JPH0211626A - Production of wholly aromatic polyester - Google Patents

Production of wholly aromatic polyester

Info

Publication number
JPH0211626A
JPH0211626A JP16125288A JP16125288A JPH0211626A JP H0211626 A JPH0211626 A JP H0211626A JP 16125288 A JP16125288 A JP 16125288A JP 16125288 A JP16125288 A JP 16125288A JP H0211626 A JPH0211626 A JP H0211626A
Authority
JP
Japan
Prior art keywords
reaction tank
wholly aromatic
aromatic polyester
reaction
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16125288A
Other languages
Japanese (ja)
Other versions
JP2685815B2 (en
Inventor
Mitsuo Matsumoto
松本 光郎
Nobutaka Goto
後藤 亘孝
Kunio Yukiyoshi
雪吉 邦夫
Shuhei Ishino
修平 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP63161252A priority Critical patent/JP2685815B2/en
Publication of JPH0211626A publication Critical patent/JPH0211626A/en
Application granted granted Critical
Publication of JP2685815B2 publication Critical patent/JP2685815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain the title polyester which can give a molding improved in mechanical properties and thermal properties by polycondensing specified compounds in a reaction tank having a vertical agitating element and continuing the reaction in a reaction tank having a horizontal agitating element. CONSTITUTION:At least one compound selected from among an aromatic hydroxy carboxylic acid (derivative), an aromatic dicarboxylic acid (derivative) and an aromatic dihydroxy compound (derivative) is polycondensed at 125-400 deg.C for 1-15hr in at least one reaction tank having a vertical agitating element to a melt viscosity of 50-500P, and this reaction is (dis)continuously conducted at 250-450 deg.C for 1min-1hr in at least one reaction tank having a horizontal agitating element to obtain a wholly aromatic polyester of an inherent viscosity [in pentafluorophenol, 0.1(wt./vol.)% at 60 deg.C] of 3-10dl/g, which can form an optically anisotropic molten phase at 400 deg.C or below.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、力学的性能および熱的性能のすぐれた各種成
形品を与える全芳香族ポリエステルの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing wholly aromatic polyester that provides various molded articles with excellent mechanical and thermal performance.

〔従来の技術〕[Conventional technology]

近年、有機高分子材料の高性能化に対する産業界の要求
が高まっており、強度および弾性率等の力学的性能や耐
熱性等の熱的性能のすぐれた繊維、フィルム、射出成形
品など各種成形品が強く望まれている。
In recent years, industrial demands for higher performance organic polymer materials have been increasing, and various molding products such as fibers, films, and injection molded products with excellent mechanical properties such as strength and modulus of elasticity and thermal properties such as heat resistance have been increasing. products are highly desired.

上記の要求を満たす高分子材料として、光学的に異方性
の溶融相を形成するポリエステル類、謂ゆるサーモトロ
ピック液晶ポリエステル類が注目され多くの構造のサー
モトロピック液晶ポリエステルが既に機業されており、
その内いくつかは近年工業的にも製造されるに至ってい
る。
As polymer materials that meet the above requirements, polyesters that form an optically anisotropic melt phase, so-called thermotropic liquid crystal polyesters, have attracted attention, and thermotropic liquid crystal polyesters with many structures have already been commercialized. ,
Some of them have come to be manufactured industrially in recent years.

かかるポリマーは容易に分子鎖が一方向に配列すること
から、該ポリマーから高度に配向した、力学的性能のす
ぐれた各種成形品が得られる。更に芳香族環のみから構
成される全芳香族サーモトロピック液晶ポリエステルか
ら得られる各種成形品は極めて良好な耐熱性を有するこ
とが知られている。
Since the molecular chains of such polymers are easily aligned in one direction, various molded products that are highly oriented and have excellent mechanical properties can be obtained from these polymers. Furthermore, it is known that various molded products obtained from wholly aromatic thermotropic liquid crystal polyesters composed only of aromatic rings have extremely good heat resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

全芳香族サーモトロピック液晶高分子化合物、中でも全
芳香族サーモトロピック液晶ポリエステルは、高性能素
材としてすぐれたものであり、敗多くの構造の化合物が
既に提案されている。
Fully aromatic thermotropic liquid crystalline polymer compounds, especially fully aromatic thermotropic liquid crystalline polyester, are excellent as high-performance materials, and compounds with many different structures have already been proposed.

本発明者らの検討によると、全芳香族サーモトロピック
液晶ポリエステルを製造する場合には液晶高分子の特殊
なレオロジー特性のため、通常の液晶を形成しない高分
子化合物の製造では生じない困難さがあり、解決すべき
いくつかの課題が残されている。すなわち、液晶高分子
は溶融状態において剪断力下では溶融粘度は非常に小で
あるが、剪断力を受けない静止状態では粘度が著しく上
昇する。そのため、重縮合反応中、反応の進行に伴ない
重合度が一定値以上になると均一な撹拌が困難となり、
反応槽中において一部剪断力を受けない部分が生じる。
According to the studies conducted by the present inventors, due to the special rheological properties of liquid crystal polymers, when producing fully aromatic thermotropic liquid crystal polyesters, difficulties that do not occur in the production of ordinary polymer compounds that do not form liquid crystals are encountered. However, there are still some issues that need to be resolved. That is, the melt viscosity of a liquid crystal polymer in a molten state is very low under shearing force, but the viscosity increases significantly in a static state without being subjected to shearing force. Therefore, during the polycondensation reaction, if the degree of polymerization exceeds a certain value as the reaction progresses, uniform stirring becomes difficult.
A portion of the reaction vessel is not subjected to shearing force.

該部分は反応槽中では実質的に流動しなくなり、他の部
分と組成あるいは分子1等が異なり、均一な組成のポリ
マーができなくなる為、該ポリマーは実験室的な小スケ
ールの反応により得られるポリマーより物性が劣る場合
がしばしばある。更に、通常の縦型の撹拌翼を有する反
応槽のみで、成形品として充分な物性を有する分子1の
全芳香族サーモトロピック液晶ポリエステルを製造しよ
うとする場合には、前述した均一な撹拌の困難さに加え
て、重縮合反応終了後反応槽よりポリマーを取り出すこ
とが著しく困難となる。すなわち前述したように、サー
モトロピック液晶ポリエステルは剪断力が作用しない静
止状態では粘度が著しく大となるため、反応終了後撹拌
を停止した場合にはポリマーは流動せず、反応槽下部よ
りポリマーを取り出すことが難しくなるのである。たと
え撹拌を行ないながらポリマーを排出したとしても排出
効率が著しく悪くなる。
This part becomes substantially non-flowing in the reaction tank and has a different composition or molecule 1, etc. from other parts, making it impossible to produce a polymer with a uniform composition. Therefore, the polymer can be obtained by a small-scale laboratory reaction. Physical properties are often inferior to polymers. Furthermore, when attempting to produce a fully aromatic thermotropic liquid crystalline polyester with a molecular weight of 1 that has sufficient physical properties as a molded product using only a reaction tank equipped with a normal vertical stirring blade, it is difficult to achieve uniform stirring as described above. In addition, it becomes extremely difficult to take out the polymer from the reaction tank after the polycondensation reaction is completed. In other words, as mentioned above, the viscosity of thermotropic liquid crystal polyester becomes extremely high in a static state where no shearing force is applied, so if stirring is stopped after the reaction is completed, the polymer does not flow and is taken out from the bottom of the reaction tank. This makes things difficult. Even if the polymer is discharged while stirring, the discharge efficiency will be extremely poor.

このように全芳香族サーモトロピック液晶ポリエステル
を、効率的に均一に製造しようとする場合には解決すべ
きいくつかの課題が残されている。
As described above, several problems remain to be solved if a wholly aromatic thermotropic liquid crystal polyester is to be produced efficiently and uniformly.

