JPH02115543A - Fuel feed control device for engine - Google Patents

Fuel feed control device for engine

Info

Publication number
JPH02115543A
JPH02115543A JP27045788A JP27045788A JPH02115543A JP H02115543 A JPH02115543 A JP H02115543A JP 27045788 A JP27045788 A JP 27045788A JP 27045788 A JP27045788 A JP 27045788A JP H02115543 A JPH02115543 A JP H02115543A
Authority
JP
Japan
Prior art keywords
vehicle speed
fuel
engine
throttle valve
reduction control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27045788A
Other languages
Japanese (ja)
Inventor
Tsugio Hatsuhira
次男 服平
Noboru Hashimoto
昇 橋本
Katsumi Okazaki
岡崎 克己
Yoichi Kuji
久慈 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP27045788A priority Critical patent/JPH02115543A/en
Publication of JPH02115543A publication Critical patent/JPH02115543A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the speed lower quickly to the target speed by starting the reduction control of the fuel feed quantity when the lowering of the sped is requested, and thereafter, returning to the fuel feed when the speed reaches the target speed requested by a driver. CONSTITUTION:When a driver lowers the speed a little, an acceleration pedal is backed to the release side by the predetermined quantity, and the throttle valve open degree is changed to be reduced by the amount of it. Therefore, a fuel feed means 9 is controlled by a reduction control start means 25 so that the reduction control of the fuel feed quantity to an engine is performed. When the reduction change of the throttle valve open degree is concluded and the open degree is fixed at the predetermined open degree value, the target speed corresponding to it is computed by a target speed computing means 26. At the point of time when the speed is lowered to the target speed, since a reduction control concluding means 27 works so as to conclude the reduction control of the fuel feed quantity by the means 25, the fuel feed quantity to the engine is returned to the normal value and a vehicle maintains the real speed (the target speed).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの減速運転時に燃料供給量を減少制
御するようにしたエンジンの燃料供給制御装置の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an engine fuel supply control device that controls the fuel supply amount to be reduced during deceleration operation of the engine.

(従来の技術) 従来、この種のエンジンの燃料供給制御装置として、例
えば特開昭56−18036号公報に開示されるように
、エンジンが車輪側から逆駆動される減速運転時に、エ
ンジンへの燃料供給をカット(停止)制御して、燃費の
向上を図るようにしたものが知られている。また、特開
昭63−80031号公報に開示されるものでは、車両
の定速走行制御において、惰力走行運転と緩加速運転と
を交互に行う場合、前者の惰力走行運転では、エンジン
への燃料供給をカットしてアイドル運転状態としつつ、
動力断接用クラッチを切断状態として、車両を一時的に
惰力で走行させるようにしている。
(Prior Art) Conventionally, as disclosed in Japanese Patent Laid-Open No. 56-18036, for example, a fuel supply control device for this type of engine has been used to control the supply of fuel to the engine during deceleration operation in which the engine is reversely driven from the wheel side. It is known that the fuel supply is cut (stopped) controlled to improve fuel efficiency. Furthermore, in the method disclosed in Japanese Patent Application Laid-Open No. 63-80031, when coasting operation and slow acceleration operation are performed alternately in constant speed driving control of a vehicle, in the former coasting operation, the engine is While cutting the fuel supply to idle operation state,
The power connection/disconnection clutch is disengaged, and the vehicle is temporarily driven by inertia.

(発明が解決しようとする課題) ところで、運転者のアクセルペダル操作に応じた通常走
行時では、運転者がアクセルペダルの踏込みを半ば戻し
て車速を若干低下させる場合があり、斯かる場合では、
車速を素早く目標車速に低下させることが望まれる。
(Problems to be Solved by the Invention) By the way, during normal driving in response to the driver's operation of the accelerator pedal, the driver may partially release the accelerator pedal to slightly reduce the vehicle speed.
It is desirable to quickly reduce the vehicle speed to the target vehicle speed.

しかるに、上記従来のものでは、前者にあっては、燃料
カット制御を行う時期が車輪側からの逆駆動時に制限さ
れているため、上記車速を若干低下させる状況では逆駆
動時でないから燃料カットは行われない。また、後者で
は、燃料カット制御が定速走行制御時に限られるため、
前者と同様に燃料カットは行われない。従って、上記従
来のものでは共に、車速を若干低下させる状況では、燃
料供給を続行している分だけ車速の低下が遅い。
However, in the above conventional system, in the former case, the timing to perform fuel cut control is limited to the time when reverse drive is performed from the wheel side, so in the situation where the vehicle speed is slightly reduced, the fuel cut is not performed because it is not during reverse drive. Not done. In addition, in the latter case, fuel cut control is limited to constant speed driving control, so
Similar to the former, fuel cut is not performed. Therefore, in both of the conventional systems described above, in a situation where the vehicle speed is slightly reduced, the reduction in vehicle speed is slow due to the continued fuel supply.

