JPH02114834A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH02114834A
JPH02114834A JP26689088A JP26689088A JPH02114834A JP H02114834 A JPH02114834 A JP H02114834A JP 26689088 A JP26689088 A JP 26689088A JP 26689088 A JP26689088 A JP 26689088A JP H02114834 A JPH02114834 A JP H02114834A
Authority
JP
Japan
Prior art keywords
magnetic
control
bearing device
bias
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26689088A
Other languages
Japanese (ja)
Other versions
JPH0640722B2 (en
Inventor
Kazuhide Watanabe
和英 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP26689088A priority Critical patent/JPH0640722B2/en
Priority to EP89119356A priority patent/EP0364993B1/en
Priority to DE68925510T priority patent/DE68925510T2/en
Publication of JPH02114834A publication Critical patent/JPH02114834A/en
Priority to US07/758,517 priority patent/US5142175A/en
Publication of JPH0640722B2 publication Critical patent/JPH0640722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To reduce the size, to facilitate assembling and to improve the reliability by providing a sensor for detecting radial displacement of a rotary body, control and bias electromagnets, non-control and control magnetic poles, a radial control magnetic bearing and a motor. CONSTITUTION:Sensors 2, 5 for detecting radial displacement of a rotary body 1, control electromagnets 8, 9 and bias electromagnets 10, 11 are provided. Furthermore, non-control magnetic poles 14, 15 having two or more teeth and control magnetic poles 12, 13 are provided. When two or more radial control magnetic bearings 3, 4 and a motor 6 for driving the rotary body 1 are provided, thrust discs are not required for the bearings 3, 4.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、回転体が比較的軽量なターボ機械等の磁気軸
受装置において、スジスト軸方向を受動的に安定化許せ
、ラジアル軸方向のみを制御することによって回転体を
非接触で安定化させて支承する磁気軸受装置に関するも
のであるる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a magnetic bearing device for a turbomachine or the like in which the rotating body is relatively light in weight, and is capable of passively stabilizing the radial axis direction only. The present invention relates to a magnetic bearing device that stabilizes and supports a rotating body in a non-contact manner through control.

〔従来技術〕[Prior art]

第12図乃至第14図は従来の軸制御型磁気軸受装置で
支承するスピンドルの構造を示ず側断面図であり、第1
3図は第12図のI−I線矢視断面図、第14図は第1
2図の■−■線矢視断面図である。
FIGS. 12 to 14 are side sectional views showing the structure of a spindle supported by a conventional shaft-controlled magnetic bearing device;
Figure 3 is a sectional view taken along line I-I in Figure 12, and Figure 14 is a cross-sectional view taken along line I-I in Figure 12.
2 is a sectional view taken along the line ■-■ in FIG. 2. FIG.

図において、回転軸31はケーシング37の中央部に配
設された′電動機固定子38と電動機回転子39を具備
する電動機Cによって駆動され、該回転軸31は上記電
動機Cの両側に配設された2個のラジアル磁気軸受A、
Aとその一方のラジアル磁気軸受Aに隣接したスシス)
〜磁気軸受Bと4.mよって支承されでいる。
In the figure, a rotating shaft 31 is driven by an electric motor C provided with a motor stator 38 and a motor rotor 39 arranged in the center of a casing 37, and the rotating shaft 31 is arranged on both sides of the motor C. two radial magnetic bearings A,
A and one of the radial magnetic bearings adjacent to A)
~Magnetic bearing B and 4. It is supported by m.

前記ラジアル磁気441+受Aは、固定子:Iイル35
を備えたラジアル軸受固定子33と回転軸31に取イ」
げられたラジアル軸受臼−り34と半径方向変位センサ
36から構成されている。また、前記スラスト磁気軸受
Bは、固定−rコイル42を備λたスシス1へ軸受固定
子41と回転軸31に取付(−)られたスラスト軸受ヨ
ーク40とから構成され−Cいる。また、図中符号32
t」非常時用転がり軸受である。
The radial magnetism 441 + receiver A is stator: Iil 35
radial bearing stator 33 and rotating shaft 31 with
It consists of a raised radial bearing die 34 and a radial displacement sensor 36. The thrust magnetic bearing B is composed of a bearing stator 41 and a thrust bearing yoke 40 attached (-) to the rotary shaft 31 to the shaft 1 having a fixed -r coil 42. Also, reference numeral 32 in the figure
t” is an emergency rolling bearing.