〔課題を解決すべき手段〕[Means to solve the problem]

本発明は芳香族ヒドロキシカルボン酸および/またはそ
れらの誘導体、芳香族ジカルボン酸および/またはそれ
らの誘導体、および芳香族ジヒドロキシ化合物および/
またはそれらの誘導体より選ばれる少なくとも一種以上
から、光学的に異方性の溶融相を形成する全芳香族ポリ
エステルを溶融重縮合反応により製造する方法において
、該反応を縦型の撹拌翼を有する一種以上の反応槽と、
それに続く横型の撹拌翼を有する一部の反応槽の組み合
わせで行ない、縦型の撹拌翼を有する最後の反応槽にお
ける撹拌条件下でのみかけの溶融粘度が50〜500ポ
イズとなるまで重合を行なった後、次いで連続的または
非連続的に横型の撹拌翼を有する反応槽で反応を継続し
、該横型の撹拌翼を有する反応槽より全芳香族ポリエス
テルを取り出すことを特徴とする、光学的に異方性の溶
融相を形成する全芳香族ポリエステルの製造方法に関す
るしのである。
The present invention relates to aromatic hydroxycarboxylic acids and/or their derivatives, aromatic dicarboxylic acids and/or their derivatives, and aromatic dihydroxy compounds and/or their derivatives.
A method for producing a wholly aromatic polyester that forms an optically anisotropic melt phase from at least one kind selected from the group consisting of polyesters and their derivatives by melt polycondensation reaction. The above reaction tank,
Subsequently, polymerization was carried out using a combination of some reaction vessels having horizontal stirring blades, and polymerization was carried out until the apparent melt viscosity under stirring conditions in the last reaction tank having vertical stirring blades was 50 to 500 poise. After that, the reaction is continued continuously or discontinuously in a reaction tank having horizontal stirring blades, and the wholly aromatic polyester is taken out from the reaction tank having horizontal stirring blades. This paper relates to a method for producing a wholly aromatic polyester that forms an anisotropic melt phase.

本発明においては縦型の撹拌翼を有する一種以上の反応
槽と、それ(ら)に続く横型の撹拌翼を有する反応槽を
一種組み合わせて重縮合反応を行ない、かつ縦型の撹拌
翼を有する最終の反応槽にお徴である。このことにより
分子量および組成が比れ、かつ反応終了後の反応槽から
のポリマーの排出効率が良好となる。
In the present invention, the polycondensation reaction is carried out by combining one or more types of reaction vessels having vertical stirring blades and one type of reaction tank(s) having horizontal stirring blades following the reaction tank(s), and also having vertical stirring blades. This is a sign in the final reaction tank. This makes the molecular weight and composition comparable, and improves the efficiency of discharging the polymer from the reaction tank after the reaction is completed.

本発明において用いられる縦型の撹拌翼を有する反応槽
とは、任意の形状の撹拌翼、例えばヘリカルリボン型、
ダブルヘリカルリボン型、タービン型、パドル型、イカ
リ型等を備え、内容物が完全混合に近い状態で混合され
うる、縦型の任意の形状の反応槽である。(以後縦型の
反応槽と称す)上記の縦型の反応槽においては撹拌翼と
反応槽の壁面とのクリアランスはできるだけ小であるこ
と、該反応槽内の化合物を効率的に均一に撹拌するため
には槽内の平均剪断速度が2秒−1以上であることが好
ましい。
The reaction tank having a vertical stirring blade used in the present invention means a stirring blade of any shape, such as a helical ribbon type,
It is a vertical reaction vessel of any shape, including a double helical ribbon type, turbine type, paddle type, squid type, etc., in which the contents can be mixed in a state close to complete mixing. (hereinafter referred to as a vertical reaction tank) In the above vertical reaction tank, the clearance between the stirring blade and the wall of the reaction tank should be as small as possible, and the compounds in the reaction tank should be efficiently and uniformly stirred. In order to achieve this, it is preferable that the average shear rate in the tank is 2 sec-1 or more.

本発明において用いられる横型の撹拌翼を有する反応槽
とは、二軸あるいはそれ以上の軸を有1−1軸に対して
任意の角度をもった、同方向に回転する円形、二条ネジ
型および三条ネジ型の形状からなる撹拌翼を備えた、実
質的にピストンフロー型の反応槽のことである。(以後
横型の反応槽と称す。)円形、二条ネノ型および三条ネ
ジ型の撹拌翼の形状を第1〜3図に図示する。
The reaction vessel with horizontal stirring blades used in the present invention refers to a circular type, a double-threaded type, which has two or more axes, and which rotates in the same direction at an arbitrary angle to the 1-1 axis. This is essentially a piston flow type reaction tank equipped with stirring blades in the shape of a three-threaded screw. (Hereinafter, it will be referred to as a horizontal reaction tank.) The shapes of the circular, two-thread type, and three-thread type stirring blades are illustrated in FIGS. 1 to 3.

横型の反応槽内全域においてポリマーの滞留物がなくな
り均一なポリマーを得るために該反応槽がセルフクリー
ニング性を有することが望ましい。
It is desirable that the reaction tank has self-cleaning properties in order to eliminate polymer stagnation throughout the horizontal reaction tank and obtain a uniform polymer.

また、横型の反応槽内全域においてポリマーが均一に混
合され、謂ゆるゲル化物が発生しないためには該反応槽
の撹拌翼の山(撹拌翼が円形である場合には外周部)と
反応槽壁きの距雛が最も小となる場所での剪断速度が2
00秒゛1以上であることが望ましい。
In addition, in order for the polymer to be mixed uniformly throughout the horizontal reaction tank and to prevent the formation of so-called gelled products, it is necessary to ensure that the peaks of the stirring blades of the reaction tank (or the outer periphery if the stirring blades are circular) and the reaction tank The shear rate at the place where the wall thickness is the smallest is 2
It is desirable that it is 00 seconds゛1 or more.

本発明においては、まず−槽もしくは一種以上の縦型の
反応槽で比較的低重合度のポリマーが製造される。
In the present invention, a polymer having a relatively low degree of polymerization is first produced in a tank or one or more vertical reaction tanks.

出発原料化合物としてヒドロキノル基を有する化合物を
用いる場合には、まず縦型の反応槽で該化合物と低級脂
肪族酸無水物、好ましくは無水酢酸を反応させ実質的に
すべてのヒドロキンル基を対応するアシルエステル、好
ましくはアセテートの形に変換する。該反応は不活性気
体の存在下常圧もしくは加圧下、125℃から200℃
の温度範囲内で通常は10分から10時間行なわれる。
When using a compound having a hydroquinol group as a starting material compound, the compound is first reacted with a lower aliphatic acid anhydride, preferably acetic anhydride, in a vertical reaction tank to convert substantially all the hydroquinol groups into corresponding acyl groups. Conversion into the ester, preferably acetate form. The reaction is carried out at 125°C to 200°C in the presence of an inert gas at normal or elevated pressure.
The temperature range is usually 10 minutes to 10 hours.

本エステル化反応の終了後、反応混合液をそのまま次の
重縮合工程に用いることができる他、生成したアシルエ
ステルを−たん単離した後重縮合反応を実施することも
できる。重縮合反応はアシルエステル化に用いたのと同
一の反応槽、または別の縦型の反応槽で不活性気体の存
在下において常圧もしくは加圧下、らしくけ減圧下で出
発原料化合物のヒドロキンル基のアシルエステル化反応
に用いた過剰量の低級脂肪族酸無水物、および該エステ
ル化反応により副生じた低級脂肪族酸化合物および重縮
合反応により生成する低級脂肪族酸化合物を該反応槽よ
り連続的もしくは非連続的?こ除去しながら実施される
After the completion of this esterification reaction, the reaction mixture can be used as it is in the next polycondensation step, or the polycondensation reaction can be carried out after the produced acyl ester is isolated. The polycondensation reaction is carried out in the same reaction tank used for the acyl esterification, or in a separate vertical reaction tank, in the presence of an inert gas, under normal or increased pressure, or under reduced pressure. The excess lower aliphatic acid anhydride used in the acyl esterification reaction, the lower aliphatic acid compounds by-produced by the esterification reaction, and the lower aliphatic acid compounds produced by the polycondensation reaction are continuously removed from the reaction tank. Targeted or discontinuous? This is done while removing this.

