JPH02115387A - Electrolyzing method - Google Patents

Electrolyzing method

Info

Publication number
JPH02115387A
JPH02115387A JP63266017A JP26601788A JPH02115387A JP H02115387 A JPH02115387 A JP H02115387A JP 63266017 A JP63266017 A JP 63266017A JP 26601788 A JP26601788 A JP 26601788A JP H02115387 A JPH02115387 A JP H02115387A
Authority
JP
Japan
Prior art keywords
chamber
cation exchange
cathode
anode
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63266017A
Other languages
Japanese (ja)
Other versions
JP2584846B2 (en
Inventor
Hisahiko Iwamoto
久彦 岩本
Toshikatsu Sada
佐田 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP63266017A priority Critical patent/JP2584846B2/en
Publication of JPH02115387A publication Critical patent/JPH02115387A/en
Application granted granted Critical
Publication of JP2584846B2 publication Critical patent/JP2584846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To enable stable continuous operation over a long period of time by allowing each of two or more cation exchange membranes stretched in an electrolytic cell to maintain a prescribed current efficiency. CONSTITUTION:An electrolytic cell is divided into an anode chamber, a middle chamber 1, a middle chamber 2 and a cathode chamber by successively stretching an anion exchange membrane, a cation exchange membrane 1 and a cation exchange membrane 2 between the anode and cathode from the anode side. In the four-chambered electrolytic cell, electrolysis is carried out at a prescribed current density while circulating and feeding hydrochloric acid to the anode chamber, an aq. soln. of tetramethylammonium chloride to the middle chamber 1, an aq. soln. of tetramethylammonium hydroxide to the middle chamber 2 and an aq. soln. of tetramethylammonium hydroxide to the cathode chamber through separate external tanks. By the electrolysis, high purity tetramethylammonium hydroxide is produced from the cathode chamber and stable continuous operation over a long period of time is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、安定して長期に連続運転が容易な電解方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrolysis method that is stable and easy to operate continuously over a long period of time.

〔従来の技術〕[Conventional technology]

陽イオン交換膜を用いた電解槽による電解方法は、有機
、無機を問わず種々の化合物を製造するのに広く使用さ
れている。一般に製造コストの低減がより重要なn題と
なる、例えばカセイソーダなどの化合物を工業的に製造
する方法では、陽極と陰極との間に1枚の陽イオン交換
膜を配した電解槽が用いられる。
Electrolysis methods using electrolytic cells using cation exchange membranes are widely used to produce various compounds, both organic and inorganic. In general, in the industrial production of compounds such as caustic soda, where reducing production costs is a more important issue, an electrolytic cell with a single cation exchange membrane placed between an anode and a cathode is used. .

これに対して、特に高純度であることが要求されている
化合物、例えば水酸化テトラアルキルアンモニウムなど
を工業的に製造する方法では、陰極室に生成する製品に
不純物を含まないように、陽極と陰極の間に2枚以上の
陽イオン交換膜を配した電解槽を使用する態様が多い。
On the other hand, in industrial methods for producing compounds that require particularly high purity, such as tetraalkylammonium hydroxide, the anode and In many cases, an electrolytic cell having two or more cation exchange membranes arranged between cathodes is used.

問に2枚以上の陽イオン交換膜を配した電解槽による電
解方法では、長期に安定して連続運転することが容易で
ないという間蝕点があった。
However, in the electrolysis method using an electrolytic cell equipped with two or more cation exchange membranes, there was a point at which interpolation occurred, which made it difficult to operate stably and continuously for a long period of time.

例えば、陽極と陰極の間に2枚の陽イオン交換膜を配し
て陽極室、中間室および陰極室の3室に区画した電解槽
においてテトラアルキルアンモニウム塩から高純度の水
酸化テトラアルキルアンモニウムを製造する方法では、
llI極室にテトラアルキルアンモニウム塩、中間室お
よび陰極室に所定の水酸化テトラアルキルアンモニウム
をそれぞれ電解質水溶液として循環供給し通電して、陰
極室より高純度の水酸化テトラアルキルアンモニウムを
取得する。
For example, high-purity tetraalkylammonium hydroxide is produced from a tetraalkylammonium salt in an electrolytic cell that is divided into three chambers: an anode chamber, an intermediate chamber, and a cathode chamber by placing two cation exchange membranes between the anode and the cathode. In the manufacturing method,
A tetraalkylammonium salt is supplied to the IlI electrode chamber, and a predetermined tetraalkylammonium hydroxide is circulated as an aqueous electrolyte solution to the intermediate chamber and the cathode chamber, and electricity is applied to obtain highly purified tetraalkylammonium hydroxide from the cathode chamber.

