JPH0211621B2 - - Google Patents

Info

Publication number
JPH0211621B2
JPH0211621B2 JP56029606A JP2960681A JPH0211621B2 JP H0211621 B2 JPH0211621 B2 JP H0211621B2 JP 56029606 A JP56029606 A JP 56029606A JP 2960681 A JP2960681 A JP 2960681A JP H0211621 B2 JPH0211621 B2 JP H0211621B2
Authority
JP
Japan
Prior art keywords
foam
carboxylic acid
copolymer
weight
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56029606A
Other languages
Japanese (ja)
Other versions
JPS57144731A (en
Inventor
Eisaku Hirasawa
Tadashi Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Mitsui Polychemicals Co Ltd
Original Assignee
Du Pont Mitsui Polychemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Polychemicals Co Ltd filed Critical Du Pont Mitsui Polychemicals Co Ltd
Priority to JP56029606A priority Critical patent/JPS57144731A/en
Publication of JPS57144731A publication Critical patent/JPS57144731A/en
Publication of JPH0211621B2 publication Critical patent/JPH0211621B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • B29C44/505Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying extruding the compound through a flat die

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、むオン架橋暹脂発泡䜓の補造法に関
する。曎に詳しくは、むオン架橋工皋および発泡
成圢工皋を䞀段階で行なうこずからなる経枈的な
むオン架橋暹脂発泡䜓の補造法に関する。 分子鎖間を金属陜むオンで架橋した構造を有
し、アむオノマヌ暹脂によ぀お代衚されるむオン
架橋暹脂の発泡䜓は、䟋えばポリオレフむン系暹
脂の発泡䜓ず比范しお、匕匵匷床、匕裂匷床、剛
性、匟性などの物理的諞性質にすぐれ、たた適床
の柔軟性も有しおいるので、各皮甚途により有効
に䜿甚されおいる。 しかしながら、むオン架橋暹脂から発泡䜓を成
圢するためには、むオン架橋工皋ず発泡成圢工皋
ずを別々に蚭けなければならないばかりではな
く、そのむオン架橋構造のために、抌出機などで
成圢する際背圧が䞊り、成圢に倚くの゚ネルギヌ
を芁するこず、倧容量のモヌタヌを備えた成圢装
眮を甚いなければならないこずなどの成圢加工䞊
の欠点もそこにはみられる。曎に、むオン架橋暹
脂は、他のオレフむン系暹脂などずブレンドした
圢で発泡䜓の補造に䜿甚されるこずが倚いが、䞡
暹脂間の盞溶性が䞀般的には良くないため、混合
を良くするための加工条件や装眮内容によ぀お、
曎に限定されるこずになる。たた、発泡剀ずし
お、着色性や臭気を有するものが倚く甚いられお
いる。 本発明者らは、むオン架橋工皋および発泡成圢
工皋を䞀段階で行なうこずができ、しかも前蚘の
劂き成圢加工䞊の欠点をもたらさないむオン架橋
暹脂発泡䜓の補造法に぀いお皮々怜蚎の結果、特
定の操䜜条件䞋で特定の金属架橋剀、即ち金属炭
酞塩を䜿甚するこずがきわめお有効であるこずを
芋出し、ここに本発明を完成するに至぀た。 埓぀お、本発明はむオン架橋暹脂発泡䜓の補造
法に係り、むオン架橋暹脂発泡䜓は、カルボン酞
基たたはカルボン酞無氎物基含有共単量䜓を0.5
〜25モル共重合させた゚チレン共重合䜓および
金属炭酞塩粉末マスタヌバツチペレツトを、130
〜290℃の間の溶融枩床条件䞋および玄Kgcm2
以䞊の圧力条件䞋で混緎し、前蚘共重合䜓䞭のカ
ルボン酞基たたはカルボン酞無氎物基の䞀郚たた
は党郚を金属むオンで架橋させ、次いで該混緎物
を䜎圧の垯域に抌出成圢し、その際反応副生物た
る炭酞ガスによる発泡を生ぜしめお補造される。 このようにしお行われる本発明のむオン架橋暹
脂発泡䜓の補造法では、むオン架橋工皋および発
泡成圢工皋を䞀段階で行なうこずができ、埓぀お
経枈的であるばかりではなく、むオン架橋䜓から
の発泡成圢時より抌出機の背圧が䜎く、埓぀お成
圢時に芁する゚ネルギヌが少ないこず、発泡剀の
泚入装眮など特別な装眮を必芁ずしないこず、他
のオレフむン系暹脂などずの盞溶性が改善される
こず、発泡剀による着色や臭気がないこずなど倚
くの利点がみられる。 架橋発泡䜓の補造に甚いられるむオン架橋性暹
脂ずしおは、カルボン酞基たたはカルボン酞無氎
物基含有共単量䜓を共重合させた゚チレン共重合
䜓が甚いられる。そしお、奜適な共重合䜓ずしお
は、゚チレンず炭玠数〜個のαβ―䞍飜和
カルボン酞たたはその酞無氎物ずの共重合䜓が挙
げられる。αβ―䞍飜和カルボン酞たたはその
酞無氎物ずしお奜たしいものは、アクリル酞、メ
タクリル酞、クロトン酞、むタコン酞、マレむン
酞、フマル酞、フマル酞モノ゚チル、無氎マレむ
ン酞などである。それぞれ少くずも皮甚いられ
るこれらの゚チレンずαβ―䞍飜和カルボン酞
たたはその酞無氎物ずの共重合䜓䞭には、䟋えば
酢酞ビニルの劂きビニル゚ステル、メタクリル酞
メチルの劂き䞍飜和カルボン酞゚ステル、塩化ビ
ニルやアクリロニトリルの劂き゚チレン性䞍飜和
化合物を曎に共重合させるこずができる。 かかる共重合䜓は、奜たしくはこれら共単量䜓
間の盎接共重合法によ぀お補造される。共重合反
応は、フリヌラゞカル型重合觊媒の存圚䞋で、玄
50〜3000Kgcm2、玄150〜300℃ずいう高圧高枩条
件䞋で䞀般に行われる。共重合䜓はたた、αβ
―䞍飜和カルボン酞をグラフト共重合させるこず
により、あるいはカルボン酞圢成性基含有共単量
䜓を共重合させた共重合䜓のけん化反応などによ
぀おも埗るこずができる。これらいずれの方法に
よ぀お補造されるにせよ、共重合䜓䞭には玄0.5
〜25モルのカルボン酞基たたはカルボン酞無氎
物基が含有されおいなければならない。これ以䞋
の含有量では、むオン架橋暹脂ずしおの特城に乏
しく、たた金属炭酞塩ずむオン架橋反応の際に副
生する炭酞ガス量が少なく、発泡を十分に行わせ
るこずができない。䞀方、これ以䞊の含有量で
は、暹脂が熱可塑性に乏しくなり、発泡䜓ずしお
成圢するこずが困難ずなる。 前蚘゚チレン共重合䜓は、それ単独でも甚いら
れるが、他のオレフむン系暹脂ずブレンドしお甚
いるこずもできる。他のオレフむン系暹脂ずしお
は、䟋えばポリ゚チレン、゚チレン―酢酞ビニル
共重合䜓、ポリプロピレン、゚チレン―プロピレ
ン共重合䜓、ポリスチレンなどが、前蚘共重合䜓
100重量郚圓り玄10〜400重量郚、奜たしくは玄20
〜200重量郚の割合で甚いられる。 むオン架橋剀兌発泡剀ずしお䜿甚される金属炭
酞塩ずしおは、元玠呚期埋衚、、、−
および族の金属で〜の原子䟡を有するも
の、具䜓的にはナトリりム、カリりム、リチり
ム、セシりム、銀、氎銀、銅などの䟡金属、カ
ルシりム、マグネシりム、ベリリりム、ストロン
チりム、バリりム、銅、カドミりム、氎銀、錫、
鉛、鉄、コバルト、ニツケル、亜鉛などの䟡金
属たたはアルミニりム、スカンゞりム、鉄、むツ
トリりムなどの䟡金属の重炭酞塩、ヒドロキシ
炭酞塩、含氎炭酞塩をも含む炭酞塩が皮たたは
皮以䞊混合しお甚いられる。そしお、奜たしく
は、炭酞ナトリりム、重炭酞ナトリりム、炭酞カ
リりム、重炭酞カリりム、炭酞カルシりム、炭酞
マグネシりム、炭酞亜鉛、炭酞鉛などが甚いられ
る。なお、むオン架橋性、発泡性、臭気性、腐蝕
性などに問題がなければ、金属酞化物などの他の
金属化合物を混合しお甚いるこずはさし぀かえな
い。 これらの金属炭酞塩以倖の金属化合物を金属炭
酞塩ず䜵甚するこずなく甚いた堎合には、(a)通垞
甚いられおいる発泡䜓の成圢加工装眮ず加工条件
ではむオン架橋反応が十分に進行しない、(b)金属
化合物を発泡成圢加工装眮で暹脂䞭に添加するこ
ずが困難である、(c)金属化合物もしくはむオン架
橋反応時にそれから副生する酞などにより成圢加