縦型の反応槽における重縮合反応は、通常は125℃か
ら400℃、好ましくは150℃から350℃の範囲内
の温度で行なわれる。撹拌翼の回転速度は用いる撹拌翼
の形状および生成物の粘度にもよるが、通常1分間当た
り20から200回転の範囲内で行なわれる。
The polycondensation reaction in a vertical reactor is usually carried out at a temperature within the range of 125°C to 400°C, preferably 150°C to 350°C. The rotational speed of the stirring blade depends on the shape of the stirring blade used and the viscosity of the product, but is usually within the range of 20 to 200 revolutions per minute.

本発明の方法では、縦型の最終の反応槽において撹拌条
件下でのみかけの溶融粘度を50から500ボイスの範
囲内で重縮合反応を停止することが重要である。撹拌条
件下でのみかけの溶融粘度とは、撹拌翼の形状および回
転速度から規定される剪断力下および反応温度における
溶融粘度のことであり、通常、反応槽の撹拌翼のトルク
を測定することによって求めることができる。該粘度が
50ボイス未満の場合には該反応槽より得られる高分子
化合物の重合度が低すぎ、各種成形物として望ましい分
子1を(イする最終生成物を得るためには横型の反応槽
におIJる重縮合反応時間が長くなり、大容量の横型の
反応槽を必要とするので好ましくない。上記の最終の縦
型の反応槽でのみかけの溶融粘度が500ポイズを越え
る場合には、核種で均一な撹拌を効率的に行なうことが
困難となり均一な組成のポリマーが得られないだけでな
く反応終了後該反応槽からのポリマーの排出効率が著し
く低下する。
In the method of the present invention, it is important to stop the polycondensation reaction when the apparent melt viscosity is within the range of 50 to 500 voices under stirring conditions in the final vertical reaction vessel. Apparent melt viscosity under stirring conditions refers to the melt viscosity under shearing force and at reaction temperature determined by the shape and rotational speed of the stirring blade, and is usually measured by measuring the torque of the stirring blade in the reaction tank. It can be found by If the viscosity is less than 50 voices, the degree of polymerization of the polymer compound obtained from the reaction tank is too low, and in order to obtain the final product in which the molecule 1, which is desirable for various molded products, is obtained, it is necessary to use a horizontal reaction tank. This is undesirable because the IJ polycondensation reaction time becomes longer and a large-capacity horizontal reaction tank is required.If the apparent melt viscosity in the final vertical reaction tank exceeds 500 poise, It is difficult to efficiently perform uniform stirring due to the nuclide, and not only is it impossible to obtain a polymer with a uniform composition, but also the efficiency of discharging the polymer from the reaction tank after the reaction is completed is significantly reduced.

縦型の最終の反応槽で溶融粘度が上記の範囲内となるま
で重縮合反応を続けた後、ポリマーを溶融状態で取り出
し、そのまま溶融状態で次の横型の反応槽に移し、連続
的に更に重縮合反応を続けることができる。また、縦型
の反応槽より取り出されたポリマーをいったん冷却して
固化させた後、(モ色の形状に切断もしくは粉砕し、再
び溶融させて横型の反応槽で更に重縮合反応を行なう方
法を採用することもできる。
After continuing the polycondensation reaction in the final vertical reactor until the melt viscosity falls within the above range, the polymer is taken out in a molten state and transferred to the next horizontal reactor in its molten state, where it is continuously further reacted. The polycondensation reaction can continue. In addition, after the polymer taken out from the vertical reaction tank is cooled and solidified, it is cut or crushed into a yellow shape, melted again, and further polycondensation reaction is carried out in the horizontal reaction tank. It can also be adopted.

該横型の反応槽においては、該反応槽より取り出された
ポリマーがペンタフルオロフェノール中01重量/容贋
%、60℃で測定したときに、3〜I Odl/g、好
ましくは3.5〜s di/gの対数粘度で表される重
合度となるまで溶融重縮合反応が行なわれる。
In the horizontal reactor, the polymer taken out from the reactor has a concentration of 3 to 1 Odl/g, preferably 3.5 to s when measured at 60° C. in 0.1% w/v in pentafluorophenol. The melt polycondensation reaction is carried out until the degree of polymerization is expressed as a logarithmic viscosity of di/g.

該横型の反応槽では、重縮合反応により副生される低級
脂肪族酸化合物、例えば、出発化合物として芳香族ヒド
ロキシル化合物の酢酸エステルを用いた場合には、酢酸
の該反応槽からの留出が容易となるように通常の場合減
圧下、例えば約500から0.lmmHgの範囲内で反
応が行なわれる。該反応槽における反応温度としては2
50℃から450℃、好ましくは280℃から400℃
の範囲から選ばれ、滞留時間は1分から1時間の範囲内
から選ばれる。該反応槽の撹拌翼の回転速度としては1
分間当たり50から300回転の範囲内から選ばれる。
In the horizontal reaction tank, if a lower aliphatic acid compound produced as a by-product in the polycondensation reaction is used, for example, an acetate ester of an aromatic hydroxyl compound as a starting compound, acetic acid cannot be distilled out from the reaction tank. For convenience, the pressure is usually reduced, for example from about 500 to 0. The reaction is carried out within lmmHg. The reaction temperature in the reaction tank is 2
50°C to 450°C, preferably 280°C to 400°C
The residence time is selected from the range of 1 minute to 1 hour. The rotational speed of the stirring blade of the reaction tank is 1
It is selected from within the range of 50 to 300 revolutions per minute.

得られた全芳香族ポリエステルの上記に規定した対数粘
度が3dl/gより小さい場合には、該ポリエステルよ
り得られる各種成形品の物性が低く望ましくない。対数
粘度がl0dl/gを越える場合にも該ポリエステルよ
り得られる各種成形品の物性が1odl/g以下の場合
よりも小となり、また溶融成形性ら悪くなり好ましくな
い。
If the logarithmic viscosity defined above of the obtained wholly aromatic polyester is less than 3 dl/g, the physical properties of various molded products obtained from the polyester are undesirably low. If the logarithmic viscosity exceeds 10 dl/g, the physical properties of various molded products obtained from the polyester will be lower than when the logarithmic viscosity is 1 odl/g or less, and the melt moldability will also deteriorate, which is undesirable.

光学的に異方性の溶融相を形成することにより光学的に
異方性の溶融相を形成しない場合に較べて溶融成形性が
著しく向上し、かつ該ポリエステルより得られる各種成
形品の物性、例えば強度、弾性率、衝撃強度などが著し
く向上する。
By forming an optically anisotropic melt phase, melt moldability is significantly improved compared to the case where an optically anisotropic melt phase is not formed, and the physical properties of various molded products obtained from the polyester, For example, strength, elastic modulus, impact strength, etc. are significantly improved.

本発明の製造方法により得られる全芳香族ポリエステル
は400℃以下の温度で光学的に異方性の溶融相を形成
することが好ましい。光学的に異方性の溶融相の形成の
確認は、当業者によく知られているように、加熱装置を
備えた偏光顕微鏡、東 直七二フル下で試料の薄片、好ましくは5〜20μff
i程度の薄片をカバーグラス間にはさみ一定の昇温速度
下で観察し、一定温度以上で光を透過することを見るこ
とにより行ないえる。本観察において偏光を透過し始め
る温度が光学的に異方性の溶融相への転移温度である。
It is preferable that the wholly aromatic polyester obtained by the production method of the present invention forms an optically anisotropic melt phase at a temperature of 400° C. or lower. Confirmation of the formation of an optically anisotropic molten phase is carried out by thin sectioning the sample under a polarized light microscope equipped with a heating device, preferably 5-20 μff
This can be done by inserting a thin section of about i in size between cover glasses and observing it under a constant heating rate, and observing that light passes through at a constant temperature or higher. In this observation, the temperature at which polarized light begins to pass through is the transition temperature to an optically anisotropic molten phase.