このような3室の電解槽を用い連続運転して水酸化テト
ラアルキルアンモニウムを製造する場合、電解槽の電圧
あるいは温度が上昇しえり、各室への電解質溶液の循環
供給が不安定となるため、ついには運転を停止しなけれ
ばならない状態となる。
When producing tetraalkylammonium hydroxide using such a three-chamber electrolytic cell in continuous operation, the voltage or temperature of the electrolytic cell may rise, making the circulating supply of electrolyte solution to each chamber unstable. Eventually, it becomes necessary to stop operation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記の問題点に鑑み鋭意研究した。その
結果、2枚以上の陽イオン交換膜を用いる多室電解槽に
おいて、該陽イオン交換膜の電流効率をそれぞれ特定し
て興なる状態で電解することにより、問題点を解決でき
る知見を得て、本発明を完成するに至ったものである。
The present inventors conducted extensive research in view of the above problems. As a result, we obtained knowledge that can solve problems in multichamber electrolyzers that use two or more cation exchange membranes by specifying the current efficiency of each cation exchange membrane and performing electrolysis under the appropriate conditions. , which led to the completion of the present invention.

即ち、本発明は、@極と陰極との間に2枚以上の陽イオ
ン交換膜を配した電解槽において、陽極側より陰極側へ
順次に該陽イオン交換膜の電流効率を低く維持して電解
することを特徴とする方法である。
That is, the present invention provides an electrolytic cell in which two or more cation exchange membranes are disposed between an electrode and a cathode, in which the current efficiency of the cation exchange membranes is maintained low sequentially from the anode side to the cathode side. This method is characterized by electrolysis.

本発明の電解方法において、安定して長期の連続運転を
効率よく達成するためには、Ill極側に電流効率が出
来“るだけ高く、一般に70%以上の陽イオン交換膜を
用いることが好ましく、また陽極側より陰極側へ隣接し
て配する互の陽イオン交換膜における電流効率の差を一
般に1〜15%、特に5〜10%に維持することが好ま
しい。このような本発明に用いる陽イオン交換膜として
は、公知の陽イオン交換膜で特に制限されず、例えばス
ルホン酸基、カルボン酸基などの陽イオン交換基を有す
る炭化水素系あるいはパーフルオロカーボン系の陽イオ
ン交換膜である。
In the electrolysis method of the present invention, in order to efficiently achieve stable and long-term continuous operation, it is preferable to use a cation exchange membrane with a current efficiency as high as possible, generally 70% or more, on the Ill electrode side. In addition, it is preferable to maintain the difference in current efficiency between cation exchange membranes arranged adjacently from the anode side to the cathode side generally at 1 to 15%, particularly 5 to 10%. The cation exchange membrane is not particularly limited to known cation exchange membranes, and examples include hydrocarbon-based or perfluorocarbon-based cation exchange membranes having cation exchange groups such as sulfonic acid groups and carboxylic acid groups.

しかして、本発明において、2枚以上の陽イオン交換膜
を陽極側より陰極側へ配した順に低く維持する方法とし
ては、一般にイオン交換容量、含水率など一般に固定イ
オン濃度を調整して電流効率を異にする2枚以上の陽イ
オン交換膜を得て、それぞれ電解槽の電極に所定の関係
位置に配すればよい。なお、各陽イオン交換膜の電流効
率は、該陽イオン交換膜の陰極側に所定濃度の電解質溶
液を供して測定すればよいが、実際に用いる電解槽の構
成および電解条件を勘案して、それぞれ予め所定の電流
効率が決定される。
Therefore, in the present invention, the current efficiency is generally maintained by adjusting the fixed ion concentration, such as the ion exchange capacity and water content, in the order in which two or more cation exchange membranes are arranged from the anode side to the cathode side. It is sufficient to obtain two or more cation exchange membranes having different cation exchange membranes and arrange them at predetermined positions relative to the electrodes of the electrolytic cell. The current efficiency of each cation exchange membrane can be measured by applying an electrolyte solution of a predetermined concentration to the cathode side of the cation exchange membrane, but it is possible to measure the current efficiency by applying an electrolyte solution of a predetermined concentration to the cathode side of the cation exchange membrane. Each predetermined current efficiency is determined in advance.