しかも、その燃料供給分だけ燃費が低下する欠点がある
Moreover, there is a drawback that fuel efficiency decreases by the amount of fuel supplied.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、運転者の操作に応じて車速か若干低下する場合に
も、燃料量の減少制御(カット制御を含む)を適宜行っ
て、車速を目標車速に素早く低下制御することにある。
The present invention has been made in view of the above, and its purpose is to appropriately perform fuel amount reduction control (including cut control) even when the vehicle speed slightly decreases in response to the driver's operation. , to control the vehicle speed to quickly decrease to the target vehicle speed.

(課題を解決するための手段) 上記の目的を達成するため、本発明では、車速を低下さ
せる要求があれば燃料供給量の減少制御を開始し、その
後、運転者の要求する目標車速になれば燃料供給を復帰
させることとしている。
(Means for Solving the Problem) In order to achieve the above object, in the present invention, if there is a request to reduce the vehicle speed, control to reduce the fuel supply amount is started, and then the target vehicle speed requested by the driver is started. If so, the fuel supply will be restored.

つまり、本発明の具体的な構成は、エンジンの減速運転
時に燃料供給量を減少制御するようにしたエンジンの燃
料供給制御装置を前提とする。そして、第1図に示す如
く、エンジンに燃料を供給する燃料供給手段9と、スロ
ットル弁の開度を検出する開度検出手段15と、該開度
検出手段15で検出したスロットル弁開度の減少変化時
に上記エンジンへの燃料供給量を減少させるよう上記燃
料供給手段9の制御を開始する減量制御開始手段25と
を設ける。更に、車速を検出する車速検出手段17と、
上記開度検出手段15の出力を受け、スロットル弁開度
の減少変化の終了時におけるスロットル弁開度に対応す
る目標車速を演算する目標車速演算手段26と、上記車
速検出手段17で検出する車速が、上記目標車速演算手
段26で演算した目標車速に一致した時、上記減量制御
開始手段25による燃料供給量の減少制御を終了させる
減量制御終了手段27とを設ける構成としている。
That is, the specific configuration of the present invention is based on an engine fuel supply control device that controls the fuel supply amount to decrease during deceleration operation of the engine. As shown in FIG. 1, there is a fuel supply means 9 for supplying fuel to the engine, an opening detection means 15 for detecting the opening of the throttle valve, and an opening detection means 15 for detecting the opening of the throttle valve. A reduction control starting means 25 is provided for starting control of the fuel supply means 9 to reduce the amount of fuel supplied to the engine when the amount of fuel is decreased. Furthermore, vehicle speed detection means 17 for detecting vehicle speed;
A target vehicle speed calculating means 26 receives the output of the opening detecting means 15 and calculates a target vehicle speed corresponding to the throttle valve opening at the end of the decreasing change in the throttle valve opening; and a vehicle speed detected by the vehicle speed detecting means 17. A reduction control terminating means 27 is provided for terminating the reduction control of the fuel supply amount by the reduction control starting means 25 when the vehicle speed matches the target vehicle speed calculated by the target vehicle speed calculation means 26.

(作用) 以上の構成により、本発明では、運転者が車速を若干低
下させようとする場合、アクセルペダルが所定量だけ開
放側に戻し操作されて、スロッル弁開度がその分だけ減
少変化する。このことにより、燃料供給手段9が減量制
御開始手段25で制御されて、エンジンへの燃料供給量
の減少制御(カット制御を含む)が行われる。その結果
、燃料量の減少分だけエンジンの駆動トルクが低下して
車速の低下が素早くなると共に、その燃料量の減少分だ
け燃料消費量が低減されて、燃費が良くなる。そして、
スロットル弁開度の減少変化が終了して所定開度値に固
定されると、この所定開度値に対応する目標車速が目標
車速演算手段26で演算される。この場合、車速は未だ
低下している状態にある。
(Function) With the above configuration, in the present invention, when the driver attempts to reduce the vehicle speed slightly, the accelerator pedal is returned to the open side by a predetermined amount, and the throttle valve opening is decreased by that amount. . As a result, the fuel supply means 9 is controlled by the reduction control start means 25 to perform reduction control (including cut control) of the amount of fuel supplied to the engine. As a result, the driving torque of the engine is reduced by the amount of fuel that is reduced, and the vehicle speed decreases more quickly.Fuel consumption is also reduced by the amount of fuel that is reduced, resulting in better fuel efficiency. and,
When the throttle valve opening degree has finished decreasing and is fixed at a predetermined opening value, the target vehicle speed calculation means 26 calculates a target vehicle speed corresponding to this predetermined opening value. In this case, the vehicle speed is still decreasing.