従来の固定子磁極の配置及び変位センサの配置は第13
図及び第14図に示すようになっており、磁気吸引力の
方向は、X方向とX方向の直交する2方向となり、この
2軸方向の回転軸31o)位置を第14図のようにX方
向とX方向に配設きれた変位センサ36a、36bで検
出し、該検出信号をもとに制御する。回転軸のX方向の
制御は、X方向の変位センサ36aの出力に基づき、固
定子コイル35A又は固定子コイル35Cに所定の電流
を通電して、ラジアル軸受固定子33とラジアル軸受ヨ
ーク34の間に発生ずる磁気吸弓力を制御して行なう。
The conventional stator magnetic pole arrangement and displacement sensor arrangement are the 13th
As shown in Fig. 14 and Fig. 14, the directions of the magnetic attraction force are two orthogonal directions, the X direction and the It is detected by displacement sensors 36a and 36b disposed in both the direction and the X direction, and control is performed based on the detection signals. Control of the rotating shaft in the X direction is performed by applying a predetermined current to the stator coil 35A or stator coil 35C based on the output of the displacement sensor 36a in the This is done by controlling the magnetic bow force generated.

第15図及び第16図は、それぞれ所定の電流を固定子
コイル35番こ通電するための制御回路の構成を示す回
路図である。第15図の制御回路では、バイアス用電源
53′からの電流と同時に半径方向の変位センサー36
からの出力を位相補償回路51に導き電力増幅器53に
より生しる制御電流を固定子コイル35A、35B、3
5C,35Dに流す。
FIGS. 15 and 16 are circuit diagrams showing the configuration of a control circuit for supplying a predetermined current to stator coil 35, respectively. In the control circuit of FIG. 15, the current from the bias power supply 53' is simultaneously applied to the radial displacement sensor 36.
The control current generated by the power amplifier 53 is sent to the stator coils 35A, 35B, 3.
Flow to 5C and 35D.

第16図の制御回路では、半径フj向変位センザ36か
らの信号を位相補償回路51に導き、その出力及び反転
した出力に一定の電圧v8を加算し、その出力を更に直
線検波回路52a、52cに入力し、固定子コイル35
A、35Cに流す所定の電流を得ている。
In the control circuit shown in FIG. 16, the signal from the radial displacement sensor 36 is guided to the phase compensation circuit 51, a constant voltage v8 is added to its output and the inverted output, and the output is further applied to the linear detection circuit 52a, 52c, stator coil 35
A predetermined current is obtained to flow through A and 35C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の磁気軸受装置の場合、能動形のラジアル磁気
軸受A、Aとスラスト磁気軸受Bを別個に設けるため、
回転体を支承するために制御する軸数も多くなり、しか
も回転体にスラスト軸受ヨーク40を必要とするため、
装置の組立及び分解が複雑となるという問題があった。
In the case of the above conventional magnetic bearing device, the active radial magnetic bearings A, A and the thrust magnetic bearing B are provided separately;
The number of axes to be controlled to support the rotating body increases, and the rotating body requires a thrust bearing yoke 40.
There was a problem in that the assembly and disassembly of the device was complicated.

本発明は上述の点に鑑みてなされたもので、スラスト軸
方向を受動的に安定化させることによっ制御軸数を減ら
し、磁気軸受の構造を小型・簡略化し、その分解・組立
を容易にし、機械系と電気系の両面の信頼性の向上、コ
スト・消費電力の低減を図るつつ回転体を安定に支承す
る磁気軸受装置を提供することにある。
The present invention has been made in view of the above points, and by passively stabilizing the direction of the thrust axis, the number of control axes is reduced, the structure of the magnetic bearing is made smaller and simpler, and its disassembly and assembly are facilitated. Another object of the present invention is to provide a magnetic bearing device that stably supports a rotating body while improving the reliability of both mechanical and electrical systems and reducing cost and power consumption.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明は、磁気軸受装置を、回
転体の半径方向の変位を検出する変位センサと、半径方
向の磁気吸引力を制御するコントロール磁束を発生ずる
制御用電磁石と、バイアス磁束を与える電磁石又は永久
磁石からなるバイアス用磁石と、該バイアス用磁石から
のバイアス磁束を回転体のスラスト軸方向の復元力とし
て利用するための2つ以上の由を持つ非コント11−ル
イ8極と、コントロール磁束を半径方向の磁気吸引力と
して利用するためのコントロール磁極とを具備し、ラジ
アル軸方向のみを制御して回転体を非接触で支承する少
なくとも2つのラジアル制御磁気軸受と、回転体を駆動
するためのモータからなることを特徴とする。
In order to solve the above problems, the present invention provides a magnetic bearing device that includes a displacement sensor that detects the radial displacement of a rotating body, a control electromagnet that generates a control magnetic flux that controls the magnetic attraction force in the radial direction, and a bias magnetic flux. A non-contact 11-Louis 8-pole bias magnet consisting of an electromagnet or a permanent magnet that gives and a control magnetic pole for using the control magnetic flux as a magnetic attraction force in the radial direction, and at least two radial control magnetic bearings that control only the radial axis direction and support the rotating body in a non-contact manner; It is characterized by consisting of a motor for driving.