まえ、本発明においては、電流効率が同一である陽イオ
ン交換膜を配した多室電解槽において、該陽イオン交換
膜の陰極側に形成される各室に供給される電解質溶液の
濃度を陰極室側へ順次に高くなるように調節することに
より、該陽イオン交換膜の電流効率を陽極側より陰極側
へ順次に低く維持することができる。例えば、二枚の同
種の陽イオン交換膜により陽極室、中間室および陰極室
に区画された電解槽において、陽極室に原料のテトラア
ルキルアンモニウム塩、中間室および陰極室に水酸化テ
トラアルキルアンモニウムをそれぞれ水溶液として循環
供給して電解し、高純度の水酸化テトラアルキルアンモ
ニウムを陰極室より取得する場合に、陰極室に循環供給
される水酸化テトラアルキルアンモニウム水溶液の温度
を中間室に循環供給される水酸化テトラアルキルアンモ
ニウム水溶液の温度に比べて高く維持する。なお、上記
した水酸化テトラアルキルアンモニウムの製造では、陽
極室におけるテトラアルキルアンモニウム塩水溶液の濃
度を一般に0.5〜5.0規宇、中間室における水酸化
テトラアルキルアンモニウム水溶液の濃度を一般に0.
2〜3.5規定、また陰極室には純水を添加して水酸化
テトラアルキルアンモニウム水溶液の濃度を調整した一
般に0.3〜4.0規定の範囲から選択して採用される
。このとき、前記したように互の陽イオン交換膜におけ
る電流効率の差を1〜15%とするには、熱極室におけ
る水酸化テトラアルキルアンモニラ鼻水溶液の濃度を中
間室における濃度よりも一般に0.2〜2..0規定高
くする。同様に、特に電流効率の差を5〜10第とする
には、一般に0.5〜1.5規定高くする。
First, in the present invention, in a multi-chamber electrolytic cell equipped with a cation exchange membrane having the same current efficiency, the concentration of the electrolyte solution supplied to each chamber formed on the cathode side of the cation exchange membrane is adjusted to the cathode side. By adjusting the current efficiency so that it increases successively toward the chamber side, the current efficiency of the cation exchange membrane can be maintained successively lower from the anode side to the cathode side. For example, in an electrolytic cell that is divided into an anode chamber, an intermediate chamber, and a cathode chamber by two cation exchange membranes of the same type, the raw material tetraalkylammonium salt is placed in the anode chamber, and the tetraalkylammonium hydroxide is placed in the intermediate and cathode chambers. When high-purity tetraalkylammonium hydroxide is obtained from the cathode chamber by being circulated and electrolyzed as an aqueous solution, the temperature of the aqueous tetraalkylammonium hydroxide solution that is circulated to the cathode chamber is changed to the temperature of the aqueous solution of tetraalkylammonium hydroxide that is circulated and supplied to the intermediate chamber. The temperature is maintained higher than that of the aqueous tetraalkylammonium hydroxide solution. In the production of the above-mentioned tetraalkylammonium hydroxide, the concentration of the aqueous tetraalkylammonium salt solution in the anode chamber is generally 0.5 to 5.0 K, and the concentration of the aqueous tetraalkylammonium hydroxide solution in the intermediate chamber is generally 0.5 - 5.0 K.
The concentration of the tetraalkylammonium hydroxide aqueous solution is adjusted by adding pure water to the cathode chamber, and the concentration is generally selected from the range of 0.3 to 4.0N. At this time, in order to make the difference in current efficiency between the two cation exchange membranes 1 to 15% as described above, the concentration of the tetraalkyl ammonium hydroxide snot solution in the hot electrode chamber is generally lower than the concentration in the intermediate chamber. 0.2-2. .. 0 regulation higher. Similarly, in order to specifically increase the difference in current efficiency by 5 to 10 orders, the current efficiency is generally increased by 0.5 to 1.5 normals.

なお、本発明により、例えば水酸化テトラアルキルアン
モニウムなどを製造する場合には、陽極の腐食、陽極室
における副反応を防止するために、陽極と陽極側の陽イ
オン交換膜との間に陰イオン交換膜を配した電解槽を用
いて、陽極室に酸水溶液を供給する方法が好ましい。さ
らに、陽極における有形なハロゲンガスの発生、あるい
は上記の電解槽において陰イオン交換膜の劣化を防止す
るために、該陰イオン交換膜の陽極側に耐拳化性の陽イ
オン交換膜を配する態様も好ましい。
In addition, when producing, for example, tetraalkylammonium hydroxide according to the present invention, in order to prevent corrosion of the anode and side reactions in the anode chamber, anions are placed between the anode and the cation exchange membrane on the anode side. A preferred method is to supply an acid aqueous solution to the anode chamber using an electrolytic cell equipped with an exchange membrane. Furthermore, in order to prevent the generation of tangible halogen gas at the anode or the deterioration of the anion exchange membrane in the electrolytic cell, a cation exchange membrane that is resistant to curing is placed on the anode side of the anion exchange membrane. The aspect is also preferable.