そして、車速が上記演算した目標車速にまで低下した時
点で、減量制御終了手段27が働いて上記減量制御開始
手段25による燃料供給量の減少制御が終了するので、
エンジンへの燃料供給量が通常値に復帰して、車両はそ
の実車速(目標車速)を維持することになる。その際、
エンジンへの燃料供給が復帰する時点は、スロットル弁
開度と実車速とが良好に対応する時点であるので、燃料
供給の復帰に起因するトルクショックを少なく抑制でき
る。
Then, when the vehicle speed has decreased to the calculated target vehicle speed, the reduction control termination means 27 operates and the reduction control of the fuel supply amount by the reduction control initiation means 25 is terminated.
The amount of fuel supplied to the engine returns to its normal value, and the vehicle maintains its actual vehicle speed (target vehicle speed). that time,
The point in time when the fuel supply to the engine is restored is the point in time when the throttle valve opening and the actual vehicle speed correspond well to each other, so that the torque shock caused by the restoration of the fuel supply can be suppressed to a small extent.

(発明の効果) 以上説明したように、本発明に係るエンジンの燃料供給
制御装置によれば、車速を若干低下させたい場合等の、
スロットル弁開度の半戻し時には、エンジンへの燃料供
給量の減少制御を行うと共に、減少変化を終了したスロ
ットル弁開度に対応する目標車速にまで車速が低下した
時点で燃料供給を復帰させたので、その燃料供給量の減
少分だけ、早期に目標車速に減速できると共に燃費の向
上を図ることができる。また、燃料供給の復帰に伴うト
ルクショックを少なく抑制できる。
(Effects of the Invention) As explained above, according to the engine fuel supply control device according to the present invention, when it is desired to slightly reduce the vehicle speed, etc.
When the throttle valve opening is returned to half, the amount of fuel supplied to the engine is controlled to decrease, and the fuel supply is restored when the vehicle speed drops to the target vehicle speed corresponding to the throttle valve opening that has finished decreasing. Therefore, it is possible to reduce the vehicle speed to the target vehicle speed earlier and improve fuel efficiency by the amount of the decrease in the fuel supply amount. Furthermore, torque shock associated with restoration of fuel supply can be suppressed to a minimum.

(実施例) 以下、本発明の実施例を第2図以下の図面に基いて説明
する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は本発明の実施例に係るエンジンの燃料供給制御
装置の全体概略構成を示す。同図において、1はエンジ
ン、2はエンジン1のシリンダ3に嵌挿したピストン4
により形成した燃焼室、5は一端が燃焼室2に連通し他
端がエアクリーナ6を介して大気に開口する吸気通路、
7は一端が燃焼室2に連通し他端が大気に開放された排
気通路である。上記吸気通路5には、吸入空気量を制御
するスロットル弁8と、該スロットル弁8下流側で燃料
をエンジン1に噴射供給する燃料噴射弁(燃料供給手段
)9とが配置されている。上記燃焼室2には、吸気通路
5の開口部に吸気弁10が、排気通路の開口部分に排気
弁11が、また頂部には点火プラグ12が配設されてい
る。
FIG. 2 shows an overall schematic configuration of an engine fuel supply control device according to an embodiment of the present invention. In the figure, 1 is an engine, and 2 is a piston 4 inserted into a cylinder 3 of the engine 1.
5 is an intake passage whose one end communicates with the combustion chamber 2 and whose other end opens to the atmosphere via an air cleaner 6;
7 is an exhaust passage whose one end communicates with the combustion chamber 2 and the other end is open to the atmosphere. A throttle valve 8 for controlling the amount of intake air, and a fuel injection valve (fuel supply means) 9 for injecting fuel into the engine 1 downstream of the throttle valve 8 are arranged in the intake passage 5. The combustion chamber 2 is provided with an intake valve 10 at the opening of the intake passage 5, an exhaust valve 11 at the opening of the exhaust passage, and a spark plug 12 at the top.

