as ultraviolet rays, electron beams, or heat. The coating may be applied by brush coating, spray coating, curtain flow coating, etc., but is preferably applied to a film thickness of 10 to 50 μm. An embodiment of the present invention will be described with reference to the drawings. Acrylic resin for injection molding (Parapet HR manufactured by Kyowa Gas Chemical Industry Co., Ltd.) was injection molded using a 3 mm thick convex mirror mold with a radius of curvature of 1300 mm. Next, the molded product is immersed in a silane-based surface hardening solution, pulled up gently, placed in a hot air constant temperature bath at 85℃ for 120 minutes to crosslink and cure, forming a coating film with a thickness of 10μ, and then heated at 30℃ and 80%RH. The humidity was controlled for 40 hours under these conditions. Next, put it in a vacuum evaporation tank and
Aluminum is vapor-deposited in a vacuum to form a film approximately 0.02μ thick. Next, back coat paint is spray-painted onto the thin aluminum film and heated at 75°C for 24 hours to form a film approximately 30μ thick. , we obtained a convex mirror. FIG. 2 shows the change over time in the amount of variation (Δr) in the radius of curvature of the convex mirror manufactured by the above procedure. The equilibrium value in the above example is 150 mm, but if the humidity adjustment step is omitted from the above procedure, the equilibrium value is 300 mm, and the amount of variation in the radius of curvature (△r) is reduced to about 1/2 by the humidity adjustment. There is. As described above, a curved mirror with good shape and dimension retention can be obtained by the procedure of surface hardening, humidity control, and vacuum deposition, and this point will be explained below together with the manufacturing method.
Table 1 is an explanatory diagram of the manufacturing process of the present invention,

【表】 れ、調湿しても形状寸法保持性の良好な曲面鏡は
得られない。の製造工程は、調湿により基体含
水率が増し、次の表面硬化処理で、硬化液中の溶
剤によるクラツクが発生し、外観良好な曲面鏡は
得られない。の製造工程は、曲面鏡の反射膜面
以外の表面からの一方的湿気の吸収によりかえつ
て曲率半径の変動が大きく、精密な曲面鏡を得ら
れない。本発明の方法であるの製造工程による
と形状、寸法保持性の良好な曲面鏡が得られる。
第3図は、本発明におけるゴム系の軟質保護膜よ
りなる凸面鏡の曲率半径の経時変化量△rが100
mm以下の良好な凸面鏡を得たことを示すが、比較
すると不飽和ポリエステル樹脂系の硬質保護膜よ
りなる凸面鏡より、形状寸法良好な鏡を得たこと
を示す。本発明における軟質保護膜はゴム系の保
護用塗料で形成され、このような塗料としては、
ポリブタジエン系、ポリイソプレン系、あるいは
軟質塩化ビニル系の軟質樹脂を含むものがあげら
れる。 第2表は、本発明におけるポリカーボネート製
凸面鏡を示すが、曲率半径の経時変化量△rは
100mmであり、良好な鏡ができることを示す。こ
の実施例ではポリカーボネート用プライマー塗料
とポリカーボネート用オルガノシロキサン系硬化
液を用いて表面硬化処理を行なつた。
[Table] Even if the humidity is controlled, a curved mirror with good shape and dimension retention cannot be obtained. In the manufacturing process, the moisture content of the substrate increases due to humidity conditioning, and cracks occur during the subsequent surface hardening treatment due to the solvent in the hardening solution, making it impossible to obtain a curved mirror with a good appearance. In the manufacturing process, the radius of curvature fluctuates greatly due to unilateral absorption of moisture from surfaces other than the reflective film surface of the curved mirror, making it impossible to obtain a precise curved mirror. According to the manufacturing process of the method of the present invention, a curved mirror with good shape and dimension retention can be obtained.
Figure 3 shows that the amount of change over time △r in the radius of curvature of the convex mirror made of a rubber-based soft protective film in the present invention is 100.
This shows that a good convex mirror of less than mm was obtained, and a comparison shows that a mirror with better shape and dimensions than a convex mirror made of a hard protective film made of unsaturated polyester resin was obtained. The soft protective film in the present invention is formed from a rubber-based protective paint, and such paints include:
Examples include those containing polybutadiene-based, polyisoprene-based, or soft vinyl chloride-based soft resins. Table 2 shows the polycarbonate convex mirror of the present invention, and the amount of change in the radius of curvature over time Δr is
100mm, indicating that a good mirror can be made. In this example, surface hardening treatment was performed using a primer paint for polycarbonate and an organosiloxane curing liquid for polycarbonate.