本発明の電解方法について、代表的にテトラアルキルア
ンモニウム塩から水酸化テトラアルキルアンモニウムの
製造を例示したが、その峰か例えば、シュウ酸からグリ
オキシル酸、シスチンからシスティン、ニトロ基含有芳
香族化合物からアミ7基含有芳香族化合物などの製造に
適用することができる。
Regarding the electrolytic method of the present invention, the production of tetraalkylammonium hydroxide from a tetraalkylammonium salt has been exemplified as a representative example, but the most important examples are, for example, glyoxylic acid from oxalic acid, cystine from cystine, amino acid from nitro group-containing aromatic compound, etc. It can be applied to the production of 7-group-containing aromatic compounds.

〔作用および効果〕[Action and effect]

イオン交換膜は、一般に使用時間の経過にっれて劣化し
て、その電流効率が次第に低下する。
Ion exchange membranes generally deteriorate over time and their current efficiency gradually decreases.

前記したような2&の陽イオン交換族を配して陽極室、
中間室および陰極室の3室に区画された電解槽を使用し
て水酸化テトラアルキルアンモニウムを製造する場合に
は、両陽イオン交換膜の劣化速度が異なり電流効率に差
を生じてくる。即ち、原料のテトラアルキルアンモニウ
ム塩に含まれる不純物のため、該テトラアルキルアンモ
ニウム塩の水溶液を供給するaei室を区画している陽
イオン交換膜の方が、陰極室を区画している陽イオン交
換膜よりも速く劣化し電流効率も速く低下する場合が多
い。
An anode chamber with a cation exchange group of 2& as described above,
When producing tetraalkylammonium hydroxide using an electrolytic cell divided into three chambers, an intermediate chamber and a cathode chamber, the deterioration rates of both cation exchange membranes are different, resulting in a difference in current efficiency. That is, because of the impurities contained in the raw material tetraalkylammonium salt, the cation exchange membrane that partitions the aei chamber that supplies the aqueous solution of the tetraalkylammonium salt is better than the cation exchange membrane that partitions the cathode chamber. In many cases, they deteriorate faster than membranes, and their current efficiency also decreases faster.

このような状態の電解槽において、陽極室から中間室を
騒て陰極室へそれぞれ陽イオン交換膜を介して移動する
テトラアルキルアンモニウムイオンは、陰極室へ向かっ
て中間室から出てゆく量が、陽極室から中間室へ入って
くる量に比べて多くなるため、中間室のテトラアルキル
アアンモニウムイオンが次第に減少する傾向になる。こ
の中間室におけるテトラアルキルアンモニウムイオンの
減少により、該中間室にl!環供給される水酸化テトラ
アルキルアンモニウム水溶液における水酸化テトラアル
キルアンモニウムの当量数は減少する。また、テトラア
ルキルアンモニウムイオンは、通常4分子程度の水分子
を同伴するため、中間室に循環供給される水酸化テトラ
アルキルアンモニウム水溶液の液量も、テトラアルキル
アンモニウムイオンの減少に伴つて減少していくことに
なる。このような中間室にWH4供給される水酸化テト
ラアルキルアンモニウム水溶液における水酸化テトラア
ルキルアンモニウムの当量数あるいは液量が減少する結
果、各室への溶液の循環供給が不安定になるとともに、
摺電圧および温度が上昇する問題を招き、ひいては電解
運転を停止せざるを得ない状態に至る。
In an electrolytic cell in such a state, the amount of tetraalkylammonium ions that move from the anode chamber to the intermediate chamber and then to the cathode chamber via the cation exchange membranes is as follows: The amount of tetraalkyl ammonium ions in the intermediate chamber tends to gradually decrease because the amount increases compared to the amount entering the intermediate chamber from the anode chamber. This decrease in tetraalkylammonium ions in the intermediate chamber causes l! The number of equivalents of tetraalkylammonium hydroxide in the ring-supplied aqueous tetraalkylammonium hydroxide solution decreases. In addition, since tetraalkylammonium ions are usually accompanied by about 4 water molecules, the amount of the tetraalkylammonium hydroxide aqueous solution that is circulated and supplied to the intermediate chamber also decreases as the tetraalkylammonium ions decrease. I'm going to go. As a result of a decrease in the number of equivalents or the amount of tetraalkylammonium hydroxide in the tetraalkylammonium hydroxide aqueous solution supplied to the intermediate chamber, the circulating supply of the solution to each chamber becomes unstable, and
This results in a problem of increased sliding voltage and temperature, which eventually leads to a situation where the electrolytic operation has to be stopped.