また、15は上記スロットル弁8の開度を検出する開度
センサ(開度検出手段)、16はエンジン冷却水温を検
出する水温センサ、17は車速を検出する車速センサ(
車速検出手段)、18はシフトレバ−位置により変速機
の変速段を検出するシフトレバ−位置センサ、19はエ
ンジン1のクランク軸1aの回転数を検出するエンジン
回転数センサ、20はクランク軸1aの回転角度を検出
するクランク角センサである。而して、上記各センサ1
5〜20の検出信号は、各々内部にCPU等を有するコ
ントローラ22に入力される。
Further, 15 is an opening sensor (opening detection means) that detects the opening of the throttle valve 8, 16 is a water temperature sensor that detects the engine cooling water temperature, and 17 is a vehicle speed sensor (opening detection means) that detects the vehicle speed.
18 is a shift lever position sensor that detects the gear position of the transmission based on the shift lever position; 19 is an engine rotation speed sensor that detects the rotation speed of the crankshaft 1a of the engine 1; and 20 is the rotation of the crankshaft 1a. This is a crank angle sensor that detects angles. Therefore, each of the above sensors 1
The 5 to 20 detection signals are each input to a controller 22 having an internal CPU or the like.

次に、上記コントローラ22による燃料噴射弁9からの
燃料噴射量制御を第3図の制御フローに基いて説明する
Next, the control of the amount of fuel injected from the fuel injection valve 9 by the controller 22 will be explained based on the control flow shown in FIG. 3.

スタートして、ステップS1で各センサからの検出信号
に基いてエンジン回転数N1シフトレバ−位置(変速段
)P1スロットル弁開度T1及び車速Vを各々モニター
する。しかる後、ステップS2で燃料カット領域か否か
を判別する。この判別は、エンジン回転数N > 10
00r、p、mで且つシフトレバ−位置がNにュートラ
ル位置)以外の場合か否かで行う。そして、燃料カット
領域でない場合には、ステップS3でスロットル弁開度
T1車速V、及びシフトレバ−位置Pを各々前回値T−
wT1、v−vl、P−PlとしテステップS1に戻る
After starting, in step S1, engine speed N1, shift lever position (gear position) P1, throttle valve opening T1, and vehicle speed V are monitored based on detection signals from each sensor. After that, in step S2, it is determined whether or not the fuel cut area is reached. This determination is based on engine rotation speed N > 10
00r, p, m and the shift lever position is other than N (neutral position). If it is not in the fuel cut region, in step S3, the throttle valve opening T1, vehicle speed V, and shift lever position P are set to the previous value T-.
wT1, v-vl, P-Pl and return to step S1.

一方、燃料カット領域にある場合は、ステップS3でス
ロットル弁開度Tの変化速度dT/dt(−(T−T+
)/サンプリング周期)を算出して、ステップS5で減
速運転時か否かをdT/dt <−α(−αは減速運転
時に相当する値)で判別する。
On the other hand, if it is in the fuel cut region, the rate of change of the throttle valve opening T is dT/dt(-(T-T+
)/sampling period), and in step S5, it is determined whether or not deceleration operation is being performed based on dT/dt <-α (-α is a value corresponding to deceleration operation).

そして、減速運転時でない場合幌はステップS1に戻る
一方、dT/dt <−αの減速運転時の場合には、燃
料噴射弁9からの燃料噴射量をカット制御すべくステッ
プS6以降に進む。
Then, if the vehicle is not in deceleration operation, the hood returns to step S1, while if it is in deceleration operation where dT/dt<-α, the process proceeds to step S6 and subsequent steps in order to cut the amount of fuel injected from the fuel injection valve 9.

つまり、減速運転時には、先ずステップS6で前回のス
ロットル弁開度T1と今回のシフトレバ−位置Pとに応
じて第4図に示すスロットル弁開度−目標基本車速特性
に基いて前回の目標基本車速v□を算出する。ここに、
第4図の目標基本車速特性は、各シフトレバ−位置(前
進第1速〜第5速)毎に、各スロットル弁開度にて維持
し得る最高車速が目標基本車速として、スロットル弁開
度に対応して記憶された車速マツプである。而して、ス
テップS7で上記算出した前回の目標基本車速VOと前
回の実車速v1との差に基いて、車速補正係数Kを、v
(、>Vlの時には登り坂走行時等と判断してK<1の
値に、v(、−V、の時には平坦路走行時等と判断して
に−1の値に、V。
That is, during deceleration operation, first, in step S6, the previous target basic vehicle speed is determined based on the throttle valve opening-target basic vehicle speed characteristic shown in FIG. 4 according to the previous throttle valve opening T1 and the current shift lever position P. Calculate v□. Here,
The target basic vehicle speed characteristics shown in Figure 4 are based on the target basic vehicle speed, which is the maximum vehicle speed that can be maintained at each throttle valve opening for each shift lever position (1st to 5th forward speed). This is a correspondingly stored vehicle speed map. Then, based on the difference between the previous target basic vehicle speed VO and the previous actual vehicle speed v1 calculated above in step S7, the vehicle speed correction coefficient K is set to v.
When (, > Vl, it is determined that the vehicle is running on an uphill slope, etc., and the value is set to K<1, and when v (, -V, it is determined that the vehicle is traveling on a flat road, etc., and the value is set to -1, V.