工装眮が著しく腐蝕する、(d)むオン架橋反応時の
副生成物の臭気が著しい、(e)酞、氎、アルコヌル
などの反応副生成物が垞枩での揮発性に乏しいた
め、それらを発泡剀ずしお利甚した堎合、埗られ
た発泡䜓は冷华時の埌収瞮が著しく、発泡䜓ずし
お甚をなさないものしか埗られないなどの理由
で、本発明の架橋性金属むオン源ずしお甚いるの
に適圓ではない。 これに察しお、前蚘金属炭酞塩を甚いた堎合に
は、通垞甚いられおいる発泡成圢加工装眮でもむ
オン架橋が円滑に進行し、暹脂䞭ぞの添加も垂販
粉末状金属炭酞塩を単にブレンドするだけで足
り、装眮の腐蝕、反応時の臭気もなく、曎に他の
熱分解型発泡剀を䜿甚した堎合にみられる着色も
なく、埮现な気泡を有する発泡䜓が埗られるので
ある。 金属炭酞塩は、むオン架橋反応を進行し易くす
るために、粉末状ずしお甚いるこずが奜たしく、
これを前蚘゚チレン共重合䜓たたはこれず盞溶性
を有する適圓な暹脂ず予め適圓な割合で溶融混緎
したマスタヌバツチペレツトの圢で䟛絊する。な
お、発泡䜓の性質の劣化を招かない限り、他の固
䜓状、液䜓状たたは気䜓状の発泡剀あるいは気泡
調節剀を金属炭酞塩ず䜵甚するこずはさし぀かえ
ない。 架橋金属むオン源ずしおの金属炭酞塩の添加割
合は、むオン架橋暹脂ずしおの固䜓特性および溶
融特性の倉化の皋床、発泡暹脂ずしおの発泡の皋
床などを巊右するむオン架橋床に䟝存するが、䞀
般には共重合䜓䞭のカルボン酞基たたはカルボン
酞無氎物基を少くずも10モルを䞭和するのに十
分な量でなければならない。 本発明に係る方法は、加熱加圧される暹脂の溶
融混緎装眮を甚いお行われ、奜たしくは発泡䜓の
補造装眮ずしお普通に䜿甚されおいるスクリナヌ
抌出機、スクリナヌ抌出機付きの射出成圢装眮な
どを甚いお行われる。むオン架橋反応䞭和反
応および副生炭酞ガスによる発泡を行わしめる
ために必芁な共重合䜓暹脂ず金属炭酞塩ずの溶融
混緎工皋は、共重合䜓の融点以䞊で玄130〜290
℃、奜たしくは玄150〜270℃の間の枩床条件䞋お
よび玄Kgcm2以䞊、奜たしくは玄20Kgcm2以䞊
の圧力条件䞋で行われる。玄130℃以䞋では、通
垞の発泡成圢加工装眮でのむオン架橋反応の進行
が十分ではなく、玄290℃以䞊では暹脂の劣化が
生じ易くなる。たた、玄Kgcm2以䞋では、むオ
ン架橋反応の進行が遅くか぀発泡が䞍均䞀になる
ので奜たしくない。 溶融混緎により、共重合䜓䞭のカルボン酞基た
たはカルボン酞無氎物基の䞀郚たたは党郚を金属
むオンで架橋させ、そこで副生した炭酞ガスを含
んでいるむオン架橋共重合䜓混緎物は、䜎圧の垯
域に抌出され、その際圧力の解攟により炭酞ガス
が膚匵し、むオン架橋共重合䜓が発泡する。発泡
䜓成圢の実斜態様ずしおは、抌出機のダむスを通
しお倧気䞭あるいは氎䞭にシヌト状、棒状、パむ
プ状などの所定圢状に発泡成圢する方法、射出成
圢甚スクリナヌ抌出機から冷华金型ぞ射出しお所
定圢状に成圢する方法などが行われる。 このようにしお、むオン架橋暹脂発泡䜓の補造
が行われる本発明の方法は、埓来の既にむオン架
橋された共重合䜓を発泡させる堎合ず比范しお前
蚘の劂き倚くの利点があり、埓぀おその産業的意
矩はきわめお倧きいずいうこずができる。 次に、実斜䟋に぀いお本発明を説明する。な
お、メルトむンデツクスは、JIS −6760に埓
い、190℃で枬定されおいる。 実斜䟋 〜 ゚チレン―メタクリル酞共重合䜓メタクリル
酞含量10重量、メルトむンデツクス500g10
分ペレツト40重量郚および炭酞ナトリりム粉末
60重量郚をバンバリヌミキサヌで混緎した埌、ペ
レツト状の炭酞ナトリりムマスタヌバツチを調補
した。この炭酞ナトリりムマスタヌバツチ重量
郚を、埌蚘衚に蚘茉される各皮メタクリル酞共
重合䜓組成は重量である100重量郚にドラ
むブレンドした。 混合された暹脂ペレツトは、暹脂䟛絊口偎より
それぞれ140℃、180℃、230℃、230℃および180
℃に第〜第垯域の枩床が調節された口埄65mm
の抌出機−26に䟛絊され、溶融混緎し
た埌、抌出機先端に取付けた間隙1.0mm、幅63mm
のスリツト150℃から倧気䞭に抌出し、シヌ
ト状の発泡䜓に成圢した。埗られた発泡䜓は、無
着色、無臭であり、むオン架橋暹脂発泡䜓の特城
である良奜な匕匵匷床、匕裂匷床などの性質を有
する、ほが独立気泡の発泡䜓である。この発泡䜓
の赀倖線吞収スペクトルには、1540cm-1付近に−
COO-Na+の吞収が認められ、むオン架橋が生じ
おいるこずが確認された。これらの実斜䟋の芁旚
は、埌蚘衚に瀺される。 比范䟋  むオン架橋暹脂ペレツト䞉井ポリケミカル補
品ハむミラン1601、Na+むオン架橋、メルトむン
デツクス1.3g10分100重量郚に、化孊発泡剀
粉末アゟゞカルボンアミド、倧塚化孊工業補品
ナニホヌムAZ−重量郚をドラむブレンド
し、これを実斜䟋ず同じ装眮、枩床条件および
操䜜方法で混緎し、シヌト状に発泡成圢した。埗
られた発泡䜓は、黄色に着色し、臭気を有しおい
た。たた、前蚘各実斜䟋の堎合ず比范しお、抌出
機の圧力が高く、モヌタヌ負荷が〜割方倚か
぀た。この比范䟋の芁旚は、次の衚に瀺され
る。
The present invention relates to a method for producing an ionically crosslinked resin foam. More specifically, the present invention relates to an economical method for producing an ionically crosslinked resin foam, which comprises performing an ionically crosslinking step and a foam molding step in one step. Foams made of ionically crosslinked resins such as ionomer resins, which have a structure in which molecular chains are crosslinked with metal cations, have higher tensile strength, tear strength, and rigidity than foams made of polyolefin resins. It has excellent physical properties such as elasticity, and also has a suitable degree of flexibility, so it is effectively used for various purposes. However, in order to mold a foam from an ionically crosslinked resin, it is not only necessary to perform an ionically crosslinked process and a foam molding process separately, but also because of the ionic crosslinked structure, it is difficult to mold it using an extruder or the like. There are disadvantages in the molding process, such as increased pressure, the need for a lot of energy for molding, and the need to use molding equipment equipped with a large-capacity motor. Furthermore, ionic crosslinked resins are often used in the production of foams in a blended form with other olefinic resins, but the compatibility between the two resins is generally poor, so it is necessary to improve the mixing. Depending on the processing conditions and equipment contents,