〔作用〕[Effect]

磁気軸受装置を」1記の如く構成することにより、バイ
アス磁束をスラスト軸方向の復元力を発生ずる磁束とし
て利用できるので、従来のようにスラスト軸方向の磁気
軸受に必要なスラス1−ディスクが不要となり、磁気軸
受装置の分解及び組み立ての容易な磁気軸受装置となる
。また、制御軸数が減るから低コスト及び装置の小型化
・信頼性を向−]ニさせることが可能となる。
By configuring the magnetic bearing device as described in 1., the bias magnetic flux can be used as the magnetic flux that generates the restoring force in the thrust axis direction, so the thrust 1-disc required for the thrust axis direction magnetic bearing as in the conventional case can be used. This eliminates the need for the magnetic bearing device, resulting in a magnetic bearing device that is easy to disassemble and assemble. Furthermore, since the number of control axes is reduced, it is possible to reduce costs, reduce the size of the device, and improve reliability.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基ついて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る磁気軸受装置の構成を示す側断面
図である。図示するように、本磁気軸受装置は、回転体
1、該回転体1の半径方向の位置を検出するための変位
センサ2,5、回転体1を非接触で安定に支承するため
の磁気軸受3,4、固定軸7、回転体1に駆動力を与え
るためのモタ6からなる。変位センサ2,5はそれぞれ
磁気軸受3,4の近傍に配設置る。磁気軸受3,4はそ
れぞれ半径方向の磁気吸引力を制御するための電磁石8
,9、電磁石ヨーク16.1?、バイアス磁束を与λる
環状の電磁石又は永久磁石からなるバイアス用磁石10
,11、コントロール磁極12.13、非コン1〜ロー
ル磁極14.15及びロータ磁極18.19からなる。
FIG. 1 is a side sectional view showing the configuration of a magnetic bearing device according to the present invention. As shown in the figure, this magnetic bearing device includes a rotating body 1, displacement sensors 2 and 5 for detecting the radial position of the rotating body 1, and a magnetic bearing for stably supporting the rotating body 1 in a non-contact manner. 3, 4, a fixed shaft 7, and a motor 6 for applying driving force to the rotating body 1. Displacement sensors 2 and 5 are placed near magnetic bearings 3 and 4, respectively. The magnetic bearings 3 and 4 each have an electromagnet 8 for controlling the magnetic attraction force in the radial direction.
,9, Electromagnetic yoke 16.1? , a bias magnet 10 consisting of an annular electromagnet or a permanent magnet that provides a bias magnetic flux λ
, 11, control magnetic poles 12.13, non-control magnetic poles 14.15 and rotor magnetic poles 18.19.

第2図は磁気軸受3を制御するための制御装置の回路構
成を示すブロック図である。変位【′!ンナ2の信号2
a、2bを入力とし、差動増幅器22を通して変位信号
を制御回路23に送信し、と;−で位相補償した後電流
増幅器24に送り、この電流増幅器24によって磁気軸
受の電磁石8の−Jイル8a、8bに電流を供給し、電
磁石8から発生する磁気吸引力を制御する。なお、磁気
軸受4を制御する制御装置も同じ回路構成であるから、
ここではその説明を省略する。
FIG. 2 is a block diagram showing the circuit configuration of a control device for controlling the magnetic bearing 3. As shown in FIG. Displacement [′! signal 2 of antenna 2
a, 2b as inputs, the displacement signal is sent to the control circuit 23 through the differential amplifier 22, and after phase compensation with and, it is sent to the current amplifier 24. A current is supplied to 8a and 8b to control the magnetic attraction force generated from the electromagnet 8. Note that since the control device that controls the magnetic bearing 4 also has the same circuit configuration,
The explanation thereof will be omitted here.

