JPH02115072A - Coating applicator - Google Patents
Coating applicatorInfo
- Publication number
- JPH02115072A JPH02115072A JP26392488A JP26392488A JPH02115072A JP H02115072 A JPH02115072 A JP H02115072A JP 26392488 A JP26392488 A JP 26392488A JP 26392488 A JP26392488 A JP 26392488A JP H02115072 A JPH02115072 A JP H02115072A
- Authority
- JP
- Japan
- Prior art keywords
- coating
- amount
- wafer
- coating liquid
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 82
- 239000011248 coating agent Substances 0.000 title claims abstract description 81
- 239000007788 liquid Substances 0.000 claims abstract description 52
- 238000012544 monitoring process Methods 0.000 claims abstract description 9
- 239000004065 semiconductor Substances 0.000 abstract description 46
- 239000011521 glass Substances 0.000 abstract description 17
- 239000000463 material Substances 0.000 abstract description 3
- 238000011221 initial treatment Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 62
- 229920002120 photoresistant polymer Polymers 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007888 film coating Substances 0.000 description 2
- 238000009501 film coating Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Coating Apparatus (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は塗布技術に関するものであり、特に、半導体ウ
ェハや磁気ディスクなどの板状物を回転させながら該板
状物に塗布液を塗布するスピンオンカラス(SOG)塗
布装置、ホトレジスト塗布装置、ポリイミド樹脂塗布装
置などの回転塗布技術に利用して有効な技術に関するも
のである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to coating technology, and in particular, applies a coating liquid to a plate-shaped object such as a semiconductor wafer or a magnetic disk while rotating the plate-shaped object. The present invention relates to a technology that is effective when used in spin coating techniques such as spin-on glass (SOG) coating equipment, photoresist coating equipment, and polyimide resin coating equipment.
従来の回転塗布装置は特開昭52−1.23172号、
特開昭58−166721号、特開昭58−17181
9号各公報に記載のように、半導体ウェハ上に塗布液を
滴下し、ウェハを回転させて塗布膜の形成を行うもので
ある。The conventional spin coating device is disclosed in Japanese Patent Application Laid-Open No. 52-1.23172,
JP-A-58-166721, JP-A-58-17181
As described in each publication No. 9, a coating liquid is dropped onto a semiconductor wafer and the wafer is rotated to form a coating film.
この種の装置においては、塗布ムラ発生防止あるいは塗
布膜厚精度向上が極めて重要な要件であり、そのための
対策として、処理温度管理、塗布液粘度管理および塗布
カップ内排気風速管理などが行われている。In this type of equipment, it is extremely important to prevent the occurrence of coating unevenness and improve coating film thickness accuracy, and measures such as processing temperature control, coating liquid viscosity control, and exhaust air speed control in the coating cup are taken as measures to achieve this. There is.
さらに、ウェハ裏面に回り込んだ塗布液を除去するため
に、たとえば特開昭52−”123172号公報に記載
されているように、溶剤による不要塗布膜の除去を行う
除去法が用いられている例がある。Furthermore, in order to remove the coating liquid that has gotten around to the back surface of the wafer, a removal method is used in which unnecessary coating film is removed using a solvent, as described in, for example, Japanese Patent Laid-Open No. 123172/1983. There is an example.
ところが、上記従来装置は塗布すべき半導体ウェハごと
に塗布液滴下制御パラメータである塗布液滴下量、滴下
スピード、滴下時の半導体ウェハ回転数、滴下液スプレ
ッド時間などを制御する機能は備えていない。However, the conventional apparatus described above does not have a function to control coating liquid dropping control parameters such as coating liquid dropping amount, dropping speed, semiconductor wafer rotation speed during dropping, and dropping liquid spreading time for each semiconductor wafer to be coated.