It will be even more limited. Moreover, many foaming agents that have coloring properties and odor are used. The present inventors have conducted various studies on a method for producing an ionically crosslinked resin foam that can perform the ionic crosslinking process and the foam molding process in one step and does not cause the drawbacks in the molding process described above. It has been found that the use of specific metal crosslinking agents, namely metal carbonates, is extremely effective under operating conditions, leading to the completion of the present invention. Therefore, the present invention relates to a method for producing an ionically crosslinked resin foam, in which the ionically crosslinked resin foam contains a comonomer containing a carboxylic acid group or a carboxylic acid anhydride group by 0.5%.
~25 mol% copolymerized ethylene copolymer and metal carbonate powder masterbatch pellets, 130%
Under melting temperature conditions between ~290°C and approximately 5Kg/cm 2
The mixture is kneaded under the above pressure conditions to crosslink some or all of the carboxylic acid groups or carboxylic acid anhydride groups in the copolymer with metal ions, and then the kneaded product is extruded into a low pressure zone. It is produced by foaming with carbon dioxide gas, which is a byproduct of the reaction. In the method for producing an ionically crosslinked resin foam of the present invention, which is carried out in this way, the ionic crosslinking step and the foam molding step can be performed in one step, and therefore it is not only economical, but also The back pressure of the extruder is lower than during foam molding, so less energy is required during molding, there is no need for special equipment such as a blowing agent injection device, and compatibility with other olefin resins is improved. It has many advantages, including no coloration or odor caused by foaming agents. As the ionic crosslinkable resin used for producing the crosslinked foam, an ethylene copolymer copolymerized with a comonomer containing a carboxylic acid group or a carboxylic acid anhydride group is used. Suitable copolymers include copolymers of ethylene and α,β-unsaturated carboxylic acids having 3 to 8 carbon atoms or acid anhydrides thereof. Preferred α,β-unsaturated carboxylic acids or acid anhydrides thereof include acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, monoethyl fumarate, and maleic anhydride. In the copolymer of ethylene and α,β-unsaturated carboxylic acid or its acid anhydride, each of which is used at least one type, for example, a vinyl ester such as vinyl acetate, an unsaturated carboxylic acid such as methyl methacrylate, etc. Ethylenically unsaturated compounds such as esters, vinyl chloride and acrylonitrile can also be copolymerized. Such copolymers are preferably produced by direct copolymerization between these comonomers. The copolymerization reaction takes place in the presence of a free radical type polymerization catalyst, with approximately
It is generally carried out under high pressure and high temperature conditions of 50 to 3000 Kg/cm 2 and approximately 150 to 300°C. The copolymer also has α, β
- It can also be obtained by graft copolymerization of unsaturated carboxylic acids, or by saponification reaction of a copolymer obtained by copolymerizing a comonomer containing a carboxylic acid forming group. Regardless of which method is used, the copolymer contains approximately 0.5
~25 mole % carboxylic acid groups or carboxylic acid anhydride groups must be contained. If the content is less than this, the resin will lack characteristics as an ionically crosslinked resin, and the amount of carbon dioxide gas produced as a by-product during the ionically crosslinked reaction with the metal carbonate will be small, making it impossible to achieve sufficient foaming. On the other hand, if the content is higher than this, the resin will have poor thermoplasticity and it will be difficult to mold it into a foam. The ethylene copolymer can be used alone, but it can also be used in a blend with other olefin resins. Examples of other olefin resins include polyethylene, ethylene-vinyl acetate copolymer, polypropylene, ethylene-propylene copolymer, polystyrene, etc.