第3図は上記磁気軸受3の構造及びその動作を示す図で
、同図(a)は平面図、同図(b)一部切断斜視図であ
る。磁気軸受3はコン1〜ロール磁束を発生し磁気吸引
力を制御する電磁石8とバイアス磁束を発生ずる電磁石
又は永久磁石からなるバイアス用磁石10を別個に設f
Jているので、制御装置にはバイアスを与える回路(線
形化回路)は不要となる。コントロール磁束を発生ずる
電磁石8,9は、対向(同一制御軸)する電磁石コイル
8a、8bと直列(8cm8d−8e)に結線され、そ
の磁束は第3図に示すように電磁石コイル8aからコン
トロール磁極12から磁極の歯12aを流れ、回転体1
の磁極18aから18bを通って対向するコン1−ロー
ル磁極12の磁極の歯12b1電磁石コイル8a、電磁
ヨーク16b。
FIG. 3 is a diagram showing the structure and operation of the magnetic bearing 3, in which FIG. 3(a) is a plan view and FIG. 3(b) is a partially cutaway perspective view. The magnetic bearing 3 has a controller 1, an electromagnet 8 that generates a roll magnetic flux and controls magnetic attraction, and a bias magnet 10 that is made of an electromagnet or a permanent magnet that generates a bias magnetic flux.
Therefore, the control device does not require a circuit (linearization circuit) for applying bias. The electromagnets 8 and 9 that generate control magnetic flux are connected in series (8cm8d-8e) with electromagnetic coils 8a and 8b that face each other (with the same control axis), and the magnetic flux is transmitted from the electromagnetic coil 8a to the control magnetic pole as shown in FIG. 12, flows through the teeth 12a of the magnetic pole, and the rotating body 1
The magnetic pole teeth 12b1 of the magnetic pole 12, the electromagnetic coil 8a, and the electromagnetic yoke 16b.

16aを流れる閉ループの磁路を形成する。また、バイ
アス磁束を発生ずるバイアス用磁石10のコントロール
磁極12から磁極の歯12a、12bを回転体1のロー
タ磁極18a、18b、非コントロール磁極14及び磁
極の歯12a、12bを流れる閉ループの磁路を形成す
る。これにより、コントロール磁極12では次式の様に
力Fcと磁束密度Biの関係がバイアス磁束BOによっ
て線形化される。(第4図参照) F=A/2μ((Bo+△Bo−Bi)”−(Bo−Δ
Bo+Bi)’) =2A/μ(noΔBo−BoBi) 但し、A:磁極の面積 μ:空隙透磁率なお、磁気軸受
4の構造及び動作は上記磁気軸受3と路間−であるので
説明は省略する。
16a to form a closed loop magnetic path. In addition, a closed loop magnetic path flows from the control magnetic pole 12 of the bias magnet 10 that generates bias magnetic flux through the magnetic pole teeth 12a, 12b, the rotor magnetic poles 18a, 18b of the rotating body 1, the non-control magnetic pole 14, and the magnetic pole teeth 12a, 12b. form. As a result, in the control magnetic pole 12, the relationship between the force Fc and the magnetic flux density Bi is linearized by the bias magnetic flux BO as shown in the following equation. (See Figure 4) F=A/2μ((Bo+△Bo-Bi)"-(Bo-Δ
Bo+Bi)') = 2A/μ(noΔBo−BoBi) However, A: Area of the magnetic pole μ: Air gap permeability Note that the structure and operation of the magnetic bearing 4 are the same as the magnetic bearing 3 above, so the explanation will be omitted. .

非コントロール磁極14には2つ以上の口字状の歯14
a、14bを設げこの部分での磁束密度Buを高め、回
転体1が自重などによりスラスト軸方向に移動した場合
、第5図に示すようにコ字形の歯14a、14bと対応
するロータ磁極18の歯18c、18dの間でスラスト
軸方向の磁束が生じ、その結果スラスト軸方向に復元力
Fuが発生し、受動的にスラスト軸方向を支承すること
ができる。
The non-control magnetic pole 14 has two or more mouth-shaped teeth 14.
a, 14b are provided to increase the magnetic flux density Bu in this part, and when the rotating body 1 moves in the thrust axis direction due to its own weight, etc., the rotor magnetic poles corresponding to the U-shaped teeth 14a, 14b as shown in FIG. A magnetic flux in the thrust axis direction is generated between the 18 teeth 18c and 18d, and as a result, a restoring force Fu is generated in the thrust axis direction, and the thrust axis direction can be passively supported.

上記のように本磁気軸受ではバイアス用磁石10のバイ
アス磁束を磁気吸引力の線形化とスラスト軸方向を受動
的に支承するための磁束として使用している。従って、
ラジアル軸方向のみを制御することによって回転体を安
定に支承することが可能であるから、従来のスラスト磁
気軸受のようなスラストディスク(第12図のスラス)
・軸受ヨーク40)が不要となる。
As described above, in this magnetic bearing, the bias magnetic flux of the bias magnet 10 is used as a magnetic flux for linearizing the magnetic attraction force and passively supporting the thrust axis direction. Therefore,
Since it is possible to stably support a rotating body by controlling only the radial axis direction, a thrust disk (the thrust in Fig. 12) like a conventional thrust magnetic bearing is used.
・Bearing yoke 40) becomes unnecessary.

なお、電磁石11(又は永久磁石)のバイアス磁束も上
記電磁石10の場合と同様磁気吸引力の線形化とスラス
ト軸方向を受動的に支承するための磁束として使用して
いる。
Note that the bias magnetic flux of the electromagnet 11 (or permanent magnet) is also used as magnetic flux for linearizing the magnetic attraction force and passively supporting the thrust axis direction, as in the case of the electromagnet 10 described above.