そのために、従来装置でウェハパターン段差寸法(凹凸
)の異なる半導体ウェハを混在処理した場合、同一滴下
処理条件下で処理される。この結果、パターン段差寸法
(凹凸)の大きい半導体ウェハは塗布液の拡がり量が不
足し、塗布ムラが発生するという問題が生じることを本
発明者は見出した。For this reason, when semiconductor wafers having different wafer pattern step dimensions (irregularities) are mixedly processed using the conventional apparatus, they are processed under the same dropping processing conditions. As a result, the inventors have found that semiconductor wafers with large pattern step dimensions (irregularities) have a problem in that the amount of the coating liquid is insufficient to spread, resulting in uneven coating.
一方、パターン段差寸法(凹凸)の小さい半導体ウェハ
では塗布液が拡がり過ぎ、過剰な塗布液がウェハ裏面に
回り込むという問題が生じる。特にウェハ裏面に回り込
んだ塗布液が、ウェハ裏面の梨地面く凹凸面)に入り込
むと、特開昭52=123172号公報に記載されてい
る溶剤による除去法だけでは除去できなくなる。On the other hand, in semiconductor wafers with small pattern step dimensions (irregularities), the coating liquid spreads too much, causing a problem in that excess coating liquid flows around to the back surface of the wafer. In particular, if the coating liquid that has flowed around to the back surface of the wafer gets into the satin surface or uneven surface of the back surface of the wafer, it cannot be removed only by the removal method using a solvent described in Japanese Patent Application Laid-Open No. 52-123172.
特に、半導体製品の高集積化に伴い微小パターンサイズ
が0.8μmから、0.5μmへと微細化されると共に
、多層配線プロセス、トレンチ構造プロセスなどの採用
により、パターン段差寸法が厳しくなる一方である。In particular, as semiconductor products become more highly integrated, the size of micropatterns is reduced from 0.8 μm to 0.5 μm, and pattern step dimensions are becoming stricter due to the adoption of multilayer wiring processes, trench structure processes, etc. be.
言い換えれば、初期工程と最終工程とを比較した場合、
半導体ウェハの表面の凹凸変化量が極めて大きくなる傾
向にある。In other words, when comparing the initial process and the final process,
The amount of change in unevenness on the surface of a semiconductor wafer tends to be extremely large.
一方、ホトレジスト塗布プロセスについてみると、パタ
ーン加工精度の向上のために、塗布特性の異なるホトレ
ジスト液が開発され、複数種類のホトレジスト液が混在
して使用されている。この結果、半導体ウェハの表面の
凹凸変化量が極めて大きくなる傾向にあることを本発明
者は見出した。On the other hand, regarding the photoresist coating process, in order to improve pattern processing accuracy, photoresist liquids with different coating characteristics have been developed, and a plurality of types of photoresist liquids are used in combination. As a result, the inventors have found that the amount of change in unevenness on the surface of the semiconductor wafer tends to become extremely large.
本発明の目的は、表面状態の異なる板状物を混在処理す
るような場合でも、塗布ムラの発生や裏面への不要塗布
液の回り込みなどを防止できる塗布技術を提供すること
にある。An object of the present invention is to provide a coating technique that can prevent the occurrence of coating unevenness and the leakage of unnecessary coating liquid to the back surface, even when plate-like objects with different surface conditions are mixedly treated.
本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述および添付図面から明らかになるであろう
。The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.
本願において開示される発明のうち、代表的なものの概
要を簡単に説明すれば、以下のとおりである。A brief overview of typical inventions disclosed in this application is as follows.
本発明の塗布装置は塗布膜を形成する半導体ウェハなど
の板状物の表面の表面状態を自動的にモニタするモニタ
手段を設け、このモニタ手段による板状物表面の表面状
態モ二り情報に基づき、塗布液滴下制御パラメータおよ
び塗布シーケンス制御パラメータを制御するものである
。The coating apparatus of the present invention is provided with a monitor means for automatically monitoring the surface condition of the surface of a plate-like object such as a semiconductor wafer on which a coating film is formed, and the surface condition monitoring information of the surface of the plate-like object by this monitor means is used. Based on this, the coating liquid dropping control parameters and coating sequence control parameters are controlled.