<Vlの時には下り坂走行時等と判断してK>1の値に
各々設定する。
When <Vl, it is determined that the vehicle is traveling downhill, etc., and the respective values are set to K>1.

そして、ステップS8で今回のスロットル弁開度T及び
シフトレバ−位置Pに応じて上記第4図の目標基本車速
特性に基いて今回の目標基本車速VOTを算出する。そ
の後、ステップS9でこの今回の目標基本車速voTを
上記で算出した値の車速補正係数にで乗算補正して、実
車速Vがこの補正後の目標基本車速(VOTXK)に低
下するまでの間、燃料噴射弁9からの燃料噴射を停止し
て燃料カットを行う。
Then, in step S8, the current target basic vehicle speed VOT is calculated based on the target basic vehicle speed characteristics shown in FIG. 4 in accordance with the current throttle valve opening T and shift lever position P. Thereafter, in step S9, the current target basic vehicle speed voT is corrected by multiplying it by the vehicle speed correction coefficient of the value calculated above, and until the actual vehicle speed V decreases to the corrected target basic vehicle speed (VOTXK), Fuel injection from the fuel injection valve 9 is stopped to perform a fuel cut.

その後は、ステップSIO以降で第5図(ハ)に示す如
く所定車速■2から燃料噴射量を徐々に増やしつつ目標
基本車速(VoT XK)で燃料噴射の完全復帰を行う
。つまり、燃料カット中は吸気通路5の壁面に燃料の付
着がなく、唐突に燃料復帰を行なえば復帰当初で燃料の
壁面付着分だけ混合気の空燃比のリーン化を招くから、
予め吸気通路5の壁面に燃料を付着させておく。
Thereafter, from step SIO onward, as shown in FIG. 5(c), the fuel injection amount is gradually increased from the predetermined vehicle speed 2, and the fuel injection is completely restored at the target basic vehicle speed (VoT XK). In other words, during fuel cut, there is no fuel adhering to the wall of the intake passage 5, and if the fuel is suddenly restored, the air-fuel ratio of the mixture will become leaner by the amount of fuel adhering to the wall at the beginning of the restoration.
Fuel is attached to the wall surface of the intake passage 5 in advance.

すなわち、ステップSIOで先ず車速降下率Δ■/△t
を演算した後、ステップSllで燃料噴射の開始車速V
2を次式に基いて、車速降下率△V/△tが入直はど高
車速側(早目)に設定する。
That is, in step SIO, first the vehicle speed decrease rate Δ■/Δt
After calculating, in step Sll, the fuel injection starting vehicle speed V
2 based on the following equation, the vehicle speed reduction rate ΔV/Δt is set to the high vehicle speed side (earlier) at the turn-on.

V2−VOTXI( 十B・(八V/△t)(Bは定数) そして、ステップS+2で車速Vをモニターして、ステ
ップS13で車速V−V2になれば、ステップSI4で
目標基本車速(VOTXK)での所期燃料噴射ff1A
oを演算した後、この所期噴射ff1Aoに向って燃料
量を段階的に増量すべく、ステップS15で燃料噴射回
数i(初期値−1)を「1」だけ加算して、ステップS
+6でそのi番目の燃料噴射時での過渡噴射量AをA=
AoX (i/F)(Fは車速v2〜(VoT XK)
間の噴射回数)で演算し、ステップ517でクランク角
度θをモニターして、ステップ518でこのクランク角
度θが噴射時期になるのを待って、ステップSI9で燃
料噴射量を上記過渡噴射量Aとするよう燃料噴射弁9を
駆動制御する。そして、ステップ320で過渡噴射量A
−Ao又はi−Fを判別し、A<AO及びiくFではス
テップS2+で噴射回数iをi−i+1に加算した後、
以上の動作を繰返して噴射】Aを噴射毎に段階的に増量
して行き、A−AQ又はi −Fになれば、ステップS
1に戻る。
V2-VOTXI (10B・(8V/△t) (B is a constant) Then, in step S+2, the vehicle speed V is monitored, and when the vehicle speed reaches V-V2 in step S13, the target basic vehicle speed (VOTXK) is set in step SI4. ) Intended fuel injection ff1A at
After calculating o, in order to increase the fuel amount step by step toward this desired injection ff1Ao, the number of fuel injections i (initial value - 1) is added by "1" in step S15, and step S
+6, the transient injection amount A at the time of the i-th fuel injection is A=
AoX (i/F) (F is vehicle speed v2 ~ (VoT XK)
In step 517, the crank angle θ is monitored. In step 518, the crank angle θ is waited until the injection timing is reached. In step SI9, the fuel injection amount is set to the transient injection amount A. The fuel injection valve 9 is driven and controlled so as to do so. Then, in step 320, the transient injection amount A
-Ao or i-F is determined, and if A<AO and i-F, after adding the number of injections i to i-i+1 in step S2+,
Repeat the above operation to increase the amount of A step by step for each injection, and when it reaches A-AQ or i-F, step S
Return to 1.