About 10 to 400 parts by weight per 100 parts by weight, preferably about 20 parts by weight
~200 parts by weight. Metal carbonates used as ionic crosslinking agents and blowing agents include those in the periodic table of elements, -a
and group metals having a valence of 1 to 3, specifically monovalent metals such as sodium, potassium, lithium, cesium, silver, mercury, copper, calcium, magnesium, beryllium, strontium, barium, copper, cadmium, mercury, tin,
One or two types of carbonates, including bicarbonates, hydroxy carbonates, and hydrated carbonates of divalent metals such as lead, iron, cobalt, nickel, and zinc, or trivalent metals such as aluminum, scandium, iron, and yttrium. A mixture of the above is used. Preferably, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, calcium carbonate, magnesium carbonate, zinc carbonate, lead carbonate, etc. are used. Note that other metal compounds such as metal oxides may be mixed and used as long as there are no problems with ionic crosslinking, foaming, odor, corrosion, etc. When metal compounds other than these metal carbonates are used without metal carbonates, (a) the ionic crosslinking reaction does not proceed sufficiently with the commonly used foam molding equipment and processing conditions; (b) It is difficult to add the metal compound into the resin using the foam molding equipment; (c) the molding equipment is severely corroded by the metal compound or the acid that is produced as a by-product during the ionic crosslinking reaction; (d) ) The odor of the by-products during the ionic crosslinking reaction is significant. (e) The reaction by-products such as acid, water, and alcohol have poor volatility at room temperature, so when they are used as blowing agents, the resulting Foams are not suitable for use as the crosslinkable metal ion source of the present invention because they undergo significant post-shrinkage upon cooling and are useless as foams. On the other hand, when the metal carbonate is used, ionic crosslinking proceeds smoothly even with commonly used foam molding processing equipment, and addition to the resin can be achieved by simply blending a commercially available powdered metal carbonate. It is sufficient to produce a foam with fine cells without corrosion of the equipment, no odor during reaction, and no discoloration that occurs when other thermally decomposed foaming agents are used. The metal carbonate is preferably used in powder form in order to facilitate the ionic crosslinking reaction.
This is supplied in the form of masterbatch pellets which are melt-kneaded in advance with the ethylene copolymer or a suitable resin compatible therewith in an appropriate ratio. Note that it is permissible to use other solid, liquid or gaseous blowing agents or cell control agents in combination with the metal carbonate, as long as the properties of the foam do not deteriorate. The addition ratio of metal carbonate as a source of crosslinked metal ions depends on the degree of ionic crosslinking, which affects the degree of change in solid properties and melting properties as an ionically crosslinked resin, the degree of foaming as a foamed resin, etc. The amount must be sufficient to neutralize at least 10 mole percent of the carboxylic acid or anhydride groups in the copolymer. The method according to the present invention is carried out using a resin melt-kneading device that is heated and pressurized, preferably a screw extruder or an injection molding device equipped with a screw extruder, which is commonly used as a foam manufacturing device. This is done using The melt-kneading process of the copolymer resin and metal carbonate, which is necessary to carry out the ionic crosslinking reaction (neutralization reaction) and foaming by by-product carbon dioxide, is performed at a temperature of about 130 to 290 ml at a temperature above the melting point of the copolymer.