コントロール磁束を発生ずる電磁石8.電磁石9は、第
1,3図に示すようにラジアル制御軸に対して垂直に配
設し、半径方向の寸法を小さくすることによってステー
タの径方向に制約がある場合にも適用できるように構成
リーる。この時電磁石(ヨーク)の断面積にも制約がく
るため、磁束の飽和を起こす場合がある。これを解決す
るために第6図(a)、(b)に示すように、電磁石ヨ
ク16を1辺が直線で、1辺が円弧を描くように電磁石
の断面とする。こうすることによって、限られたスペー
スで磁路の表面積を稼ぐことが出来る。また、この場合
珪素鋼板で制作するのは困難なため、形状加工の容易な
磁性軟鉄、パーマロイなとの材料を使用する。本磁気軸
受では、電磁石または永久磁石からなるバイアス用磁石
10,11によってバイアス磁束を供給するが、この磁
束による空隙での磁束密度をコントロール磁極12.1
4で0 、4 (T)〜0 、6 (T) 、非コント
ロール磁極で0 、8 (T>〜1 、2 (I)にな
るように設定する。これはコントロール磁8ii12.
14で電磁石の発生ずる磁束密度を−0、5(T)〜+
0 、5 (T)の範囲で制御可能にし、非コントロー
ル磁極では磁極の先端でほとんど飽和状態にしてスラス
ト軸方向の復元力を高める。この設定は、磁極の表面積
、磁路の長さ、磁極間の空隙、磁石の保持力・残留磁束
密度(永久磁石の場合)・起磁力(電磁石の場合)をパ
ラメータとして行なう。
Electromagnet that generates control magnetic flux8. The electromagnet 9 is arranged perpendicularly to the radial control axis as shown in Figs. 1 and 3, and by reducing the radial dimension, it is configured so that it can be applied even when there are restrictions in the radial direction of the stator. Leeru. At this time, the cross-sectional area of the electromagnet (yoke) is also restricted, which may cause saturation of the magnetic flux. To solve this problem, as shown in FIGS. 6(a) and 6(b), the cross section of the electromagnet 16 is made such that one side is a straight line and one side is an arc. By doing this, it is possible to increase the surface area of the magnetic path in a limited space. In this case, it would be difficult to make it from silicon steel, so materials such as magnetic soft iron and permalloy, which can be easily shaped, are used. In this magnetic bearing, bias magnetic flux is supplied by bias magnets 10 and 11 made of electromagnets or permanent magnets, and the magnetic flux density in the air gap is controlled by magnetic poles 12 and 11.
4 (0, 4 (T) ~ 0, 6 (T)), and the non-control magnetic pole is set to 0, 8 (T > ~ 1, 2 (I). This is the control magnetic pole 8ii12.
14, the magnetic flux density generated by the electromagnet is -0, 5 (T) ~ +
0 to 5 (T), and for non-controlled magnetic poles, the tip of the magnetic pole is almost saturated to increase the restoring force in the thrust axis direction. This setting is performed using parameters such as the surface area of the magnetic poles, the length of the magnetic path, the air gap between the magnetic poles, the coercive force of the magnet, the residual magnetic flux density (for permanent magnets), and the magnetomotive force (for electromagnets).

第7図は空隙での磁束密度の分布を表わす計算結果を示
す図であり、図中には電磁石8,9に電流を流さない場
合(バイアス磁束のみ)と電磁石8.9に電流を−2,
0(A>、+2.0(A)を流した場合の磁束密度の変
化を表わしている。この図かられかるように電磁石8,
9に電流を流すと非コントロール磁極14.15の磁束
密度には影響せずコントロール磁極12.13の磁束密
度が変化(制御)している。
FIG. 7 is a diagram showing calculation results representing the distribution of magnetic flux density in the air gap. ,
It shows the change in magnetic flux density when 0 (A>, +2.0 (A)) is applied.As can be seen from this figure, the electromagnet 8,
When a current is passed through the magnetic pole 9, the magnetic flux density of the control magnetic pole 12.13 is changed (controlled) without affecting the magnetic flux density of the non-control magnetic pole 14.15.

また、このように磁束密度を可変するために磁束密度を
可変するためのコントロール磁束が隣の制御磁極に流れ
込まないようにするため第8因に示すように、コントロ
ール磁極12に放射状の切り欠き12aを入れ、バイア
ス磁束を制御磁極間の磁極部Pで飽和させコン1〜ロー
ル磁束が流れ込まないようにする。
Further, in order to prevent the control magnetic flux for varying the magnetic flux density from flowing into the adjacent control magnetic pole in order to vary the magnetic flux density in this way, as shown in the eighth factor, a radial notch 12a is provided in the control magnetic pole 12. , so that the bias magnetic flux is saturated at the magnetic pole part P between the control magnetic poles, and the control 1~roll magnetic flux does not flow into it.