尚、上記制御フローには図示しないが、燃料噴射弁9か
らの燃料噴射のカット制御中は、第5図(ニ)に示す如
く、同時に混合気の点火時期をリタードさせ、その後、
過渡噴射、ftAの噴射開始時(車速V−V2時)に通
常点火時期に進角復帰させるよう、点火プラグ12の点
火時期を制御する。
Although not shown in the above control flow, during the cut control of fuel injection from the fuel injection valve 9, as shown in FIG. 5(d), the ignition timing of the air-fuel mixture is simultaneously retarded, and then,
The ignition timing of the ignition plug 12 is controlled so that the ignition timing is advanced back to the normal ignition timing at the start of transient injection and ftA injection (vehicle speed V-V2).

つまり、燃料カット制御の開始時には、吸気通路5の壁
面に付着した燃料が燃焼室2内に吸入されて燃焼し、減
速初期にトルク変動が生じるため、点火時期のリタード
制御によりトルク変動を小さく抑制しつつその燃料を確
実に燃焼させる。また、目標車速になる前の段階で(過
渡噴射ff1Aの噴射を開始する車速V2の時点で〉予
め点火時期を復帰させるのも、燃料復帰時のトルク変動
を抑制するためである。
In other words, at the start of fuel cut control, the fuel adhering to the wall of the intake passage 5 is sucked into the combustion chamber 2 and burned, causing torque fluctuations at the beginning of deceleration, so the torque fluctuations are suppressed to a small level by retard control of the ignition timing. while ensuring that the fuel is combusted. Furthermore, the reason why the ignition timing is reset in advance before the target vehicle speed reaches the target vehicle speed (at the vehicle speed V2 when the transient injection ff1A starts) is to suppress torque fluctuations when the fuel is restored.

よって、上記第3図の制御フローにおいて、ステップS
a 、S5.S9により、開度センサ15で検出したス
ロットル弁開度Tの減少変化時に、エンジン1への燃料
供給量を停止(カット)させるよう燃料噴射弁9の制御
を開始するようにした減量制御開始手段25を構成して
いる。また、ステップ86〜S8により、開度センサ1
5の出力を受け、スロットル弁開度Tの減少変化時に逐
次今回のスロットル弁開度Tに応じた目標車速(VOT
XK)を演算することを繰返して、最終的に減少変化の
終了時におけるスロットル弁開度Tに対応する目標車速
(VoT XK)を演算するようにした目標車速演算手
段26を構成している。更に、ステップS9により、車
速センサ17で検出する車速Vが低下して上記目標車速
演算手段27で演算した目標車速(VOTXK)に一致
するまでの間は燃料カットを続行して、この車速が一致
した時点(V−V2)で、上記減量制御開始手段25に
よる燃料供給の停止制御を終了させるようにした減量制
御終了手段27を構成している。
Therefore, in the control flow of FIG. 3 above, step S
a, S5. The reduction control starting means starts controlling the fuel injection valve 9 to stop (cut) the amount of fuel supplied to the engine 1 when the throttle valve opening T detected by the opening sensor 15 decreases by S9. 25. Further, in steps 86 to S8, the opening sensor 1
5, when the throttle valve opening T decreases, the target vehicle speed (VOT) corresponding to the current throttle valve opening T is sequentially set.
The target vehicle speed calculation means 26 is configured to repeat the calculation of VoT XK) and finally calculate the target vehicle speed (VoT XK) corresponding to the throttle valve opening T at the end of the decreasing change. Further, in step S9, the fuel cut is continued until the vehicle speed V detected by the vehicle speed sensor 17 decreases to match the target vehicle speed (VOTXK) calculated by the target vehicle speed calculation means 27, and this vehicle speed matches. At the time point (V-V2), a reduction control termination means 27 is configured to terminate the fuel supply stop control by the reduction control initiation means 25.