C., preferably between about 150 and 270.degree. C., and under pressure conditions of about 5 Kg/cm2 or more, preferably about 20 Kg/cm2 or more . At temperatures below about 130°C, the ionic crosslinking reaction does not proceed sufficiently in ordinary foam molding processing equipment, and at temperatures above about 290°C, the resin tends to deteriorate. Further, if it is less than about 5 kg/cm 2 , the progress of the ionic crosslinking reaction is slow and the foaming becomes non-uniform, which is not preferable. By melt-kneading, some or all of the carboxylic acid groups or carboxylic acid anhydride groups in the copolymer are cross-linked with metal ions, and the kneaded product of the ionic cross-linked copolymer, which contains carbon dioxide gas by-produced therein, is produced under low pressure. The carbon dioxide gas expands due to the release of pressure and the ionic crosslinked copolymer foams. Examples of foam molding methods include foam molding into a predetermined shape such as a sheet, rod, or pipe through a die of an extruder in the air or water, or by injecting the foam into a cooling mold from a screw extruder for injection molding. A method of molding it into a predetermined shape is used. The method of the present invention, in which an ionically crosslinked resin foam is produced in this way, has many advantages as described above compared to the conventional method of foaming a copolymer that has already been ionically crosslinked. It can be said that its industrial significance is extremely large. Next, the present invention will be explained with reference to examples. Note that the melt index is measured at 190°C according to JIS K-6760. Examples 1 to 4 Ethylene-methacrylic acid copolymer (methacrylic acid content 10% by weight, melt index 500g/10
) 40 parts by weight of pellets and sodium carbonate powder
After kneading 60 parts by weight with a Banbury mixer, a pellet-shaped sodium carbonate masterbatch was prepared. 5 parts by weight of this sodium carbonate masterbatch was dry blended with 100 parts by weight of various methacrylic acid copolymers (compositions are in weight %) listed in Table 1 below. The mixed resin pellets are heated to 140℃, 180℃, 230℃, 230℃ and 180℃ from the resin supply port side, respectively.
Diameter 65mm with temperature of 1st to 5th zone adjusted to °C
After being melted and kneaded, the extruder (L/D-26) is supplied with a gap of 1.0 mm and a width of 63 mm installed at the tip of the extruder.
It was extruded into the atmosphere through a slit (150°C) and formed into a sheet-like foam. The obtained foam is a nearly closed-cell foam that is colorless and odorless, and has properties such as good tensile strength and tear strength that are characteristic of ionically crosslinked resin foams. The infrared absorption spectrum of this foam has −
Absorption of COO - Na + was observed, confirming that ionic crosslinking had occurred. A summary of these Examples is shown in Table 1 below. Comparative Example 1 100 parts by weight of ionically crosslinked resin pellets (Himilan 1601 manufactured by Mitsui Polychemicals, Na + ion crosslinked, melt index 1.3g/10 minutes) were added with a chemical blowing agent powder (azodicarbonamide, Uniform AZ- manufactured by Otsuka Chemical Industries). S) 3 parts by weight were dry blended, kneaded using the same equipment, temperature conditions, and operating method as in Example 1, and foam-molded into a sheet. The obtained foam was colored yellow and had an odor. In addition, the pressure of the extruder was higher and the motor load was 20 to 30% higher than in each of the above examples. The summary of this comparative example is shown in Table 1 below.