本発明の方法において使用される出発原料化合物は、芳
香族ヒドロキンカルボン酸および/またはそれらの誘導
体、芳香族ノカルボン酸および/またはそれらの誘導体
、および芳香族ジヒドロキノ化合物および/またはそれ
らの誘導体の少なくとも一種以上から選ばれる。
The starting material compounds used in the method of the present invention include at least one of aromatic hydroquine carboxylic acids and/or derivatives thereof, aromatic nocarboxylic acids and/or derivatives thereof, and aromatic dihydroquino compounds and/or derivatives thereof. Selected from one or more types.

芳香族ヒドロキノカルボン酸の具体例としては、4−ヒ
ドロキシ安息香酸、2−ヒドロキン−6=ナフトエ酸、
4−(4−ヒドロキシフェニル)安息香酸等および4−
アセトキン安息香酸等のエステル誘導体を挙げることが
できる。
Specific examples of aromatic hydroquinocarboxylic acids include 4-hydroxybenzoic acid, 2-hydroquine-6=naphthoic acid,
4-(4-hydroxyphenyl)benzoic acid etc. and 4-
Ester derivatives such as acetoquine benzoic acid can be mentioned.

芳香族ジカルボン酸の具体例としては、テレフタル酸、
イソフタル酸、4.4′−ジカルボキンジフェニル、2
.6−ジカルボキンナフタレン、27ノカルホキンナフ
タレン、1.2−ビス(4−カルボキンフェノキン)エ
タン等、およびテレフタル酸ツメチル等のエステル誘導
体を挙げることができる。
Specific examples of aromatic dicarboxylic acids include terephthalic acid,
Isophthalic acid, 4,4'-dicarboquine diphenyl, 2
.. Examples include ester derivatives such as 6-dicarboquinnaphthalene, 27-dicarboquinnaphthalene, 1,2-bis(4-carboquinphenoquine)ethane, and tumethyl terephthalate.

芳香族ジヒドロキシ化合物の具体例としては、ヒドロキ
ノン、4.4′−ジヒドロキシジフェニル、4.4′−
ジヒドロキシベンゾフェノン、4.4′−ジヒドロキツ
ノフェニルエーテル、4.4’−ノヒドロキノノフェニ
ルスルホン、4.4′−ジヒドロキノジフェニルスルフ
ィド、2.6−シヒドロキンナフタレン等、および4.
4′−ノアセトキンノフェニル等のエステル誘導体を挙
げることができる。
Specific examples of aromatic dihydroxy compounds include hydroquinone, 4.4'-dihydroxydiphenyl, 4.4'-
Dihydroxybenzophenone, 4,4'-dihydroquinonophenyl ether, 4,4'-nohydroquinonophenyl sulfone, 4,4'-dihydroquinodiphenyl sulfide, 2,6-cyhydroquinonaphthalene, etc., and 4.
Ester derivatives such as 4'-noacetoquinnophenyl can be mentioned.

好ましくは下記の構造式1.It、および■で表される
化合物またはそれらの誘導体を HO−Ar−COOH (式中Arは、1.4−フェニレン基および/または2
.6−ナフタレン基を表す。) ロ    HOOC−Ar’−COOH(式中Arは、
一種以上の少なくとも一個以上の芳香璋からなる二価の
基であり、その内生なくとも50モル%以上は直線配向
基である。)[11,HO−Ar−OH (式中Arは、4.4′−ジフェニル基および/または
4.4′−ジフェニルエーテル基である。)総1に対し
て、化合物Iは30から80モル%、化合物■はlOか
ら35モル%、化合物■は1゜から35モル%の範囲内
の量で用いられる(但し化合物■と化合物■はI O、
/ 9〜9/10の範囲内のモル比で用いることとする
)。
Preferably, the following structural formula 1. Compounds represented by It and
.. Represents a 6-naphthalene group. ) HOOC-Ar'-COOH (in the formula, Ar is
It is a divalent group consisting of at least one or more aromatic groups, and at least 50 mol% or more of the endogenous groups are linearly oriented groups. ) [11,HO-Ar-OH (In the formula, Ar is a 4,4'-diphenyl group and/or a 4,4'-diphenyl ether group.) Compound I is 30 to 80 mol% based on the total 1 , Compound ■ is used in an amount within the range of IO to 35 mol%, Compound ■ is used in an amount within the range of 1° to 35 mol% (However, Compound ■ and Compound ■ are used in an amount of IO,
/9 to 9/10).

化合物1は芳香族ヒドロキン酸化合物およびその誘導体
であり、 Arは1.4−フェニレン基および/または
2.6−ナフタレン基であり、好ましくは1.4−フェ
ニレン基である。
Compound 1 is an aromatic hydroxylic acid compound and its derivative, Ar is a 1,4-phenylene group and/or a 2,6-naphthalene group, preferably a 1,4-phenylene group.

八rが1,4−フェニレン基に加えて26−ナフタレン
基を共存させて用いる場合には得られた全芳香族ポリエ
ステルの溶融成形加工性の面で好ましい。その場合には
、4−オキノベンゾイル部分と6−オキシ−2−ナフト
イル部分のモル比は20/lから1/20の範囲内であ
るが、6−ヒドロキラー2−ナフトエ酸の方がより高価
であるので、4−オキシベンゾイル部分の割合が多い方
が工業的には好ましい。また、6−オキシ−2−ナフト
イル部分のみであることもできるが同梯の理由で工業的
には好ましくない。
When 8r is used in combination with a 26-naphthalene group in addition to a 1,4-phenylene group, it is preferable in terms of melt molding processability of the obtained wholly aromatic polyester. In that case, the molar ratio of 4-okinobenzoyl moiety to 6-oxy-2-naphthoyl moiety is in the range of 20/l to 1/20, but 6-hydrokylar 2-naphthoic acid is more expensive. Therefore, it is industrially preferable to have a large proportion of 4-oxybenzoyl moiety. It is also possible to use only the 6-oxy-2-naphthoyl moiety, but this is not preferred industrially for the same reason.

化合物1は用いる原料化合物の総量に対して30から8
0モル%、好ましくは40から70モル%の範囲内の量
で用いられる。
Compound 1 is added in an amount of 30 to 8 with respect to the total amount of raw material compounds used.
It is used in an amount of 0 mol%, preferably in the range of 40 to 70 mol%.

化合物口は芳香族ノカルホン酸化合物およびその誘導体
であり、Ar’は1種以上の少なくとも1個以上の芳香
環からなる二価の基であり、その内生なくと650モル
%以上は直線配向性基である。
The compound is an aromatic nocarphonic acid compound and its derivatives, and Ar' is a divalent group consisting of at least one aromatic ring, and at least 650 mol% of it has linear orientation. It is the basis.

ここで直線配向性とは、CO基が芳香環をはさんで直線
対称的に位置していることをいう。Ar’の具体例とし
ては1.4−フェニレン基、2.6−ナフタレン基、4
.4’−ジフェニル基、1.3−フェニレン基などであ
るが、1.4−フェニレン基であることが原料の価格お
よび得られた全芳香族ポリエステルの物性の面から好ま
しい。
Here, the linear orientation means that the CO groups are located linearly symmetrically across the aromatic ring. Specific examples of Ar' include 1,4-phenylene group, 2,6-naphthalene group, 4
.. Examples include 4'-diphenyl group and 1,3-phenylene group, but 1,4-phenylene group is preferable from the viewpoint of raw material cost and physical properties of the obtained wholly aromatic polyester.