上記した手段によれば、板状物に塗布液を滴下する前に
半導体ウェハのような板状物の表面の表面状態たとえば
凹凸量計測モニタにより、塗布すべき半導体ウェハ表面
の表面状態の一例として凹凸量を計測する。According to the above-mentioned means, the surface condition of the surface of a plate-like object such as a semiconductor wafer, for example, the surface condition of the surface of the semiconductor wafer to be coated, is determined by a monitor for measuring the amount of unevenness before dropping the coating liquid onto the plate-like object. Measure the amount of unevenness.
この表面状態モニタ結果に基づいて、塗布液滴下】、塗
布液滴下時の板状物の回転数、塗布液滴下時間値を決定
し、制御情報を得る。Based on the results of this surface condition monitoring, the coating liquid dropping], the number of revolutions of the plate-like object during the coating liquid dropping, and the coating liquid dropping time are determined to obtain control information.
塗布膜形成時には上記制御情報に基づき、板状物を所定
回転数で回転させながら、所定量の塗布液を所定時間で
滴下し、その後、所定塗布シーケンスで板状物上に塗布
膜が形成される。When forming a coating film, a predetermined amount of coating liquid is dropped over a predetermined period of time while rotating the plate-like object at a predetermined rotational speed based on the above control information, and then a coating film is formed on the plate-like object in a predetermined coating sequence. Ru.
言い換えれば、板状物の表面の凹凸量の如き表面状態に
応じ、塗布液滴下量、滴下時の板状物の回転数が定まる
ため、板状物の周辺まで塗布液が均一に引き伸ばされ、
かつ、不必要に、板状物の裏面に塗布液を回り込ませる
問題が生じなくなる。In other words, the amount of the coating liquid dropped and the number of rotations of the plate-like object at the time of dropping are determined according to the surface condition such as the amount of unevenness on the surface of the plate-like object, so that the coating liquid is uniformly spread to the periphery of the plate-like object.
Moreover, the problem of unnecessarily causing the coating liquid to flow around the back surface of the plate-like object does not occur.
すなわち、滴下した塗布液引き伸ばしスピードは板状物
の表面の裏面状態、たとえば凹凸量により異なる。本発
明はこの現象を逆利用したもので、板状物の表面の凹凸
量に応じ、塗布液滴下量、塗重液滴下時のウェハ回転数
、塗布液引き伸ばし時間等を制御するものである。これ
により、表面凹凸量変化に伴い生じる塗布液引き伸ばし
スピードの変化を補正する。この結果、本発明では表面
凹凸量の異なる板状物たとえば半導体ウェハを混在処理
しても、塗布ムラを生じることなく、かつ半導体ウェハ
裏面に不要な塗布液が回り込むのを防止できる。That is, the stretching speed of the dropped coating solution varies depending on the condition of the back surface of the plate-like object, for example, the amount of unevenness. The present invention takes advantage of this phenomenon, and controls the amount of coating liquid dropped, the wafer rotation speed during coating weight liquid dropping, the coating liquid stretching time, etc., in accordance with the amount of unevenness on the surface of a plate-shaped object. This corrects the change in the coating liquid stretching speed that occurs due to the change in the amount of surface unevenness. As a result, in the present invention, even if plate-shaped objects such as semiconductor wafers having different amounts of surface unevenness are mixedly processed, uneven coating does not occur and unnecessary coating liquid can be prevented from flowing around to the back surface of the semiconductor wafer.
第1図は本発明の一実施例であるスピンオンガラス膜塗
布装置の要部断面図であり、同図はスピンオンガラス(
SOG)液を滴下している状態を示す。FIG. 1 is a cross-sectional view of a main part of a spin-on glass film coating apparatus which is an embodiment of the present invention.
This shows a state in which SOG) liquid is being dropped.
まず、本実施例の塗布装置の構成について説明すると、
塗布カップ部1にスピンオンガラス膜を形成する半導体
ウェハ2 (板状物)がスピンチャック部3に真空吸着
されている。このスピンチャック部3はモータ4に接続
され、回転数制御部5により制御されて該モータ4によ
って所定回転数で回転できる構造となっている。First, the configuration of the coating device of this example will be explained.