【衚】 実斜䟋 〜 実斜䟋で甚いられた゚チレン―メタクリル酞
共重合䜓70重量郚および炭酞ナトリりムマスタヌ
バツチ3.5重量郚に、埌蚘衚に蚘茉されたオレ
フむン系重合䜓30重量郚を曎にドラむブレンし
た。混合された暹脂ペレツトを、実斜䟋ず同じ
装眮、枩床条件および操䜜方法で混緎し、シヌト
状に発泡成圢した。埗られた発泡䜓は、無着色、
無臭で、独立気泡を有しおいる。これらの実斜䟋
の芁旚は、次の衚に瀺される。
[Table] Examples 5 to 7 To 70 parts by weight of the ethylene-methacrylic acid copolymer used in Example 1 and 3.5 parts by weight of the sodium carbonate masterbatch, 30 parts by weight of the olefinic polymer listed in Table 2 below was added. was further dry-bred. The mixed resin pellets were kneaded using the same equipment, temperature conditions, and operating method as in Example 1, and foam-molded into a sheet. The obtained foam is uncolored,
It is odorless and has closed cells. A summary of these examples is shown in Table 2 below.

【衚】 実斜䟋 〜11 ゚チレン―メタクリル酞共重合䜓メタクリル
酞含量10重量、メルトむンデツクス500g10
分ペレツト55重量郚および埌蚘衚に蚘茉され
る各皮金属炭酞塩粉末45重量郚を、バンバリヌミ
キサヌで混緎した埌、ペレツト状の金属炭酞塩マ
スタヌバツチを調補した。この金属炭酞塩マスタ
ヌバツチ重量郚を、゚チレン―メタクリル酞共
重合䜓メタクリル酞含量12重量、メルトむン
デツクス13.5g10分ペレツト100重量郚にドラ
むブレンドした。混合された暹脂ペレツトを、実
斜䟋ず同じ装眮、枩床条件および操䜜方法で混
緎し、シヌト状に発泡成圢した。埗られた発泡䜓
は、無着色、無臭で、前述の劂きむオン架橋暹脂
発泡䜓の特城を有しおいた。これらの実斜䟋の芁
旚は、次の衚に瀺される。
[Table] Examples 8 to 11 Ethylene-methacrylic acid copolymer (methacrylic acid content 10% by weight, melt index 500g/10
55 parts by weight of pellets and 45 parts by weight of various metal carbonate powders listed in Table 3 below were kneaded in a Banbury mixer to prepare a pellet-shaped metal carbonate masterbatch. Five parts by weight of this metal carbonate masterbatch were dry blended with 100 parts by weight of ethylene-methacrylic acid copolymer (methacrylic acid content 12% by weight, melt index 13.5 g/10 minutes) pellets. The mixed resin pellets were kneaded using the same equipment, temperature conditions, and operating method as in Example 1, and foam-molded into a sheet. The resulting foam was uncolored and odorless, and had the characteristics of the ionically crosslinked resin foam described above. A summary of these examples is shown in Table 3 below.