これに対して、本発明の電解方法によれば、電解槽に配
した2枚以上の陽イオン交換膜について、それぞれ互に
所定の電流効率を維持させることにより、上記した如き
従来法における問題が解消し、長期に安定した連続運転
を可能にしたものである。
On the other hand, according to the electrolysis method of the present invention, two or more cation exchange membranes arranged in an electrolytic cell each maintain a predetermined current efficiency, thereby solving the problems of the conventional method as described above. This has enabled stable continuous operation over a long period of time.

〔実施例〕〔Example〕

以下、本発明の代表的な実施例を拳ぜて説明するが、本
発明はこれに制限される吃のでない。
Hereinafter, typical embodiments of the present invention will be described in detail, but the present invention is not limited thereto.

実施例1 陽極と陸標との間に、@極側より順に陰イオン交換I4
(徳山曹達社製、ネオセプタAM−1)。
Example 1 Anion exchange I4 was applied between the anode and the landmark in order from the @ pole side.
(Neosepta AM-1, manufactured by Tokuyama Soda Co., Ltd.).

陽イオン交換IIIおよび陽イオン交換膜2(いずれも
徳山曹達社製、ネオセプタ066−10?)をそれぞれ
配して、liI極室、陰イオン交amと陽イオン交換膜
1とにより区画された中間室1゜陽イオン交換Illと
陽イオン交換膜2とにより区画された中間室2および陰
極室からなる有効通電面積21111”の4室電解檜を
構成した。なお、aiaiには白金をコーティングした
チタン板、陰極にはニッケルを用いた。
A cation exchange III and a cation exchange membrane 2 (both manufactured by Tokuyama Soda Co., Ltd., NeoSepta 066-10?) are arranged, respectively, and an intermediate electrode chamber partitioned by a liI electrode chamber, an anion exchange chamber and a cation exchange membrane 1 is provided. A four-chamber electrolysis chamber with an effective current-carrying area of 21111'' was constructed, consisting of an intermediate chamber 2 and a cathode chamber partitioned by a cation exchange chamber 1 and a cation exchange membrane 2. Nickel was used for the plate and cathode.

上記の4室電解槽を用いて、陽極室に0.5規定の塩醗
、中間室1に1.59.定のテトラメチルアンモニラム
ク關うイド水溶液、中間g12に1.6規定の水酸化テ
トラメチルアンモニウム水溶液および陰極室に1.8規
定の水酸化テトラメチルアンモニウム水溶液をそれぞれ
外部のタンクを介して線速度10 am / seaで
循環供給し、電流密度20A/am/で電解し陰極室か
ら高純度の水酸化テトラメチルアンモニウムを生成し取
得した。なお、陰極室における水酸化テトラメチルアン
モニウム水溶液の濃度を1.8fIL定に維持するため
に、純水を加えて調節した。
Using the above four-chamber electrolytic cell, the anode chamber contains 0.5 N of salt and the intermediate chamber 1 contains 1.59 N of salt. A 1.6N aqueous tetramethylammonium hydroxide solution was added to the intermediate g12, and a 1.8N aqueous tetramethylammonium hydroxide solution was added to the cathode chamber through external tanks. High purity tetramethylammonium hydroxide was produced and obtained from the cathode chamber by circulating supply at a rate of 10 am/sea and electrolyzing at a current density of 20 A/am/. In addition, in order to maintain the concentration of the tetramethylammonium hydroxide aqueous solution in the cathode chamber at a constant value of 1.8 fIL, pure water was added to adjust the concentration.