化合物■は用いる原料化合物の総1に対して10から3
5モル%、好ましくは15から30モル%の範囲内の1
で用いられる。
Compound ■ is 10 to 3 to 1 of the total raw material compounds used.
1 in the range of 5 mol%, preferably 15 to 30 mol%
used in

化合物■は芳香族ンヒドロギン化合物およびその誘導体
であり、Ar″は4.4′−ジフェニル基および/また
は4.4′−ジフェニルエーテル基である。中でらAr
″が4.4′−ジフェニル基および4.4′−ジフェニ
ルエーテル基であり、かつ4.4′−ジフェニル基と4
4′−ジフェニルエーテル基のモル比が872〜1/9
である場合が、得られた全芳香族ポリエステルの成形性
ならびに該ポリエステルより得られる各種成形品の物性
の面から好ましい。化合物■は用いる原料化合物の総量
に対して10から35モル%、好ましくは15から30
モル%の範囲内の量で用いられる。
Compound (1) is an aromatic hydrogine compound and its derivatives, and Ar'' is a 4,4'-diphenyl group and/or a 4,4'-diphenyl ether group.
″ is a 4,4′-diphenyl group and a 4,4′-diphenyl ether group, and 4,4′-diphenyl and 4
The molar ratio of 4'-diphenyl ether group is 872 to 1/9
It is preferable from the viewpoint of the moldability of the obtained wholly aromatic polyester and the physical properties of various molded products obtained from the polyester. Compound (1) is present in an amount of 10 to 35 mol%, preferably 15 to 30 mol%, based on the total amount of raw material compounds used.
It is used in amounts within the range of mole %.

化合物■と化合物■は10/9〜9 /lOの範囲内の
徹で用いられ、生成した全芳香族ポリエステル中に化合
物口および化合物■から導かれるくり返し単位のモル比
が実質的に等しい1となるようにして用いられる。すな
わち、重縮合反応中に化合物■および化合物■が系外に
飛散しない場合には化合物■と化合物■は実質的に等し
い1で用いられ、どちらかが飛散する場合には飛散する
量に応じて、化合物■もしくは化合物■を過剰に用いれ
ばよい。
Compound (1) and compound (2) are used at a concentration within the range of 10/9 to 9/1O, and the molar ratio of repeating units derived from compound (1) and compound (2) in the produced wholly aromatic polyester is substantially equal to 1 and (1). It is used as follows. In other words, if compound ■ and compound ■ do not scatter out of the system during the polycondensation reaction, compound ■ and compound ■ are used at substantially the same amount of 1, and if either of them scatters, it depends on the amount of scattering. , Compound (1) or Compound (2) may be used in excess.

重縮合反応は触媒を使用しなくても行ない得るが、総革
遺体重量の約0001〜1重量%、好ましくは約o、o
 o s〜o、5ffili%の範囲内の債で公知のエ
ステル交換触媒を用いると重合速度の点で好ましい結果
が得られる場合らある。エステル交換触媒の具体例とし
ては、カルボッ酸のアルカリ又はアルカリ土類金属塩、
アルキルスズオキント、ジアリールスズオキシド、アル
キルスズ酸、二酸化ヂタノ、アルフキンチタンンリケー
ト、ヂタンアルコキノド、ルイス酸、ハロゲ7ノ化水素
などを挙げることができる。
Although the polycondensation reaction can be carried out without the use of a catalyst, it is about 0001 to 1% by weight of the total leather carcass weight, preferably about o, o
When a known transesterification catalyst is used in the range of 0.5 to 5%, favorable results may be obtained in terms of polymerization rate. Specific examples of transesterification catalysts include alkali or alkaline earth metal salts of carboxylic acids;
Examples include alkyltin quinides, diaryltin oxides, alkyltin acids, ditano dioxide, alfquin titanium silicate, ditane alkoxides, Lewis acids, and halogen heptanohydrogenides.

〔実施例〕〔Example〕

実施例I 縦型の撹拌式反応槽として内径が44On+m、内容積
70Q、材質が5IJS316Lであり、ダブルヘリカ
ルリボン型撹拌翼を有し、反応槽の壁面と該撹拌翼のク
リアランスが5mmである反応槽を使用した。該反応槽
に4−ヒドロキン安息香酸20,720kg、テレフタ
ル酸8.307kg、 4.4−ジヒドロキソジフェニ
ル4.655kg、 4.4’−ジヒドロキノジフェニ
ルエーテル5.055kg、および無水酢酸28.07
5kgを仕込んだ。系内を窒素ガスで充分置換したのち
反応槽の油浴温度を150℃に加温し撹拌下2時間還流
させた。なお、撹拌翼の回転数は毎分70回転とした。
Example I A vertical stirring type reaction tank with an inner diameter of 44 On+m, an internal volume of 70Q, a material of 5IJS316L, a double helical ribbon type stirring blade, and a reaction in which the clearance between the wall of the reaction tank and the stirring blade is 5 mm. A tank was used. Into the reaction tank were 20,720 kg of 4-hydroquine benzoic acid, 8.307 kg of terephthalic acid, 4.655 kg of 4.4-dihydroxodiphenyl, 5.055 kg of 4.4'-dihydroquinodiphenyl ether, and 28.07 kg of acetic anhydride.
I loaded 5 kg. After the system was sufficiently purged with nitrogen gas, the temperature of the oil bath in the reaction tank was raised to 150°C, and the mixture was refluxed for 2 hours with stirring. Note that the rotation speed of the stirring blade was 70 revolutions per minute.

2時間後、反応槽の内温を上昇させ1時間かけて220
℃にし、次いで1時間かけて260℃に昇温し、更に1
時間かけて320℃に昇温し、320℃で10分間保持
した。この間合計30.60kgの酢酸および無水酢酸
が留出した。次いで反応槽の内温を340℃にまで昇温
し、反応槽内を徐々に減圧にし40分かけて50 wm
Hgに到達させた。
After 2 hours, the internal temperature of the reaction tank was raised to 220℃ over 1 hour.
℃, then raised to 260℃ over 1 hour, and further heated to 260℃ for 1 hour.
The temperature was raised to 320°C over time and held at 320°C for 10 minutes. During this period, a total of 30.60 kg of acetic acid and acetic anhydride were distilled out. Next, the internal temperature of the reaction tank was raised to 340°C, and the pressure inside the reaction tank was gradually reduced to 50 wm over 40 minutes.
reached Hg.

この間にトルク計から算出される反応物の見かけの溶融
粘度は徐々に上昇し、40分後には5oポイズとなった
。更に撹拌下340℃、5 mffiHgの条件を保持
したところ10分後見かけの溶融粘度が!70ポイズに
到達した。この時点で系内に窒素ガスを導入し常圧にも
どして反応を停止した。反応槽よりサンプルを一部取り
出し、ペンタフルオロフェノール中0,1重貴/容量%
、60’Cの条件で対数粘度を測定したところ2.90
 dl/gであった。
During this time, the apparent melt viscosity of the reactant calculated from the torque meter gradually increased and reached 5o poise after 40 minutes. Furthermore, when the conditions were maintained at 340°C and 5 mffiHg while stirring, the apparent melt viscosity increased after 10 minutes! It reached 70 poise. At this point, nitrogen gas was introduced into the system to return it to normal pressure and stop the reaction. A portion of the sample was taken out from the reaction tank and 0.1% precious/volume in pentafluorophenol was taken out.
, the logarithmic viscosity was measured at 60'C and was 2.90.
It was dl/g.

なお、対数粘度は以下の式で計算される。Note that the logarithmic viscosity is calculated using the following formula.

Qn L/l。Qn L/l.

ηinh“ to・ウベローデ型粘度計、60℃で測定した時の溶媒
であるペンタフルオロフェノールの落下時間。
Fall time of pentafluorophenol, a solvent, when measured at 60°C using an Ubbelohde viscometer.

L :試料を溶解した溶液の落下時間。L: Falling time of the solution containing the sample.

C:試料の濃度(g/dl) 次に、この縦型の反応槽の内容物をそのまま連続的に該
反応槽に直結する横型の反応槽に供給し、更に重縮合反
応を続けた。
C: Concentration of sample (g/dl) Next, the contents of this vertical reaction tank were continuously supplied as they were to a horizontal reaction tank directly connected to the reaction tank, and the polycondensation reaction was further continued.