電磁石10に流れる電流を流す電流増幅器は、対向する
電磁石8のコイル8aとコイル8bとが直列に結線され
ているので、第9図に示すようなプッシュプル方式の電
流増幅器25を用いる。このプッシュプル方式の電流増
幅器25は0N10FFによって対向するコイルを選択
するのではなく電磁石8のコイル8a、コイル8bに流
れる電流の向きを換えるだけで回路の部品点数も少なく
て済み、コスト低減や回路の信頼性も向上する。
As a current amplifier for passing a current through the electromagnet 10, a push-pull type current amplifier 25 as shown in FIG. 9 is used since the coils 8a and 8b of the opposing electromagnets 8 are connected in series. This push-pull type current amplifier 25 does not select opposing coils using 0N10FF, but simply changes the direction of the current flowing through the coils 8a and 8b of the electromagnet 8, reducing the number of circuit parts, reducing costs and circuit The reliability of the system is also improved.

本磁気軸受では、バイアス磁束10.11を環状の電磁
石又は永久磁石によって与えるが、第10図に示すよう
に永久磁石20を使用した場合、磁石は非常に傷ついた
り割れ易く、取り扱い中に鉄粉等が吸着するので、第1
0図に示すように保護として永久磁石20の外周にアル
ミニウム等からなる非磁性体のリング21を取り伺げる
。これらは磁気軸受りの組み立てを容易にし事故を未然
に防ぐことができる。また、木軸受部は電磁石ヨーク1
6、電磁石8、コントロール磁極12、電磁石10(永
久磁石)、非コントロール磁極14で構成され部品点数
が多いので、それ自体の和み立て或いは装置への組み込
みを容易にするため、第11図に示すようにタイロッ1
〜3aで一体的に固定する。これによって作業性が良く
なるだ(づでなく、軸受部の磁極間の位置決め・寸法精
度をあけることができる。
In this magnetic bearing, the bias magnetic flux 10.11 is given by an annular electromagnet or a permanent magnet, but as shown in Fig. 10, when a permanent magnet 20 is used, the magnet is very easily damaged or broken, and iron particles are generated during handling. etc. are adsorbed, so the first
As shown in Figure 0, a ring 21 of non-magnetic material made of aluminum or the like can be placed around the outer periphery of the permanent magnet 20 for protection. These facilitate the assembly of magnetic bearings and prevent accidents. In addition, the wooden bearing part is the electromagnetic yoke 1
6. Since it consists of an electromagnet 8, a control magnetic pole 12, an electromagnet 10 (permanent magnet), and a non-control magnetic pole 14, and has many parts, it is shown in FIG. Yoyo Tyroc 1
~3a to fix it integrally. This not only improves work efficiency, but also improves positioning and dimensional accuracy between the magnetic poles of the bearing.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば下記のような優れた
効果が得られる。
As explained above, according to the present invention, the following excellent effects can be obtained.