【衚】 実斜䟋 12〜17 スクリナヌ埄55mmのむンラむンスクリナヌ型射
出成圢機−18に、瞊140mm、暪70mm、
厚さ10mmの角板型キダビテむを有する金型を取付
け、各郚分の枩床を射出成圢機の暹脂䟛絊偎より
第垯域150℃、第垯域180℃、第垯域200℃、
ノズル郚200℃、金型27℃にそれぞれ調節した。 この射出成圢機に、埌蚘衚に蚘茉される各皮
メタクリル酞共重合䜓ペレツト100重量郚および
実斜䟋で甚いられた炭酞ナトリりムマスタヌバ
ツチの所定量のドラむブレンドペレツトを䟛絊
し、スクリナヌ回転数100rpm、射出圧力100Kg
cm2、成圢サむクル分15秒で成圢したずころ、角
板状の発泡䜓が埗られた。この発泡䜓は、内郚が
埮现な独立気泡で、その衚面に厚さ玄mmの未発
泡で硬い衚皮局を有する無着色、無臭の発泡䜓で
ある。これらの実斜䟋の芁旚は、次の衚に瀺さ
れる。
[Table] Examples 12 to 17 An in-line screw type injection molding machine (L/D-18) with a screw diameter of 55 mm, a length of 140 mm, a width of 70 mm,
A mold with a square plate type cavity with a thickness of 10 mm is installed, and the temperature of each part is set from the resin supply side of the injection molding machine to 150℃ in the first zone, 180℃ in the second zone, 200℃ in the third zone,
The temperature was adjusted to 200°C in the nozzle and 27°C in the mold. 100 parts by weight of various methacrylic acid copolymer pellets listed in Table 4 below and a predetermined amount of dry blend pellets of the sodium carbonate masterbatch used in Example 1 were supplied to this injection molding machine, and the screw was rotated. Several 100rpm, injection pressure 100Kg/
cm 2 and a molding cycle of 3 minutes and 15 seconds, a square plate-shaped foam was obtained. This foam is an uncolored, odorless foam that has fine closed cells inside and an unfoamed, hard skin layer about 1 mm thick on its surface. A summary of these examples is shown in Table 4 below.