該横型の撹拌翼を有する反応槽として内径が100mm
、程良が1000 mn+であり、第1図に示す形状で
同方向に回転する円形の撹拌翼を有し、該撹拌翼の外周
部と反応槽壁とのクリアランスがIIIIIllであり
材質がすべて5US318のものを用いた。
The inner diameter of the reaction tank having horizontal stirring blades is 100 mm.
, the diameter is 1000 m+, it has a circular stirring blade that rotates in the same direction as shown in Fig. 1, the clearance between the outer periphery of the stirring blade and the wall of the reaction tank is IIIIIIll, and all the materials are 5US318. I used the one from

該反応槽を用いて340℃、回転数毎分90回、減圧度
5 nmHg、滞留時間15分の条件下で追い込み重合
を行なった。なお、本撹拌条件下では該反応槽の撹拌翼
の外周部と反応槽壁との距離が最小となる場所での剪断
速度は470秒−1であった。
Using this reaction tank, push polymerization was carried out under the conditions of 340° C., 90 rotations per minute, reduced pressure of 5 nmHg, and residence time of 15 minutes. Note that under these stirring conditions, the shear rate at the location where the distance between the outer periphery of the stirring blade of the reaction tank and the wall of the reaction tank was the minimum was 470 sec-1.

上記の条件下で、横型の反応槽中で重縮合反応を続け、
ポリマーをストランド状で取り出し、通常のストランド
カッターでペレット状に切断した。
Under the above conditions, the polycondensation reaction continues in a horizontal reactor,
The polymer was taken out in strand form and cut into pellets using a conventional strand cutter.

得られたポリマーの対数粘度は4.50 dl/gであ
った。得られたポリマーの理論収】に対する収率は90
%であった。
The logarithmic viscosity of the obtained polymer was 4.50 dl/g. The yield of the obtained polymer was 90
%Met.

本ポリマーの微小片をリンカム(Linkam) 社製
、顕微鏡用加熱装置TH−600内で窒素雰囲気下、1
0℃/分の速度で昇温し、偏光顕微鏡直交ニコル下で観
察したところ、293℃より光を透過しはじめ305℃
附近で透過光】は更に大となり本ポリマーは光学的に異
方性の溶融相を形成することが確認された。
Microscopic pieces of this polymer were heated under a nitrogen atmosphere in a microscope heating device TH-600 manufactured by Linkam.
When the temperature was raised at a rate of 0°C/min and observed under a polarizing microscope with crossed Nicols, light began to pass through from 293°C and reached 305°C.
Nearby, the transmitted light becomes even larger, confirming that this polymer forms an optically anisotropic molten phase.

得られたポリマーを日清樹脂工業製射出成形機5S80
S +2ASEにて、バレル温度320℃、金型温度1
00℃、射出圧800 kg/cm”の条件で射出成形
を行ない、試験片を作成した。得られた試験片の曲げ強
度、曲げ弾性率、アイゾツト衝撃強度、および熱変形温
度をそれぞれの測定方法に従い測定した。結果を次に示
す。
The obtained polymer was molded using an injection molding machine 5S80 manufactured by Nisshin Jushi Kogyo Co., Ltd.
S +2ASE, barrel temperature 320℃, mold temperature 1
Injection molding was carried out under the conditions of 00°C and an injection pressure of 800 kg/cm" to create test pieces.The bending strength, flexural modulus, Izod impact strength, and heat distortion temperature of the obtained test pieces were measured using each method. The results are shown below.

曲げ強度  (JISK7023)   1700 k
g/am”曲げ弾性率 (JISK7023)   1
3.4X 10’ kg/c+i”アイゾツト衝撃強度
 (JISK7110)ノツチ付     54 kg
cm/anノツチ無     94 kgcm/cm’
熱変形温度 (ASTMD648)   259℃実施
例2 実施例Iで用いた縦型の反応槽に4−ヒドロキン安息香
酸20.720kg 、テL/’7タル酸8.307 
kg。
Bending strength (JISK7023) 1700k
g/am” bending modulus (JISK7023) 1
3.4X 10'kg/c+i" Izot impact strength (JISK7110) with notch 54 kg
cm/an without notch 94 kgcm/cm'
Heat distortion temperature (ASTMD648) 259°C Example 2 In the vertical reaction tank used in Example I, 20.720 kg of 4-hydroquine benzoic acid and 8.307 te L/'7 taric acid were added.
kg.

4.4′−ノヒドロキンジフェニル3.491 kg、
 4.4’ −ノヒドロキシジフェニルエーテル6.3
19 kgおよび無水酢酸28.075kgを仕込んだ
。実施例1と同一の条件で、原料化合物のアセチル化お
よびそれにつづく重縮合反応を行なった。トルク計から
算出される見かけの溶融粘度が+50ポイズに到達した
時に反応を停止し、内容物を反応槽よりストランド状で
取り出しペレット化した。なお、該ベレット状ポリマー
の理論収量に対する収率は94%であった。
4.4'-nohydroquine diphenyl 3.491 kg,
4.4'-nohydroxydiphenyl ether 6.3
19 kg and 28.075 kg of acetic anhydride were charged. The acetylation of the raw material compound and the subsequent polycondensation reaction were carried out under the same conditions as in Example 1. The reaction was stopped when the apparent melt viscosity calculated from the torque meter reached +50 poise, and the contents were taken out from the reaction vessel in the form of strands and pelletized. The yield of the pellet-like polymer was 94% based on the theoretical yield.

得られたポリマーを実施例1と同様にして対数粘度を測
定したところ2.78 dl/gであった。次いでこの
ペレットを内径40Ilr@、程良1680 am、材
質が窒化鋼であり二輪の同方向に回転する第2図に示す
形状の二条ネジ型の撹拌翼を有し、該撹拌翼と反応槽内
壁とのクリアランスが0.3mmである横型の反応槽に
供給し、340℃、ll1m1g、回転速度毎分150
回転、滞留時間10分の条件下で更に重縮合反応を続け
た。上記の条件下における撹拌の剪断速度は1047秒
−1であった。なお、該横型反応槽の前部には単軸の押
し出し機を直結し、該押し出し機中においてベレットを
加熱溶融させて横型の反応槽に供給した。横型の反応槽
よりポリマーをストランド状で取り出しベレット化した
The logarithmic viscosity of the obtained polymer was measured in the same manner as in Example 1 and found to be 2.78 dl/g. Next, the pellets were mixed into a reactor with an inner diameter of 40 Ilr@, a moderate diameter of 1,680 am, made of nitrided steel, and equipped with two threaded screw-type stirring blades of the shape shown in Fig. 2 that rotate in the same direction with two wheels, and the stirring blades and the inner wall of the reaction tank. It was supplied to a horizontal reaction tank with a clearance of 0.3 mm between the
The polycondensation reaction was further continued under the conditions of rotation and residence time of 10 minutes. The shear rate of stirring under the above conditions was 1047 s-1. A single-screw extruder was directly connected to the front of the horizontal reaction tank, and the pellets were heated and melted in the extruder and supplied to the horizontal reaction tank. The polymer was taken out in the form of strands from the horizontal reaction tank and made into pellets.

得られたポリマーの対数粘度は3.68 dl/gであ
り、290℃以上で光学的に異方性の溶融相を形成した
The resulting polymer had a logarithmic viscosity of 3.68 dl/g, and formed an optically anisotropic melt phase at temperatures above 290°C.

実施例1と同様にj、て射出成形を行なったところ得ら
れた試験片の物性は次の通りであった。
Injection molding was performed in the same manner as in Example 1, and the physical properties of the test piece obtained were as follows.