即ち、回転体を少なくとも2つのラジアル制御磁気軸受
でラジアル軸方向のみを制御して非接触で支承するので
、従来のようにスラスト軸方向の磁気軸受に必要なスラ
ストティスフが不要となり、磁気軸受装置の分解及び組
み立ての容易な磁気軸受装置となると共に、制御軸数が
減るから低コスト及び装置の小型化・信頼性を向上きせ
ることが可能となる。
In other words, since the rotating body is supported in a non-contact manner by controlling only the radial axis direction using at least two radially controlled magnetic bearings, there is no need for the thrust stiffness required for conventional magnetic bearings in the thrust axis direction. The magnetic bearing device can be easily disassembled and assembled, and since the number of control axes is reduced, it is possible to reduce costs, reduce the size of the device, and improve reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気軸受装置構成を示す側断面図、第
2図は本発明の磁気軸受を制御するための制御装置の回
路構成を示すブロック図、第3図は本発明の磁気軸受の
構造及びその動作を示す図で、同図(a)は平面図、同
図(b)は一部切断斜視図、第4図は本発明の磁気軸受
の線形化の説明図、第5図は木発明の磁気軸受のスラス
ト復元力の発生機構の説明図、第6図は本発明の磁気軸
受の電磁石ヨークの形状を示す図で、同図(a)は平断
面図、同図(b)は側視図、第7図は本発明の磁気軸受
の磁極の磁束密度の説明図、第8図は木発明の磁気軸受
のコントロール磁極を示す平面図、第9図は本発明の磁
気軸受の電流増幅器を示す図、第10図は本発明の他の
磁気軸受のバイアス用磁石構造を示す図で、同図(a)
は断面図、同図(b)は平面図、同図(c)はこのバイ
アス用磁石構造を組み込んだ磁気軸受の構造を示す断面
図、第11図は本発明の他の磁気軸受のバイアス用磁石
構造を示す断面図、第12図は従来の軸制御型磁気軸受
装置で支承するスピンドルの構造を示す側断面図、第1
3図は第12図の■−I線矢視断面図、第14図は第1
2図の[−n線矢視断面図、第15図及び第16図は、
それぞれ所定の電流を固定子コイル35に通電するため
の制御回路の構成を示す回路図である。 図中、1・・・・回転体、2・・・・変位センサ、 3
・・・・磁気軸受、4・・・・磁気軸受、5・・・・変
位センサ、6・・・・モータ、7・・・・固定軸、8.
9・・・・電磁石、10.11・・・・バイアス用磁石
、12゜13・・・・コントロール?1KL14.15
・・・・非コントロール磁極、16.17・・・・電磁
石ヨーク、18.19・・・・ロータ磁極、20・・・
・永久磁石、21・・・・アルミニウム等からなる非磁
性体のリング。 出願人 株式会社荏原総合研究所
FIG. 1 is a side sectional view showing the configuration of a magnetic bearing device of the present invention, FIG. 2 is a block diagram showing a circuit configuration of a control device for controlling the magnetic bearing of the present invention, and FIG. 3 is a magnetic bearing of the present invention. FIG. 5 is a diagram showing the structure and operation of the magnetic bearing, in which FIG. 4A is a plan view, FIG. 4B is a partially cutaway perspective view, FIG. 6 is an explanatory diagram of the thrust restoring force generation mechanism of the magnetic bearing of the invention, and FIG. 6 is a diagram showing the shape of the electromagnet yoke of the magnetic bearing of the invention. ) is a side view, FIG. 7 is an explanatory diagram of the magnetic flux density of the magnetic pole of the magnetic bearing of the present invention, FIG. 8 is a plan view showing the control magnetic pole of the magnetic bearing of the wooden invention, and FIG. 9 is the magnetic bearing of the present invention. FIG. 10 is a diagram showing the bias magnet structure of another magnetic bearing according to the present invention, and FIG.
11 is a sectional view, FIG. 11(b) is a plan view, FIG. 11(c) is a sectional view showing the structure of a magnetic bearing incorporating this bias magnet structure, and FIG. 12 is a cross-sectional view showing the magnet structure; FIG. 12 is a side cross-sectional view showing the structure of a spindle supported by a conventional shaft-controlled magnetic bearing device;
Figure 3 is a sectional view taken along the ■-I line in Figure 12, and Figure 14 is a cross-sectional view of Figure 1.
[-n line arrow sectional view of FIG. 2, FIGS. 15 and 16]
FIG. 3 is a circuit diagram showing a configuration of a control circuit for supplying predetermined currents to stator coils 35. FIG. In the figure, 1...Rotating body, 2...Displacement sensor, 3
...Magnetic bearing, 4...Magnetic bearing, 5...Displacement sensor, 6...Motor, 7...Fixed shaft, 8.
9...Electromagnet, 10.11...Bias magnet, 12゜13...Control? 1KL14.15
...Non-control magnetic pole, 16.17...Electromagnetic yoke, 18.19...Rotor magnetic pole, 20...
- Permanent magnet, 21... A non-magnetic ring made of aluminum, etc. Applicant: Ebara Research Institute, Inc.

Claims (8)