A semiconductor wafer 2 (plate-shaped object) on which a spin-on glass film is to be formed on the coating cup section 1 is vacuum-adsorbed to the spin chuck section 3. This spin chuck section 3 is connected to a motor 4, and is controlled by a rotation speed control section 5 so that the spin chuck section 3 can be rotated by the motor 4 at a predetermined rotation speed.
一方、滴下ノズル6からは、滴下量制御部7で制御され
ることにより、所定量のスピンオンガラス液8を滴下す
るように構成されている。On the other hand, the dripping nozzle 6 is configured to drip a predetermined amount of the spin-on glass liquid 8 under the control of a dripping amount control section 7 .
さらに、半導体ウェハ2の表面状態の一例である凹凸量
として段差量を計測する段差計測センサ9 (モニタ手
段)が設けられ、該センサ9は段差量判定部10に接続
されている。Further, a step measuring sensor 9 (monitoring means) is provided which measures the amount of step as the amount of unevenness which is an example of the surface condition of the semiconductor wafer 2, and the sensor 9 is connected to the step amount determining section 10.
前記段差量判定部10、滴下量制御部7、回転数制御部
5は全体制御部11に接続されている。The step amount determination section 10, the drop amount control section 7, and the rotation speed control section 5 are connected to an overall control section 11.
全体制御部11は初期処理条件情報12と段差計測セン
サ9、段差量判定部10のモニタ情報に基づき、滴下量
制御部7、回転数制御部5を制御し、スピンオンガラス
液8の滴下量、半導体ウェハ2の回転シーケンス制御を
行うよう構成されている。The overall control unit 11 controls the dripping amount control unit 7 and the rotation speed control unit 5 based on the initial processing condition information 12, the level difference measurement sensor 9, and the monitor information of the level difference determination unit 10, and controls the dripping amount of the spin-on glass liquid 8, It is configured to perform rotation sequence control of the semiconductor wafer 2.
ここで、半導体ウェハ2の表面凹凸量をモニタする原理
について一実施例として、第2図のウェハ表面凹凸量モ
ニタ原理図により説明する。Here, the principle of monitoring the amount of surface unevenness of the semiconductor wafer 2 will be explained as an example with reference to a diagram of the principle of monitoring the amount of surface unevenness of the wafer shown in FIG.
この原理図では半導体ウェハ2を回転させながら一定量
の光量を照射し、光学的反射光景変動差より半導体ウェ
ハ2の表面の凹凸量を自動的にモニタする。具体的には
同一光量で照射した光に対する反射光量差からウェハ表
面凹凸量係数値を求め、この値を基準にウェハ表面凹凸
量を判定する。In this principle diagram, a constant amount of light is irradiated while rotating the semiconductor wafer 2, and the amount of unevenness on the surface of the semiconductor wafer 2 is automatically monitored from the difference in optical reflection scene fluctuation. Specifically, the wafer surface unevenness amount coefficient value is determined from the difference in reflected light amount for light irradiated with the same amount of light, and the wafer surface unevenness amount is determined based on this value.
このウェハ表面凹凸量係数値を求めるアルゴリズムとし
ては
α”(Er E、)x ΣE(Er
+ Ei ) / 2
α;ウェハ表面凹凸量係数
ΣE;投光光量
ET;ウェハパターン上部反射光量
E8;ウェハパターン下部反射光量
このアルゴリズムはΣE/ ((Et +Ea ) /
2)でウェハ表面の光学的係数(反射率、透過率、吸収
率)を求め、(ET−EB)でウェハ表面凹凸比率値を
求める。トータル的には前者でウェハ表面材質(Aj!