【表】 本発明は以上説明した如くの構成からなり、特
に所望の形状に成形し、表面硬化処理したアクリ
ル樹脂等の透明合成樹脂材料による曲面鏡基体
を、金属薄膜蒸着、バツクコート塗装する前に調
湿する構成なので吸湿による形状変化を著しく減
少することができ、その結果無機ガラス製の曲面
鏡に匹敵する擦傷特性、光学特性を備え、しかも
破損しがたい、軽量な合成樹脂曲面鏡を、形状寸
法管理しやすい、効率よい製造ができる利点があ
る。 なお、この発明の曲面鏡は上記実施例において
凸面鏡を対象として説明しているが、凹面鏡でも
よく、車両用アウトサイドミラー以外にも化粧用
ミラー、カーブミラーにも適用できる。
[Table] The present invention has a structure as explained above, and in particular, a curved mirror base made of a transparent synthetic resin material such as acrylic resin that is molded into a desired shape and surface hardened is coated with a thin metal film or a back coat. Because it has a humidity-controlling structure, it can significantly reduce shape changes due to moisture absorption, resulting in a lightweight synthetic resin curved mirror that has scratch resistance and optical properties comparable to those of inorganic glass curved mirrors, and is resistant to breakage. It has the advantages of easy shape and size control and efficient manufacturing. Although the curved mirror of the present invention has been described as a convex mirror in the above embodiments, it may be a concave mirror, and can be applied not only to vehicle outside mirrors but also to decorative mirrors and curved mirrors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は合成樹脂製凸面鏡の断面図であり、第
2図は凸面鏡の曲率半径の経時変化に対する調湿
の効果を示す図であり、第3図は凸面鏡の曲率半
径の経時変化に対する軟質保護膜の効果を示す図
である。
Figure 1 is a cross-sectional view of a synthetic resin convex mirror, Figure 2 is a diagram showing the effect of humidity control on changes in the radius of curvature of the convex mirror over time, and Figure 3 is a diagram showing soft protection against changes in the radius of curvature of the convex mirror over time. It is a figure showing the effect of a film.

Claims (1)

【特許請求の範囲】 1 合成樹脂製曲面鏡を製造するに当り、所望の
形状に成形し、表面硬化された合成樹脂製の曲面
基板を調湿した後に該曲面基板の表面に金属薄膜
を形成し、続いてバツクコート膜を形成すること
を特徴とする合成樹脂製曲面鏡の製造方法。 2 合成樹脂がアクリル樹脂またはポリカーボネ
ートである特許請求範囲第1項に記載の製造方
法。 3 成形に使用する金型の曲率半径が、曲面鏡の
曲率半径の変動を見越して予め補正されているこ
とを特徴とする特許請求の範囲第1項に記載の製
造方法。 4 バツクコート膜が軟質合成樹脂である特許請
求の範囲の第1項に記載する製造方法。
[Scope of Claims] 1. In manufacturing a synthetic resin curved mirror, a thin metal film is formed on the surface of a curved synthetic resin substrate that has been molded into a desired shape and surface hardened, after which the humidity is controlled. A method for manufacturing a curved mirror made of synthetic resin, which method comprises the steps of: and subsequently forming a back coat film. 2. The manufacturing method according to claim 1, wherein the synthetic resin is an acrylic resin or a polycarbonate. 3. The manufacturing method according to claim 1, wherein the radius of curvature of the mold used for molding is corrected in advance in anticipation of variations in the radius of curvature of the curved mirror. 4. The manufacturing method according to claim 1, wherein the back coat film is a soft synthetic resin.
JP477683A 1983-01-14 1983-01-14 Production of curved surface mirror made of synthetic resin Granted JPS59129235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP477683A JPS59129235A (en) 1983-01-14 1983-01-14 Production of curved surface mirror made of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP477683A JPS59129235A (en) 1983-01-14 1983-01-14 Production of curved surface mirror made of synthetic resin