曲げ強度        1470 kg/am’曲げ
弾性率       8.3X 10’ kg/cm’
アイゾツト衝撃強度 ノツチ付   93 kg+、n70mノツチ1m  
  140 kzcm/cJ熱変形温度       
251℃ 〔発明の効果〕 本発明の製造方法によれば、光学的に異方性の溶融相を
形成する全芳香族ポリエステルを効率的に均一に製造す
ることができ、また反応槽からのポリマーの排出効率が
良好である。
Bending strength 1470 kg/am' Bending modulus 8.3X 10'kg/cm'
Izotsu impact strength with notch 93 kg+, n70m notch 1m
140 kzcm/cJ heat distortion temperature
251°C [Effects of the Invention] According to the production method of the present invention, a wholly aromatic polyester that forms an optically anisotropic melt phase can be efficiently and uniformly produced, and the polymer from the reaction tank can be uniformly produced. The discharge efficiency is good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は円形の撹拌翼を得する横型の反応槽の断面図で
あり、第2図は二条ネジ型の撹拌翼を有する横型の反応
槽の断面図であり、第3図は三条ネジ型の撹拌翼を有す
る横型の反応槽の断面図である。 横型の反応槽の内壁 2  撹拌翼 3  撹拌軸 特許出願人 株式会社 り ラ し 代  理  人
Figure 1 is a cross-sectional view of a horizontal reaction tank with circular stirring blades, Figure 2 is a cross-sectional view of a horizontal reaction tank with a double-threaded stirring blade, and Figure 3 is a cross-sectional view of a horizontal reaction tank with a double-threaded stirring blade. FIG. 2 is a cross-sectional view of a horizontal reaction tank having stirring blades. Inner wall of horizontal reaction tank 2 Stirring blade 3 Stirring shaft Patent applicant Rira Co., Ltd. Agent

Claims (1)

【特許請求の範囲】 1、芳香族ヒドロキシカルボン酸および/またはそれら
の誘導体、芳香族ジカルボン酸および/またはそれらの
誘導体、および芳香族ジヒドロキシ化合物および/また
はそれらの誘導体より選ばれる少なくとも一種以上から
、光学的に異方性の溶融相を形成する全芳香族ポリエス
テルを溶融重縮合反応により製造する方法において、該
反応を縦型の撹拌翼を有する一槽以上の反応槽と、それ
に続く横型の撹拌翼を有する一槽の反応槽の組み合わせ
で行ない、縦型の撹拌翼を有する最後の反応槽における
撹拌条件下でのみかけの溶融粘度が50〜500ポイズ
となるまで重合を行なつた後、次いで連続的または非連
続的に横型の撹拌翼を有する反応槽で反応を継続し、該
横型の撹拌翼を有する反応槽より全芳香族ポリエステル
を取り出すことを特徴とする、光学的に異方性の溶融相
を形成する全芳香族ポリエステルの製造方法。 2、下記の構造式 I 、IIおよびIIIで表される化合物ま
たはそれらの誘導体を I 、HO−Ar−COOH (式中Arは、1,4−フェニレン基および/または2
,6−ナフタレン基を表す。) II、HOOC−Ar′−COOH (式中Ar′は一種以上の、少なくとも一個以上の芳香
環からなる二価の基であり、その 内少なくとも50モル%以上は直線配向基 である。) III、HO−Ar″−OH H式中Ar″は、4,4−ジフェニル基および/または
4,4−ジフェニルエーテル基である。)総量に対して
、化合物 I は30〜80モル%、化合物IIは10〜3
5モル%、化合物IIIは10〜35モル%の範囲内の量
で用いる(但し、化合物IIと化合物IIIは10/9〜9
/10の範囲内のモル比で用いることとする)ことを特
徴とする請求項1に記載の全芳香族ポリエステルの製造
方法。 3、全芳香族ポリエステルが、ペンタフルオロフェノー
ル中、0.1重量/容量%、60℃で測定したときに3
〜10dl/gの対数粘度を有する請求項1に記載の全
芳香族ポリエステルの製造方法。 4、全芳香族ポリエステルが、400℃以下の温度で光
学的に異方性の溶融相を形成する請求項1に記載の全芳
香族ポリエステルの製造方法。 5、第1槽の縦型の撹拌翼を有する反応槽に、化合物
I 、IIおよびIIIと化合物 I およびIIIのヒドロキシル
基に対して、1.0から2.0倍当量の無水酢酸を仕込
み、ヒドロキシルを実質的に全量アセチル基に変換した
のち、同一の反応槽もしくは別の1槽もしくは、それ以
上の縦型の撹拌翼を有する反応槽で過剰量の無水酢酸な
らびに、アセチル化により生成する酢酸を流出させなが
ら重縮合反応を行ない、最終の縦型の撹拌翼を有する反
応槽での撹拌条件下における見かけの溶融粘度が、50
〜500ポイズとなるまで重合を行なうことを特徴とす
る請求項2に記載の全芳香族ポリエステルの製造方法。 6、縦型の撹拌翼を有する反応槽がヘリカルリボン型、
ダブルヘリカルリボン型、タービン型、パドル型、もし
くはイカリ型の撹拌翼を有する請求項1に記載の全芳香
族ポリエステルの製造方法。 7、横型の撹拌翼を有する反応槽が二軸あるいはそれ以
上の軸を持ち、軸に対して任意の角度を有し、同方向に
回転する円形、二条ネジ型および三条ネジ型からなる形
状の翼を有する反応槽である、請求項1に記載の全芳香
族ポリエステルの製造方法。 8、横型の撹拌翼を有する反応槽がセルフクリーニング
性を有することを特徴とする請求項1に記載の全芳香族
ポリエステルの製造方法。 9、横型の撹拌翼を有する反応槽の撹拌翼の山と反応槽
壁との距離が、最も小となる場所での剪断速度が200
秒^−^1以上である請求項1に記載の全芳香族ポリエ
ステルの製造方法。 10、縦型の撹拌翼を有する反応槽での全滞留時間が1
時間から15時間である請求項1に記載の全芳香族ポリ
エステルの製造方法。 11、縦型の撹拌翼を有する反応槽の反応温度が125
℃から400℃である請求項1に記載の全芳香族ポリエ
ステルの製造方法。 12、横型の撹拌翼を有する反応槽での滞留時間が、1
分から1時間である請求項1に記載の全芳香族ポリエス
テルの製造方法。 13、横型の撹拌翼を有する反応槽の反応温度が、25
0℃から450℃である請求項1に記載の全芳香族ポリ
エステルの製造方法。 14、化合物1のArが1,4−フェニレン基であり、
化合物IIIのAr″が4,4′−ジフェニル基および4
,4′−ジフェニルエーテル基である請求項2に記載の
全芳香族ポリエステルの製造方法。 15、化合物IIIのAr″が4,4′−ジフェニル基お
よび4,4′−ジフェニルエーテル基であり、4,4′
−ジフェニル基と4,4′−ジフェニルエーテル基の比
が、8/2〜1/9である請求項14に記載の全芳香族
ポリエステルの製造方法。
[Scope of Claims] 1. At least one selected from aromatic hydroxycarboxylic acids and/or derivatives thereof, aromatic dicarboxylic acids and/or derivatives thereof, and aromatic dihydroxy compounds and/or derivatives thereof, A method for producing a wholly aromatic polyester that forms an optically anisotropic melt phase by a melt polycondensation reaction, in which the reaction is carried out in one or more reaction vessels having vertical stirring blades, followed by horizontal stirring. Polymerization was carried out using a combination of a single reaction tank equipped with blades, and polymerization was carried out until the apparent melt viscosity became 50 to 500 poise under stirring conditions in the last reaction tank equipped with vertical stirring blades, and then An optically anisotropic polyester, characterized in that the reaction is continued continuously or discontinuously in a reaction tank having horizontal stirring blades, and the wholly aromatic polyester is taken out from the reaction tank having horizontal stirring blades. A method for producing a wholly aromatic polyester forming a molten phase. 2. Compounds represented by the following structural formulas I, II and III or their derivatives I, HO-Ar-COOH (wherein Ar is a 1,4-phenylene group and/or 2
, 6-naphthalene group. ) II, HOOC-Ar'-COOH (In the formula, Ar' is one or more divalent groups consisting of at least one aromatic ring, of which at least 50 mol% or more is a linear alignment group.) III , HO-Ar''-OH In the H formula, Ar'' is a 4,4-diphenyl group and/or a 4,4-diphenyl ether group. ) Based on the total amount, Compound I is 30-80 mol%, Compound II is 10-3 mol%
5 mol%, Compound III is used in an amount within the range of 10 to 35 mol% (However, Compound II and Compound III are used in an amount of 10/9 to 9
2. The method for producing a wholly aromatic polyester according to claim 1, wherein the molar ratio is within the range of /10. 3. When the wholly aromatic polyester is measured in pentafluorophenol at 0.1% w/v at 60°C.
The method for producing a wholly aromatic polyester according to claim 1, having a logarithmic viscosity of ~10 dl/g. 4. The method for producing a wholly aromatic polyester according to claim 1, wherein the wholly aromatic polyester forms an optically anisotropic melt phase at a temperature of 400° C. or lower. 5. Add the compound to the first tank, a reaction tank with vertical stirring blades.
I, II, and III and Compounds I and III were charged with 1.0 to 2.0 equivalents of acetic anhydride to the hydroxyl groups to convert substantially all of the hydroxyl into acetyl groups, and then In another reactor having one or more vertical stirring blades, the polycondensation reaction is carried out while the excess acetic anhydride and the acetic acid produced by acetylation are discharged, and the final vertical stirring blades are The apparent melt viscosity under stirring conditions in a reaction tank with 50
3. The method for producing a wholly aromatic polyester according to claim 2, wherein the polymerization is carried out until the polymerization temperature reaches 500 poise. 6. The reaction tank with vertical stirring blades is a helical ribbon type,
2. The method for producing wholly aromatic polyester according to claim 1, comprising a double helical ribbon type, turbine type, paddle type, or squid type stirring blade. 7. A reaction vessel with a horizontal stirring blade has two or more axes, has an arbitrary angle to the axis, and rotates in the same direction. The method for producing a wholly aromatic polyester according to claim 1, which is a reaction tank having wings. 8. The method for producing a wholly aromatic polyester according to claim 1, wherein the reaction tank having a horizontal stirring blade has self-cleaning properties. 9. The shear rate at the point where the distance between the peak of the stirring blade of a reaction tank with horizontal stirring blades and the wall of the reaction tank is the smallest is 200.
2. The method for producing a wholly aromatic polyester according to claim 1, wherein the temperature is at least 1 second. 10. The total residence time in the reaction tank with vertical stirring blades is 1
2. The method for producing a wholly aromatic polyester according to claim 1, wherein the time is from 15 hours to 15 hours. 11. The reaction temperature of the reaction tank with vertical stirring blades is 125
The method for producing a wholly aromatic polyester according to claim 1, wherein the temperature is from °C to 400 °C. 12. Residence time in a reaction tank with horizontal stirring blades is 1
2. The method for producing a wholly aromatic polyester according to claim 1, wherein the time is from 1 minute to 1 hour. 13. The reaction temperature of the reaction tank with horizontal stirring blades is 25
The method for producing a wholly aromatic polyester according to claim 1, wherein the temperature is from 0°C to 450°C. 14, Ar of compound 1 is a 1,4-phenylene group,
Ar'' of compound III is 4,4'-diphenyl group and 4
, 4'-diphenyl ether group. 3. The method for producing a wholly aromatic polyester according to claim 2. 15. Ar'' of compound III is a 4,4'-diphenyl group and a 4,4'-diphenyl ether group, and 4,4'
15. The method for producing a wholly aromatic polyester according to claim 14, wherein the ratio of -diphenyl group to 4,4'-diphenyl ether group is 8/2 to 1/9.
JP63161252A 1988-06-28 1988-06-28 Method for producing wholly aromatic polyester Expired - Lifetime JP2685815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63161252A JP2685815B2 (en) 1988-06-28 1988-06-28 Method for producing wholly aromatic polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63161252A JP2685815B2 (en) 1988-06-28 1988-06-28 Method for producing wholly aromatic polyester