その結果、2ケ月間の連続運転を実施したが、摺電圧は
237の略一定であり、を喪中間室2に循環供給される
水酸化テトラメチルアンモニウム水溶液の液量は少し増
加しただけであり、さらに安定して運転を続行すること
も可能であった。 なお、上記の電解における陽イオン
交換膜1および陽イオン交換膜2のそれぞれ電流効率は
、陽極と陰極との間に陽イオン交換I!11あるいは陽
イオン交換膜2として使用される陽イオン交換膜ネオセ
プタ066−10νを配して、陰極室および陰極室から
なる有効通電面@ 0.2 +111’の2室電解槽を
構成して測定した。すなわち、まず陽極室に1.5規定
のテトラメチルアンモニウムクロライド水溶液、陰極室
に0.5規定の水酸化テトラメチルアンモニウム水溶液
をそれぞれ満たし、電流密度20ム/dwIで1時間電
解した。電解終了後、陰極室に個たした水酸化テトラメ
チルアンモニウム水溶液の濃度を測定し、電解の前後に
おける水酸化テトラメチルアンモニウム水溶液の濃度差
から電流効率を得た。同様に、陰極室に満たす水酸化テ
トラメチルアンモニウム水溶液の濃度を1.0.1.5
.2.0規定として電解を行い、それぞれの電解につい
て陽イオン交換膜の電流効率を得た。次いで、それぞれ
の電解における水酸化テトラメチルアンモニウム水溶液
の平均濃度と電流効率との間の関係をグラフに表した。
As a result, although continuous operation was carried out for two months, the sliding voltage was approximately constant at 237, and the amount of the tetramethylammonium hydroxide aqueous solution circulated and supplied to the mourning intermediate chamber 2 increased only slightly. It was also possible to continue driving more stably. In addition, the current efficiency of the cation exchange membrane 1 and the cation exchange membrane 2 in the above electrolysis is the cation exchange I! between the anode and the cathode. 11 or the cation exchange membrane Neoceptor 066-10ν used as the cation exchange membrane 2 to form a two-chamber electrolytic cell with an effective current-carrying surface @ 0.2 +111' consisting of a cathode chamber and a cathode chamber. did. That is, first, the anode chamber was filled with a 1.5N aqueous solution of tetramethylammonium chloride, and the cathode chamber was filled with a 0.5N aqueous solution of tetramethylammonium hydroxide, and electrolysis was carried out at a current density of 20 μm/dwI for 1 hour. After the electrolysis was completed, the concentration of the tetramethylammonium hydroxide aqueous solution placed in the cathode chamber was measured, and the current efficiency was obtained from the concentration difference of the tetramethylammonium hydroxide aqueous solution before and after electrolysis. Similarly, the concentration of the tetramethylammonium hydroxide aqueous solution filled in the cathode chamber was set to 1.0.1.5.
.. Electrolysis was performed under a normal setting of 2.0, and the current efficiency of the cation exchange membrane was obtained for each electrolysis. Next, the relationship between the average concentration of the tetramethylammonium hydroxide aqueous solution and the current efficiency in each electrolysis was expressed in a graph.

ここで、水酸化テトラメチルアンモニウム水溶液の平均
濃度とは、電解の開始時における濃度と電解終了時にお
ける濃度の平均値である。このように作成したグラフか
ら、水酸化テトラメチルアンモニウム水溶液の濃度が1
.6規宏のときの陽イオン交換膜ネオセプタ066−1
0yの電流効率はフ3襲であり、1.8規定のときの電
流効率は67%であった。
Here, the average concentration of the tetramethylammonium hydroxide aqueous solution is the average value of the concentration at the start of electrolysis and the concentration at the end of electrolysis. From the graph created in this way, the concentration of the tetramethylammonium hydroxide aqueous solution is 1
.. Cation exchange membrane Neocepta 066-1 at the time of 6 Norihiro
The current efficiency at 0y was F3, and the current efficiency at 1.8 regulation was 67%.

比較例1 実施例1において、中間室2に供給される水酸化テトラ
メチルアンモニウム水溶液の濃度を1.8規定として、
陰極室における水酸化テトラメチルアンモニウム水溶液
の濃度に一致させたこと以外は、実施例1と同一の条件
で電解槽を運転した。運転開始の2日後から、電槽電圧
が上昇し始め、運転開始時には23Vであった電槽電圧
が運転開始から1週間後には327にまで上昇し、また
電解槽の温度も、運転開始時の35℃から52℃に上昇
したため、電解槽の運転を停止した。
Comparative Example 1 In Example 1, the concentration of the tetramethylammonium hydroxide aqueous solution supplied to the intermediate chamber 2 was set to 1.8N,
The electrolytic cell was operated under the same conditions as in Example 1, except that the concentration was made to match the concentration of the aqueous tetramethylammonium hydroxide solution in the cathode chamber. Two days after the start of operation, the cell voltage began to rise, and the cell voltage, which was 23V at the start of operation, rose to 327V one week after the start of operation, and the temperature of the electrolytic cell also changed to the same level as at the start of operation. Since the temperature rose from 35°C to 52°C, operation of the electrolytic cell was stopped.