Publications (2)

Publication Number Publication Date
JPS59129235A JPS59129235A (en) 1984-07-25
JPH0211666B2 true JPH0211666B2 (en) 1990-03-15

Family

ID=11593231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP477683A Granted JPS59129235A (en) 1983-01-14 1983-01-14 Production of curved surface mirror made of synthetic resin

Country Status (1)

Country Link
JP (1) JPS59129235A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584465U (en) * 1991-07-03 1993-11-16 白光株式会社 Heater for solder heat treatment
JP2020127654A (en) * 2019-02-09 2020-08-27 ナック・ケイ・エス株式会社 Mirror having curve surface formed by reproducing two-dimensional representation on mirror surface, and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634203A (en) * 1986-06-24 1988-01-09 Idemitsu Petrochem Co Ltd Moisture resistant mirror
JP2003035629A (en) * 2001-07-23 2003-02-07 Fujikura Ltd Method for testing optical fiber cord
JP2019105818A (en) * 2017-12-13 2019-06-27 芳徳 伊丹 Method of manufacturing mirror

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584465U (en) * 1991-07-03 1993-11-16 白光株式会社 Heater for solder heat treatment
JP2020127654A (en) * 2019-02-09 2020-08-27 ナック・ケイ・エス株式会社 Mirror having curve surface formed by reproducing two-dimensional representation on mirror surface, and manufacturing method thereof

Also Published As

Publication number Publication date
JPS59129235A (en) 1984-07-25

Similar Documents

Publication Publication Date Title
US4247600A (en) Metallized plastic camera housing and method
US8721932B2 (en) Method of making an anti-fog gauge lens
US20070207310A1 (en) Chrome coated surfaces and deposition methods therefor
US3450465A (en) Mirror with a partially reflecting thin metal alloy coating on a plastic base
JPH0211666B2 (en)
KR910007133B1 (en) Decorative article and process for making
JPS63242700A (en) Decorative article and preparation thereof
US20070000771A1 (en) Method for manufacturing vehicle mirrors
JPS5920466A (en) Decoration method using metallic thin film
JP2021010879A (en) Metallic mirror surface forming coating method
EP0038281A2 (en) Process for modifying reflexion properties of surfaces
WO1995002199A1 (en) Composite mirror and fabrication method with precipitated reflective coating
JPH0440183B2 (en)
JP4486404B2 (en) Translucent resin product manufacturing method and translucent resin product
JPS591790B2 (en) Method for manufacturing metal plating coating
JPS591201Y2 (en) car mirror
GB2386847A (en) Water vapour plasma method of increasing the surface energy of a surface
JPS5924642A (en) Method for injection molding of shaped article with hard three-dimensional curved surface
JP3412302B2 (en) Method for manufacturing plastic optical component having antireflection film
JPH0288233A (en) Metal covered synthetic resin material excellent in deterioration-preventing property
JPS60500502A (en) Method for manufacturing optical components and optical components
JPH02148001A (en) Formation of surface protective layer of lens made of synthetic resin
US6410131B1 (en) Flexible lustered products
JPH0631722B2 (en) Manufacturing method of watch frame
KR20200125844A (en) Physical vapor deposition method