、 S i02. 3 iなど)による光学的補正量
を求め、その光学的補正量によりウェハ表面凹凸比率値
を補正し、ウェハ表面凹凸量係数(α)を自動的に求め
る。具体的には段差計測センサ9から半導体ウェハ2に
一定量の光量を照射し、その反射光を受光する。段差量
判定部10では、この時の照射光量と反射光量をもとに
上記アルゴリズムにより半導体ウェハ2上の凹凸量を自
動的に求める。The algorithm for calculating the wafer surface unevenness coefficient value is α”(Er E,) x ΣE(Er
+ Ei ) / 2 α; Wafer surface unevenness coefficient ΣE; Projected light amount ET; Wafer pattern top reflected light amount E8; Wafer pattern bottom reflected light amount This algorithm is ΣE/ ((Et +Ea) /
2) determines the optical coefficients (reflectance, transmittance, absorption) of the wafer surface, and (ET-EB) determines the wafer surface unevenness ratio value. In total, the former is the wafer surface material (Aj!
, S i02. 3i, etc.), the wafer surface unevenness ratio value is corrected by the optical correction amount, and the wafer surface unevenness coefficient (α) is automatically obtained. Specifically, a certain amount of light is irradiated onto the semiconductor wafer 2 from the step measurement sensor 9, and the reflected light is received. The level difference determination section 10 automatically determines the amount of unevenness on the semiconductor wafer 2 using the above algorithm based on the amount of irradiated light and the amount of reflected light at this time.
次に、本実施例の塗布装置の動作について説明する。Next, the operation of the coating apparatus of this embodiment will be explained.
まず、全体制御部11に、半導体ウェハ2上に塗布すべ
きスピンオンガラス膜厚の初期処理条件情報12を設定
する。First, initial processing condition information 12 regarding the thickness of the spin-on glass film to be applied onto the semiconductor wafer 2 is set in the overall control section 11 .
初期設定後装置を始動させると、全体制御部11より、
回転制御部5に半導体ウェハ2表面の凹凸量求めるため
に半導体ウェハ2が所定回転数で回転される。この状態
で全体制御部11により段差量判定部10が制御され、
段差計測センサ9より一定光量の光が照射される。When the device is started after initial settings, the overall control unit 11
The semiconductor wafer 2 is rotated at a predetermined number of rotations in order for the rotation control unit 5 to determine the amount of unevenness on the surface of the semiconductor wafer 2 . In this state, the step amount determination unit 10 is controlled by the overall control unit 11,
A constant amount of light is emitted from the step measurement sensor 9.
同時に半導体ウェハ2からの反射光量を受光し前述した
ウェハ表面凹凸量を求めるアルゴリズムに基づき、ウェ
ハ表面凹凸量が段差量判定部10により求められる。こ
の求められた半導体ウェノ\2の表面凹凸量モニタない
し計測情報が全体制御部11にフィードバックされる。At the same time, the amount of unevenness on the wafer surface is determined by the step amount determining section 10 based on the algorithm for receiving the amount of reflected light from the semiconductor wafer 2 and determining the amount of unevenness on the wafer surface described above. The obtained surface unevenness amount monitor or measurement information of the semiconductor weno\2 is fed back to the overall control section 11.
全体制御部11では、この半導体ウェハ2の凹凸量計測
情報と初期処理条件情報12とに基づき、スピンオンガ
ラス液滴下量、滴下スl:’−)’、滴下時の半導体ウ
ェハ2の回転数の最適値を求める。The overall control unit 11 determines the amount of spin-on glass liquid dropped, the dropped sl:'-)', and the rotational speed of the semiconductor wafer 2 at the time of dropping based on the unevenness measurement information of the semiconductor wafer 2 and the initial processing condition information 12. Find the optimal value.
この滴下条件最適値に基づき、全体制御部11により、
滴下量制御部7、回転数制御部5が制御される。Based on this optimal value of the dropping conditions, the overall control unit 11
The dripping amount control section 7 and the rotation speed control section 5 are controlled.
この結果、半導体ウェハ2の凹凸量に応じ、回転数制御
部5により、モータ4が回転数制御され半導体ウェハ2
が最適回転数で回転される。この状態で滴下量制御部7
から、スピンオンガラス液8が、最適滴下スピードで所
定量滴下される。As a result, the rotation speed of the motor 4 is controlled by the rotation speed control section 5 according to the amount of unevenness of the semiconductor wafer 2.
is rotated at the optimum rotation speed. In this state, the dripping amount control unit 7
Then, a predetermined amount of the spin-on glass liquid 8 is dropped at an optimum dropping speed.