したがって、上記実施例においては、運転者のアクセル
ペダルの開放側操作に基いてスロットル弁開度Tが、第
5図(ロ)に示す如く半ば戻されると、エンジン1への
燃料噴射が同図(ハ)に示す如く直ちにカット制御され
るので、その分車速の低下が素早くなる(同図(イ)参
照)。また、燃料供給を停止する分だけ、燃費が向上す
る。
Therefore, in the above embodiment, when the throttle valve opening degree T is returned halfway as shown in FIG. 5(b) based on the driver's operation of the opening side of the accelerator pedal, the fuel injection to the engine 1 is stopped as shown in FIG. As shown in (c), since the cut control is immediately performed, the vehicle speed decreases quickly (see (a) in the same figure). Furthermore, fuel efficiency improves by the amount that fuel supply is stopped.

そして、スロットル弁開度Tの減少変化中は、逐次その
時のスロットル弁開度Tに応じた目標車速(VOTXK
)が演算され、その開度の減少変化が終了した最終的な
スロットル弁開度(例えば同図(ロ)ではT2)に応じ
た目標車速(VOTXK)前の車速V2 (V2 >V
o7 xK)になると、燃料噴射弁9から過渡噴射量A
の燃料噴射が開始され、この過渡噴射量Aは噴射時期毎
に段階的に増量して、実車速Vが目標車速(Vo T 
XK)にまで低下した時点で所期噴射jlAoに達して
、この目標車速(VoT XK)の時点で燃料の減少制
御が終了する。従って、スロットル弁開度Tと実車速V
とが良好に対応する時点で燃料供給が完全復帰するので
、その燃料供給の復帰に伴うトルクショックが有効に抑
制される。
While the throttle valve opening degree T is decreasing, the target vehicle speed (VOTXK) corresponding to the throttle valve opening degree T at that time is sequentially changed.
) is calculated, and the vehicle speed V2 (V2 > V
o7 xK), the transient injection amount A from the fuel injection valve 9
fuel injection is started, and this transient injection amount A is increased stepwise at each injection timing until the actual vehicle speed V reaches the target vehicle speed (Vo T
When the target vehicle speed (VoT XK) is reached, the desired injection jlAo is reached, and the fuel reduction control ends at the target vehicle speed (VoT XK). Therefore, the throttle valve opening degree T and the actual vehicle speed V
Since the fuel supply is completely restored at the time when the two correspond well to each other, the torque shock that accompanies the restoration of the fuel supply is effectively suppressed.

よって、スロットル弁開度を半ば戻して車速を若干低下
させる要求がある場合にも、燃料噴射量の減量制御によ
り車速を素早く低下させて目標車速にでき、走行性の向
上を図ることができると共に、燃料噴射量を減量する分
、燃費を向上させることができる。また、燃料供給の復
帰に伴うトルクショックを有効に抑制できる。
Therefore, even when there is a request to slightly reduce the vehicle speed by partially returning the throttle valve opening, the vehicle speed can be quickly reduced to the target vehicle speed by controlling the reduction in the amount of fuel injection, and driving performance can be improved. , fuel efficiency can be improved by reducing the fuel injection amount. Furthermore, torque shock associated with restoration of fuel supply can be effectively suppressed.