実施例2 実施例1において、陽イオン交換J11!1としてネオ
セプタ066−101の代りにデAメン社製のIafi
an 901 (パーフルオロ系陽イオン交換膜)を該
膜のカルボン醗層を有する面を陰極側に向けて配した。
Example 2 In Example 1, Iafi manufactured by DeAmen Co., Ltd. was used instead of Neocepta 066-101 as the cation exchange J11!1.
An 901 (perfluorinated cation exchange membrane) was arranged with the surface of the membrane having the carbon layer facing the cathode side.

また、陽極室には0.5規定の塩酸、中間室1には2.
5規定の炭酸テトラメチルアンモニウム水溶液、中間室
2および陰極室にはそれぞれ2.0規定の水酸化テトラ
メチルアンモニウム水溶液をそれぞれ循環供給した。
In addition, 0.5 N hydrochloric acid was placed in the anode chamber, and 2.0 N hydrochloric acid was placed in the intermediate chamber 1.
A 5N aqueous solution of tetramethylammonium carbonate and a 2.0N aqueous solution of tetramethylammonium hydroxide were supplied in circulation to the intermediate chamber 2 and the cathode chamber, respectively.

なお、陰極室には循環供給される水酸化テトラメチルア
ンモニウム水溶液の濃度を2.0規定とするために純水
を加えた。その他の条件は実施例1と同一にして電解を
行つた。陽イオン交換膜1として使用した!1afio
n 901の電流効率は、陰極側の面に接触する水酸化
テトラメチルアンモニウム水溶液における水酸化テトラ
メチルアンモニウムの濃度が2.0規定であるとき、連
続運転したが、中間室2にam供給される水酸化テトラ
メチルアンモニウム水溶液の液量がわずかばかり増加し
ただけであり、摺電圧も23Vの略一定であり、温度の
変化もなく、さらに電解槽の運転を続行することも可能
であった。
Note that pure water was added to the cathode chamber in order to adjust the concentration of the tetramethylammonium hydroxide aqueous solution that was circulated to 2.0 normal. Other conditions were the same as in Example 1 to carry out electrolysis. Used as cation exchange membrane 1! 1afio
The current efficiency of n901 was determined by continuous operation when the concentration of tetramethylammonium hydroxide in the tetramethylammonium hydroxide aqueous solution in contact with the cathode side surface was 2.0 normal, but am supplied to intermediate chamber 2. The amount of the aqueous tetramethylammonium hydroxide solution increased only slightly, the sliding voltage remained approximately constant at 23 V, there was no change in temperature, and it was possible to continue operation of the electrolytic cell.

比較例2 実施例2において、陽イオン交換膜1としてネオ七ブタ
066−107%陽イオン交換膜2としてN亀fion
901を使用したこと以外は、実施例2と同一の条件で
電解を実施した。
Comparative Example 2 In Example 2, Neo Shichibuta 066-107 was used as the cation exchange membrane 1, and N Kamefion was used as the cation exchange membrane 2.
Electrolysis was carried out under the same conditions as in Example 2, except that 901 was used.

その結果、運転開始の直後より中間室2に循環供給され
る水酸化テトラメチルアンモニウム水溶液の液量が減少
し、1週間後には水酸化テトラメチルアンモニウム水溶
液を安定して供給することができなくなりたため、電解
槽の運転を停止し九。
As a result, the amount of the tetramethylammonium hydroxide aqueous solution that was circulated and supplied to the intermediate chamber 2 decreased immediately after the start of operation, and after one week, it became impossible to stably supply the tetramethylammonium hydroxide aqueous solution. 9. Stop the operation of the electrolyzer.