その後、回転数制御部5により半導体ウェハ2が所定回
転シーケンスで制御され、半導体ウニノー2上に精度良
い所定膜厚のスピンオンガラス膜が形成される。この結
果、塗布ムラの発生や半導体ウェハ2の裏面に不要なス
ピンオンガラス液8が回り込む現象を防止できる。Thereafter, the semiconductor wafer 2 is controlled in a predetermined rotation sequence by the rotation speed control unit 5, and a spin-on glass film having a predetermined thickness with high precision is formed on the semiconductor wafer 2. As a result, it is possible to prevent uneven coating and the phenomenon that unnecessary spin-on glass liquid 8 flows around the back surface of semiconductor wafer 2.
以上、本発明者によってなされた発明を実施例に基づい
て具体的に説明したが、本発明は上記実施例に限定され
るものではなく、その要旨を逸脱しない範囲で種々の変
形が可能であることは言うま°Jもない。As above, the invention made by the present inventor has been specifically explained based on examples, but the present invention is not limited to the above-mentioned examples, and various modifications can be made without departing from the gist of the invention. Needless to say, there is no °J.
たとえば、本発明の塗布装置は、ホトレジスト塗布装置
以外にも、ドーパント剤塗布装置、ポリミド塗布装置、
ウェットスピンエツチング装置として適用することもで
きる。For example, in addition to the photoresist coating device, the coating device of the present invention may also include a dopant coating device, a polymide coating device,
It can also be applied as a wet spin etching device.
また、半導体ウェハ表面の凹凸量を計測する手段として
、照射光をパルス状に照射し、その反射光が受光部まで
戻る時間差から光路長を求め、半導体ウェハ表面の凹凸
量を計測する方法が可能である。Additionally, as a means of measuring the amount of unevenness on the surface of a semiconductor wafer, it is possible to measure the amount of unevenness on the surface of a semiconductor wafer by emitting irradiation light in a pulsed manner and determining the optical path length from the time difference in which the reflected light returns to the light receiving part. It is.
さらに、表面状態としては凹凸量(段差量)以外のもの
をモニタすることも可能である。Furthermore, it is also possible to monitor other surface conditions than the amount of unevenness (step amount).
以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野である半導体ウェハ製造装
置に適用した例について説明したが、それに限定される
ものではない。In the above description, the invention made by the present inventor was mainly applied to a semiconductor wafer manufacturing apparatus, which is the background field of application, but the invention is not limited thereto.
たとえば、磁気ディスク製造装置、液晶製造装置、ブラ
ウン管製造装置などにおける板状物への塗布液の塗布に
適用して有効である。For example, it is effective when applied to the application of a coating liquid to a plate-shaped object in a magnetic disk manufacturing device, a liquid crystal manufacturing device, a cathode ray tube manufacturing device, etc.
本願において開示される発明のうち、代表的なものによ
って得られる効果を簡単に説明すれば、下記のとおりで
ある。Among the inventions disclosed in this application, the effects obtained by typical inventions are briefly described below.
(1)9本発明においては回転塗布すべき板状物の表面
状態(たとえば凹凸量)を自動的に計測し、その計測結
果に応じて塗布液滴下量、滴下スピード、滴下時の板状
物回転数および回転時間等の滴下制御パラメータが自動
制御される。この結果、塗布すべき板状物の表面状態(
たとえば凹凸量〉の異なるものが混在処理されても、塗
布ムラや板状物裏面に不要塗布液が回り込む問題を発生
することがなく、板状物表面に均一な精度良い塗布膜形
成ができる。(1)9 In the present invention, the surface condition (for example, the amount of unevenness) of the plate-like object to be coated by rotation is automatically measured, and the amount of the coating liquid dropped, the speed of the drop, and the plate-like object at the time of dripping are determined according to the measurement results. Dripping control parameters such as rotation speed and rotation time are automatically controlled. As a result, the surface condition of the plate to be coated (
For example, even if materials with different amounts of unevenness are mixed, there will be no problem of uneven coating or unnecessary coating liquid going around to the back surface of the plate, and a uniform and accurate coating film can be formed on the surface of the plate.