尚、上記実施例では、減少変化の終了したスロットル弁
開度(第5図(ロ)ではT2)に対応する目標車速を演
算したが、本発明はこれに限定されず、その他、上記の
目標車速に対応するエンジン回転数を演算し、このエン
ジン回転数を目標車速として用いる場合をも含む。同様
に、アクセルペダルの踏込量でもってスロットル弁開度
を間接的に検出してもよい。
In the above embodiment, the target vehicle speed corresponding to the throttle valve opening degree (T2 in FIG. 5 (b)) at which the decreasing change has been completed is calculated, but the present invention is not limited to this. This also includes a case where the engine speed corresponding to the vehicle speed is calculated and this engine speed is used as the target vehicle speed. Similarly, the throttle valve opening may be indirectly detected based on the amount of depression of the accelerator pedal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図である。 第2図ないし第5図は本発明の実施例を示し、第2図は
全体概略構成図、第3図は燃料噴射制御を示す制御フロ
ーチャート図、第4図はスロットル弁開度に対する目標
基本車速特性を示す図、第5図は作動説明図である。 1・・・エンジン、8・・・スロットル弁、9・・・燃
料噴射弁(燃料供給手段)、15・・・開度センサ(開
度検出手段)、17・・・車速センサ(車速検出手段)
、22・・・コントローラ、25・・・減量制御開始手
段、26・・・目標車速演算手段、27・・・減量制御
終了手段。 第1図 第2図 第 図 第 図
FIG. 1 is a block diagram showing the configuration of the present invention. Figures 2 to 5 show embodiments of the present invention, with Figure 2 being a general schematic diagram, Figure 3 being a control flowchart showing fuel injection control, and Figure 4 being the target basic vehicle speed relative to the throttle valve opening. A diagram showing the characteristics, and FIG. 5 is an explanatory diagram of the operation. DESCRIPTION OF SYMBOLS 1... Engine, 8... Throttle valve, 9... Fuel injection valve (fuel supply means), 15... Opening degree sensor (opening degree detection means), 17... Vehicle speed sensor (vehicle speed detection means) )
, 22...Controller, 25...Reduction control starting means, 26...Target vehicle speed calculation means, 27...Reduction control terminating means. Figure 1 Figure 2 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンの減速運転時に燃料供給量を減少制御す
るようにしたエンジンの燃料供給制御装置であって、エ
ンジンに燃料を供給する燃料供給手段と、スロットル弁
の開度を検出する開度検出手段と、該開度検出手段で検
出したスロットル弁開度の減少変化時に上記エンジンへ
の燃料供給量を減少させるよう上記燃料供給手段の制御
を開始する減量制御開始手段とを備えると共に、車速を
検出する車速検出手段と、上記開度検出手段の出力を受
け、スロットル弁開度の減少変化の終了時におけるスロ
ットル弁開度に対応する目標車速を演算する目標車速演
算手段と、上記車速検出手段で検出する車速が上記目標
車速演算手段で演算した目標車速に一致した時、上記減
量制御開始手段による燃料供給量の減少制御を終了させ
る減量制御終了手段とを備えたことを特徴とするエンジ
ンの燃料供給制御装置。
(1) An engine fuel supply control device configured to reduce the amount of fuel supplied during deceleration operation of the engine, which includes a fuel supply means for supplying fuel to the engine, and an opening detection that detects the opening of a throttle valve. and reduction control starting means for starting control of the fuel supply means to reduce the amount of fuel supplied to the engine when the throttle valve opening detected by the opening detection means decreases, and the vehicle speed is reduced. a vehicle speed detecting means for detecting; a target vehicle speed calculating means for receiving the output of the opening detecting means and calculating a target vehicle speed corresponding to the throttle valve opening at the end of the decreasing change in the throttle valve opening; and the vehicle speed detecting means. and a reduction control terminating means for terminating the fuel supply amount reduction control by the reduction control starting means when the vehicle speed detected by the engine matches the target vehicle speed calculated by the target vehicle speed calculation means. Fuel supply control device.
JP27045788A 1988-10-25 1988-10-25 Fuel feed control device for engine Pending JPH02115543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27045788A JPH02115543A (en) 1988-10-25 1988-10-25 Fuel feed control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27045788A JPH02115543A (en) 1988-10-25 1988-10-25 Fuel feed control device for engine

Publications (1)

Publication Number Publication Date
JPH02115543A true JPH02115543A (en) 1990-04-27

Family

ID=17486561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27045788A Pending JPH02115543A (en) 1988-10-25 1988-10-25 Fuel feed control device for engine

Country Status (1)

Country Link
JP (1) JPH02115543A (en)

Similar Documents

Publication Publication Date Title
US8251042B2 (en) Control unit and control method for torque-demand-type internal combustion engine
US6002979A (en) Traction control system for automotive vehicles
US7975670B2 (en) Control unit and control method for torque-demand-type internal combustion engine
US4924832A (en) System and method for controlling ignition timing for internal combustion engine
EP1052400B1 (en) Automatic stop-restart system of automotive internal combustion engine
JPH1182090A (en) Internal combustion engine control system
JPH02115543A (en) Fuel feed control device for engine
JPH0526138A (en) Ignition timing controller
JPH02115544A (en) Fuel feed control device for engine
EP0886059B1 (en) Drive force controller for a vehicle
WO2023181224A1 (en) Method and device for controlling stopping of engine
JPH01232169A (en) Ignition timing control device for engine
JP3034345B2 (en) Engine torque down control device
JPH0415538Y2 (en)
JPH08177565A (en) Torque control device for engine
JPH06288327A (en) Control device for engine
JP3536601B2 (en) Control device for internal combustion engine
JP4643127B2 (en) Internal combustion engine output control device
JP2873504B2 (en) Engine fuel control device
JP2526617B2 (en) Fuel supply control device for internal combustion engine
JPH0316492B2 (en)
JPS6017241A (en) Control method of idle speed control device
JPS63192932A (en) Fuel control device for engine
JPS63263230A (en) Intake air controller of engine
JPH01203637A (en) Idling speed control device for engine