Claims (2)

【特許請求の範囲】[Claims] (1)陽極と陰極との間に2枚以上の陽イオン交換膜を
配した電解槽において、陽極側より陰極側へ順次に該陽
イオン交換膜の電流効率を低く維持することを特徴とす
る電解方法。
(1) In an electrolytic cell in which two or more cation exchange membranes are arranged between an anode and a cathode, the current efficiency of the cation exchange membranes is maintained low sequentially from the anode side to the cathode side. Electrolysis method.
(2)テトラアルキルアンモニウム塩から水酸化テトラ
アルキルアンモニウムを製造する特許請求の範囲第(1
)項記載の電解方法。
(2) Claim No. 1 for producing tetraalkylammonium hydroxide from a tetraalkylammonium salt
) The electrolysis method described in section 2.
JP63266017A 1988-10-24 1988-10-24 Method for producing tetraalkylammonium hydroxide Expired - Lifetime JP2584846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63266017A JP2584846B2 (en) 1988-10-24 1988-10-24 Method for producing tetraalkylammonium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63266017A JP2584846B2 (en) 1988-10-24 1988-10-24 Method for producing tetraalkylammonium hydroxide

Publications (2)

Publication Number Publication Date
JPH02115387A true JPH02115387A (en) 1990-04-27
JP2584846B2 JP2584846B2 (en) 1997-02-26

Family

ID=17425219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63266017A Expired - Lifetime JP2584846B2 (en) 1988-10-24 1988-10-24 Method for producing tetraalkylammonium hydroxide

Country Status (1)

Country Link
JP (1) JP2584846B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108396327A (en) * 2018-05-23 2018-08-14 梁小朝 A kind of device and method of continuity method production tetramethylammonium hydroxide
CN110318066A (en) * 2019-06-20 2019-10-11 青岛鼎海电化学科技有限公司 A kind of preparation method of tetra-alkyl ammonium hydroxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123386A (en) * 1980-03-03 1981-09-28 Konosuke Kishida Method and apparatus for electrolysis of salt
JPS59211582A (en) * 1983-05-17 1984-11-30 Toagosei Chem Ind Co Ltd Production of aqueous caustic alkali solution having high purity
JPS60131986A (en) * 1983-12-19 1985-07-13 Showa Denko Kk Manufacture of quaternary ammonium hydroxide of high purity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123386A (en) * 1980-03-03 1981-09-28 Konosuke Kishida Method and apparatus for electrolysis of salt
JPS59211582A (en) * 1983-05-17 1984-11-30 Toagosei Chem Ind Co Ltd Production of aqueous caustic alkali solution having high purity
JPS60131986A (en) * 1983-12-19 1985-07-13 Showa Denko Kk Manufacture of quaternary ammonium hydroxide of high purity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108396327A (en) * 2018-05-23 2018-08-14 梁小朝 A kind of device and method of continuity method production tetramethylammonium hydroxide
CN108396327B (en) * 2018-05-23 2024-04-09 柏川新材料科技(宁波)有限公司 Equipment and method for producing tetramethyl ammonium hydroxide by continuous method
CN110318066A (en) * 2019-06-20 2019-10-11 青岛鼎海电化学科技有限公司 A kind of preparation method of tetra-alkyl ammonium hydroxide

Also Published As

Publication number Publication date
JP2584846B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
CN105112934B (en) A kind of preparation method of tetra-alkyl ammonium hydroxide
FI94063C (en) Process for simultaneous preparation of alkali metal or ammonium peroxodisulfate salts and alkali metal hydroxide
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
JP7163841B2 (en) Method for producing ammonium persulfate
JPS6218627B2 (en)
JPH02115387A (en) Electrolyzing method
JPH01102049A (en) Production of amino acid
JP2000218274A (en) Production of nickel phosphinate by electrolytic membrane technique
US3767549A (en) Method for producing basic aluminum chloride
FI112382B (en) A method for using a membrane cell
JPS61261488A (en) Electrolyzing method for alkaline metallic salt of amino acid
RU2603642C1 (en) Method of producing cerium nitrate (iv)
JPS61217589A (en) Electrochemical method
CA2122931C (en) Electrolytic production of acid
JP2839155B2 (en) Process for producing alkali metal dichromate and chromic acid
JPH01184293A (en) Production of iodine and iodate
JP2839154B2 (en) Production method of chromic acid
JP4062917B2 (en) Method for producing sodium hydroxide
JPS6227158B2 (en)
JPH0949096A (en) Method for electrolyzing salt by three chamber method
JPH0270080A (en) Production of tetraalkylammonium hydroxide
HU216055B (en) Process for the manufacture of alkali metal hydroxide
JPS59211582A (en) Production of aqueous caustic alkali solution having high purity
SU1379342A1 (en) Method of producing sodium tellurate
JP2000351622A (en) Production of titanium (iii) sulfate