(2)本発明を半導体ウェハ製造装置であるスピンオン
ガラス塗布装置、ホトレジスト塗布装置等に適用した場
合、塗布ムラを生じることなく、スピンオンガラス膜や
ホトレジストの高精度な膜厚を得ることができる。(2) When the present invention is applied to a spin-on glass coating device, a photoresist coating device, etc., which are semiconductor wafer manufacturing equipment, highly accurate film thickness of the spin-on glass film or photoresist can be obtained without causing coating unevenness.
同時に、半導体ウェハ裏面への不要なスピンオンガラス
液(ホトレジスト液)の回り込み防止を図れる。このこ
とから半導体ウェハハンドリング時に、半導体ウェハ裏
面に回り込んだ不要スピンオンガラス液(ホトレジスト
液)が、ハンドリング部に転写されたり、ハンドリング
時にクラックして異物として作用する問題が解決できる
。この結果、異物によるパターン欠陥発生が防止でき、
半導体製品の製品歩留向上が図れる。同時に、サブミク
ロンクラスの微細素子パターン寸法を有する超LSI半
導体製品の量産化が可能となる。At the same time, it is possible to prevent unnecessary spin-on glass liquid (photoresist liquid) from flowing around to the back surface of the semiconductor wafer. This solves the problem that during semiconductor wafer handling, unnecessary spin-on glass liquid (photoresist liquid) that has gotten around to the back side of the semiconductor wafer is transferred to the handling section or cracked during handling and acts as a foreign substance. As a result, pattern defects caused by foreign matter can be prevented.
Product yield of semiconductor products can be improved. At the same time, it becomes possible to mass produce ultra-LSI semiconductor products having fine element pattern dimensions in the submicron class.
第1図は本発明の一実施例によるスピンオンガラス膜塗
布装置の要部断面図、
第2図はウェハ表面凹凸量モニタ原理図である。
1・・・塗布カップ部、2・・・半導体ウェハ(板状物
)、3
・モータ、5・
ノズル、7・・
オンガラス液、
手段)、10・
体制胛部、12
・・・スピンチャック部、4・・
・・回転数制御部、6・・・滴下
・滴下量制御部、8・・・スピン
9・・・段差計測センサ(モニタ
・・段差量判定部、11・・・全
・・・初期処理条件情報。FIG. 1 is a sectional view of a main part of a spin-on glass film coating apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing the principle of monitoring the amount of unevenness on a wafer surface. DESCRIPTION OF SYMBOLS 1... Coating cup part, 2... Semiconductor wafer (plate-like object), 3 - Motor, 5... Nozzle, 7... On-glass liquid, means), 10 - System clamp part, 12... Spin chuck Section, 4...Rotation speed control section, 6...Drop/Drop amount control section, 8...Spin 9...Level difference measurement sensor (monitor...Level difference amount determination section, 11...All... ...Initial processing condition information.