Publications (2)

Publication Number Publication Date
JPH0211626A true JPH0211626A (en) 1990-01-16
JP2685815B2 JP2685815B2 (en) 1997-12-03

Family

ID=15731554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63161252A Expired - Lifetime JP2685815B2 (en) 1988-06-28 1988-06-28 Method for producing wholly aromatic polyester

Country Status (1)

Country Link
JP (1) JP2685815B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183748A (en) * 1982-04-21 1983-10-27 Mitsubishi Gas Chem Co Inc Curable resin composition
JP2009510195A (en) * 2005-09-22 2009-03-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Manufacture of aromatic polyester

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802178B2 (en) * 2018-08-22 2023-10-31 Toray Industries, Inc. Liquid crystal polyester resin for laminate, liquid crystal polyester resin composition, laminate, and liquid crystal polyester resin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135827A (en) * 1980-10-21 1982-08-21 Hooker Chemicals Plastics Corp Partially or fully continuous manufacture of polyester from bisphenol and dicarboxylic acid by esterification polymerization and products thereby
JPS62212426A (en) * 1986-03-12 1987-09-18 Sumitomo Chem Co Ltd Production of aromatic polyester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135827A (en) * 1980-10-21 1982-08-21 Hooker Chemicals Plastics Corp Partially or fully continuous manufacture of polyester from bisphenol and dicarboxylic acid by esterification polymerization and products thereby
JPS62212426A (en) * 1986-03-12 1987-09-18 Sumitomo Chem Co Ltd Production of aromatic polyester

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183748A (en) * 1982-04-21 1983-10-27 Mitsubishi Gas Chem Co Inc Curable resin composition
JP2009510195A (en) * 2005-09-22 2009-03-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Manufacture of aromatic polyester

Also Published As

Publication number Publication date
JP2685815B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
US4564669A (en) Thermotropic aromatic polyesters having a high tenacity and an improved melt viscosity, and mouldings, filaments, fibres and films thereof
US4600764A (en) Thermotropic aromatic polyesters with good rigidity and toughness, process for the production thereof and the use thereof for the production of mouldings, filaments fibres and films
US4536561A (en) Thermotropic, wholly aromatic polyesters
US20020143135A1 (en) Process for producing aromatic liquid crystal polyester
JPH023416A (en) Thermotropic liquid crystal aromatic polyester
JPS6137820A (en) Thermotropic highly tough aromatic polyester, manufacture and use
JPS61174222A (en) Thermotropic polyester
JPS63312322A (en) Thermotropic polyester imide with high machinability
KR101834703B1 (en) Method of preparing aromatic liquid crystalline polyester resin and aromatic liquid crystalline polyester resin compound including the aromatic liquid crystalline polyester resin prepared by the method
JPH02214720A (en) New thermotropic polyester, its preparation, and its use for manufacture of molded article, filament, short fiber, and film
JP2685815B2 (en) Method for producing wholly aromatic polyester
JPH02127424A (en) Production of aromatic polyester
KR20140074095A (en) Method of preparing aromatic liquid crystalline polyester resin and aromatic liquid crystalline polyester resin compound including the aromatic liquid crystalline polyester resin prepared by the method
KR101817366B1 (en) Method of preparing aromatic liquid crystalline polyester resin and aromatic liquid crystalline polyester resin compound including the aromatic liquid crystalline polyester resin prepared by the method
US4931534A (en) Thermotropic aromatic polyesters, a process for their production and their use for the production of moldings, filaments, fibers and films
JPH0718065A (en) Thermotropic liquid-crystalline aromatic polyester
JPH0541649B2 (en)
JP2830123B2 (en) Liquid crystal polyester resin composition
JP3265662B2 (en) Repeated batch polymerization of liquid crystalline polyester
JPH0247132A (en) Thermotropic fully aromatic polyester having low processing temperature
JP3116512B2 (en) Batch continuous polymerization of liquid crystalline polyester
EP0305070B1 (en) A melt-processable copolyester
JP2666567B2 (en) Polyester production method
JP3257096B2 (en) Method for producing liquid crystalline polyester
JP2506903B2 (en) Method for producing thermotropic liquid crystalline polyester