【衚】【table】

【衚】 実斜䟋 18〜19 実斜䟋13においお、゚チレン―メタクリル酞共
重合䜓70重量郚に埌蚘衚に蚘茉される各皮のオ
レフむン系重合䜓30重量郚をブレンドしお甚い
た。いずれも実斜䟋13で埗られた発泡䜓ず同䞀の
性状を瀺す発泡䜓が埗られた。これらの実斜䟋の
芁旚は、次の衚に瀺される。
[Table] Examples 18 to 19 In Example 13, 70 parts by weight of an ethylene-methacrylic acid copolymer was blended with 30 parts by weight of various olefinic polymers listed in Table 5 below. In each case, foams exhibiting the same properties as the foam obtained in Example 13 were obtained. A summary of these examples is shown in Table 5 below.

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  カルボン酞基たたはカルボン酞無氎物基含有
共単量䜓を0.5〜25モル共重合させた゚チレン
共重合䜓および金属炭酞塩粉末マスタヌバツチペ
レツトを、130〜290℃の間の溶融枩床条件䞋およ
びKgcm2以䞊の圧力条件䞋で混緎し、前蚘共重
合䜓䞭のカルボン酞基たたはカルボン酞無氎物基
の䞀郚たたは党郚を金属むオンで架橋させ、次い
で該混緎物を䜎圧の垯域に抌出成圢し、その際反
応副生成物たる炭酞ガスによる発泡を生ぜしめる
こずを特城ずするむオン架橋暹脂発泡䜓の補造
法。
1. Ethylene copolymer copolymerized with 0.5 to 25 mol% of a comonomer containing a carboxylic acid group or a carboxylic acid anhydride group and metal carbonate powder masterbatch pellets at a melting temperature between 130 and 290°C. and a pressure of 5 kg/cm 2 or more to crosslink some or all of the carboxylic acid groups or carboxylic acid anhydride groups in the copolymer with metal ions, and then knead the kneaded product under low pressure. 1. A method for producing an ionically crosslinked resin foam, characterized by extrusion molding into a zone and generating foaming with carbon dioxide gas as a reaction by-product.
JP56029606A 1981-03-02 1981-03-02 Manufacture of ionically crosslinked foamed resin object Granted JPS57144731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56029606A JPS57144731A (en) 1981-03-02 1981-03-02 Manufacture of ionically crosslinked foamed resin object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56029606A JPS57144731A (en) 1981-03-02 1981-03-02 Manufacture of ionically crosslinked foamed resin object

Publications (2)

Publication Number Publication Date
JPS57144731A JPS57144731A (en) 1982-09-07
JPH0211621B2 true JPH0211621B2 (en) 1990-03-15

Family

ID=12280718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56029606A Granted JPS57144731A (en) 1981-03-02 1981-03-02 Manufacture of ionically crosslinked foamed resin object

Country Status (1)

Country Link
JP (1) JPS57144731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037132A1 (en) * 1997-02-19 1998-08-27 Sanyo Chemical Industries, Ltd. Foam cross-linked with metal salt and process for production

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454086A (en) * 1982-06-18 1984-06-12 The Dow Chemical Company Making cross-linked styrene polymer foam
JPS60248748A (en) * 1984-05-24 1985-12-09 Ube Saikon Kk Foamable resin composition
DE19654158A1 (en) * 1995-12-25 1997-06-26 Sanyo Chemical Ind Ltd Novel low density, metal-crosslinked polymer foam with good flame retardance, useful as insulation etc
IT1298584B1 (en) * 1998-02-10 2000-01-12 Montell North America Inc EXPANDED IONOMERIC CRYSTALLINE POLYOLEFINS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037132A1 (en) * 1997-02-19 1998-08-27 Sanyo Chemical Industries, Ltd. Foam cross-linked with metal salt and process for production

Also Published As

Publication number Publication date
JPS57144731A (en) 1982-09-07

Similar Documents

Publication Publication Date Title
JPH0238100B2 (en)
JP3548632B2 (en) Polypropylene resin composition, foam and production method thereof
JPH0328237A (en) Manufacture of ethylene- trifluorinated chloride copolymer foam
CN104710645A (en) Polyolefin-based resin expanded beads
JPS58111834A (en) Preparation of extruded polystyrene sheet foam
US20060205832A1 (en) Polymer-ionomer blends and foams thereof
JPH0211621B2 (en)
US20060063888A1 (en) Trivalent cation-neutralized ionomers and foams thereof
JP3469605B2 (en) Method for producing ionomer composition
JPS6140707B2 (en)
JP4001269B2 (en) Polyolefin resin foamed particles and foamed moldings thereof
JPS5875707A (en) Polyolefin based electroconductive material
JPS6132338B2 (en)
JP3669468B2 (en) Ionomer cross-linking foaming resin composition and method for producing the same
JPS6367494B2 (en)
JPH07133364A (en) Production of thick crosslinked expanded sheet
JPH059323A (en) Polyolefinic foam
JPH04296338A (en) Crosslinked and foamed material
JPH0412737B2 (en)
JPS63251437A (en) Production of water-absorptive resin foam
JPH0643512B2 (en) Propylene polymer mixture
JPH0456057B2 (en)
JPH0749501B2 (en) Crosslinkable and crosslinkable foamable resin composition for extrusion molding
JPH09124826A (en) Hard-type foamed material of vinylchloride-based resin
JPH0226653B2 (en)