Claims (1)
布液を塗布する装置であって、塗布液を塗布される板状
物の表面の表面状態をモニタするモニタ手段を備え、該
モニタ手段からの表面状態モニタ情報に従って、塗布液
滴下制御パラメータおよび塗布シーケンス制御パラメー
タを自動制御することを特徴とする塗布装置。 2、前記モニタ手段は、前記表面状態として板状物の表
面の凹凸量をモニタすることを特徴とする請求項1記載
の塗布装置。 3、前記塗布液滴下制御パラメータとして、塗布液滴下
量、塗布液滴下スピード、塗布液滴下時間、塗布液滴下
時の板状物回転数を独立制御もしくは組み合わせ制御す
ることを特徴とする請求項1記載の塗布装置。 4、前記塗布シーケンス制御パラメータとして、板状物
回転数および板状物回転時間を組み合わせ制御すること
を特徴とする請求項1記載の塗布装置。[Claims] 1. An apparatus that applies a coating liquid to the surface of a plate-like object by rotating the plate-like object, and monitors the surface condition of the surface of the plate-like object to which the coating liquid is applied. What is claimed is: 1. A coating apparatus comprising a monitor means, and automatically controlling coating liquid droplet control parameters and coating sequence control parameters in accordance with surface condition monitor information from the monitor means. 2. The coating apparatus according to claim 1, wherein the monitoring means monitors the amount of unevenness on the surface of the plate-like object as the surface condition. 3. As the coating liquid dropping control parameters, the coating liquid dropping amount, the coating liquid dropping speed, the coating liquid dropping time, and the rotational speed of the plate-like object during coating liquid dropping are controlled independently or in combination. The coating device described. 4. The coating apparatus according to claim 1, wherein the coating sequence control parameters include a combination of plate-like object rotation speed and plate-like object rotation time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26392488A JPH02115072A (en) | 1988-10-21 | 1988-10-21 | Coating applicator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26392488A JPH02115072A (en) | 1988-10-21 | 1988-10-21 | Coating applicator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02115072A true JPH02115072A (en) | 1990-04-27 |
Family
ID=17396161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26392488A Pending JPH02115072A (en) | 1988-10-21 | 1988-10-21 | Coating applicator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02115072A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000223403A (en) * | 1999-02-02 | 2000-08-11 | Tokyo Electron Ltd | Coating-film forming method and coating system |
JP2010010314A (en) * | 2008-06-26 | 2010-01-14 | Tokyo Electron Ltd | Coating processing method, program, computer storage medium, and coating processing device |
TWI666690B (en) * | 2015-10-08 | 2019-07-21 | 日商東京威力科創股份有限公司 | Horizontal placement device and method of horizontally placing object |
-
1988
- 1988-10-21 JP JP26392488A patent/JPH02115072A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000223403A (en) * | 1999-02-02 | 2000-08-11 | Tokyo Electron Ltd | Coating-film forming method and coating system |
JP2010010314A (en) * | 2008-06-26 | 2010-01-14 | Tokyo Electron Ltd | Coating processing method, program, computer storage medium, and coating processing device |
TWI666690B (en) * | 2015-10-08 | 2019-07-21 | 日商東京威力科創股份有限公司 | Horizontal placement device and method of horizontally placing object |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100590663B1 (en) | Film forming method, pattern forming method and manufacturing method of semiconductor device | |
US5032217A (en) | System for treating a surface of a rotating wafer | |
US5985363A (en) | Method of providing uniform photoresist coatings for tight control of image dimensions | |
JP3754322B2 (en) | Coating film forming method and apparatus | |
JP2002373843A (en) | Coating system and method for controlling thickness of coating film | |
JP2002504269A (en) | High efficiency photoresist coating | |
US6000862A (en) | Substrate developing method and apparatus | |
EP0481506A2 (en) | Method of treating substrate and apparatus for the same | |
US20020127334A1 (en) | Method of uniformly coating a substrate | |
TWI439694B (en) | Method and system to measure flow velocity and volume | |
JPH02115072A (en) | Coating applicator | |
US6536964B1 (en) | Substrate processing system and substrate processing method | |
US20080233269A1 (en) | Apparatus and methods for applying a layer of a spin-on material on a series of substrates | |
JP2000033301A (en) | Method and device for coating surface of substrate in uniform thickness | |
US20080289656A1 (en) | Substrate processing method and substrate processing apparatus | |
US20210313239A1 (en) | Substrate processing method and substrate processing apparatus | |
KR101092136B1 (en) | Single-wafer coating film apparatus and method | |
JP3697419B2 (en) | Liquid film forming method and solid film forming method | |
JPH11354489A (en) | Production system of semiconductor and etching method for semiconductor device | |
JPH01276722A (en) | Substrate treatment device | |
JPH05234869A (en) | Coater | |
CN1900823B (en) | Method of uniformly coating a substrate | |
JP3017762B2 (en) | Resist coating method and apparatus | |
JP2004351261A (en) | Coater and coating method | |
US6643604B1 (en) | System for uniformly heating photoresist |