【特許請求の範囲】[Claims] (1)回転体の半径方向の変位を検出する変位センサと
、半径方向の磁気吸引力を制御するコントロール磁束を
発生する制御用電磁石と、バイアス磁束を与える電磁石
又は永久磁石からなるバイアス用磁石と、該バイアス用
磁石からのバイアス磁束を回転体のスラスト軸方向の復
元力として利用するための2つ以上の歯を持つ非コント
ロール磁極と、前記コントロール磁束を半径方向の磁気
吸引力として利用するためのコントロール磁極とを具備
し、ラジアル軸方向のみを制御して前記回転体を非接触
で支承する少なくとも2つのラジアル制御磁気軸受と、
前記回転体を駆動するためのモータからなることを特徴
とする磁気軸受装置。
(1) A displacement sensor that detects the displacement of the rotating body in the radial direction, a control electromagnet that generates a control magnetic flux that controls the magnetic attraction force in the radial direction, and a bias magnet that is an electromagnet or a permanent magnet that provides a bias magnetic flux. , a non-control magnetic pole having two or more teeth for using the bias magnetic flux from the bias magnet as a restoring force in the thrust axis direction of the rotating body, and a non-control magnetic pole for using the control magnetic flux as a magnetic attraction force in the radial direction. at least two radial control magnetic bearings that control only the radial axis direction and support the rotating body in a contactless manner;
A magnetic bearing device comprising a motor for driving the rotating body.
(2)前記回転体のラジアル軸方向を制御する制御用電
磁石をラジアル軸方向に垂直に位置するように設け、前
記コントロール磁束の磁路と前記バイアス磁束の磁路を
別に設け、またこの2つの磁路が前記コントロール磁極
では共通な磁路となるように磁極を構成したことを特徴
とする請求項(1)記載の磁気軸受装置。
(2) A control electromagnet for controlling the radial axis direction of the rotating body is provided so as to be positioned perpendicular to the radial axis direction, a magnetic path for the control magnetic flux and a magnetic path for the bias magnetic flux are separately provided, and these two 2. The magnetic bearing device according to claim 1, wherein the magnetic poles are configured so that the control magnetic poles have a common magnetic path.
(3)前記バイアス磁束の磁束密度をコントロール磁極
で0.4(T)〜0.6(T)、前記非コントロール磁
極で0.8(T)〜1.2(T)の範囲になるように設
定したことを特徴とする請求項(1)又は(2)記載の
磁気軸受装置。
(3) Adjust the magnetic flux density of the bias magnetic flux to be in the range of 0.4 (T) to 0.6 (T) for the control magnetic pole and 0.8 (T) to 1.2 (T) for the non-control magnetic pole. The magnetic bearing device according to claim 1 or 2, wherein the magnetic bearing device is set to .
(4)前記コントロール磁極はリング状であり、該リン
グ状のコントロール磁極に放射状に4個所切り欠きを設
けたことを特徴とする請求項(1)乃至(3)のいずれ
か1つに記載の磁気軸受装置。
(4) The control magnetic pole is ring-shaped, and the ring-shaped control magnetic pole is provided with four notches radially. Magnetic bearing device.
(5)前記バイアス磁束を与える磁石がリング状の永久
磁石であり、該リング状の永久磁石の外周をアルミナ等
の非磁性体のリングで保護したことを特徴とする請求項
(1)乃至(4)のいずれか1つに記載の磁気軸受装置
(5) Claims (1) to (1) characterized in that the magnet providing the bias magnetic flux is a ring-shaped permanent magnet, and the outer periphery of the ring-shaped permanent magnet is protected by a ring made of a non-magnetic material such as alumina. The magnetic bearing device according to any one of 4).
(6)前記磁極及び磁石をタイロッドで一体化したこと
を特徴とする請求項(1)乃至(5)のいずれか1つに
記載の磁気軸受装置。
(6) The magnetic bearing device according to any one of claims (1) to (5), wherein the magnetic pole and the magnet are integrated with a tie rod.
(7)前記コントロール磁束を発生する制御用電磁石の
表面積を稼ぐために、該電磁石断面の1片を直線に他方
の片を円弧状に形成したことを特徴とする請求項(1)
乃至(6)のいずれか1つに記載の磁気軸受装置。
(7) Claim (1) characterized in that, in order to increase the surface area of the control electromagnet that generates the control magnetic flux, one section of the electromagnet is formed in a straight line and the other section is formed in an arc shape.
The magnetic bearing device according to any one of (6) to (6).
(8)前記電磁石を励磁する電流増幅器にプッシュプル
方式の電流増幅器を用いることを特徴とする請求項(1
)乃至(7)のいずれか1つに記載の磁気軸受装置。
(8) Claim (1) characterized in that a push-pull type current amplifier is used as the current amplifier that excites the electromagnet.
) to (7). The magnetic bearing device according to any one of (7).
JP26689088A 1988-10-21 1988-10-21 Magnetic bearing device Expired - Fee Related JPH0640722B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP26689088A JPH0640722B2 (en) 1988-10-21 1988-10-21 Magnetic bearing device
EP89119356A EP0364993B1 (en) 1988-10-21 1989-10-18 Magnetic bearing system
DE68925510T DE68925510T2 (en) 1988-10-21 1989-10-18 Magnetic bearing system
US07/758,517 US5142175A (en) 1988-10-21 1991-09-06 Magnetic bearing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26689088A JPH0640722B2 (en) 1988-10-21 1988-10-21 Magnetic bearing device

Publications (2)

Publication Number Publication Date
JPH02114834A true JPH02114834A (en) 1990-04-26
JPH0640722B2 JPH0640722B2 (en) 1994-05-25

Family

ID=17437075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26689088A Expired - Fee Related JPH0640722B2 (en) 1988-10-21 1988-10-21 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH0640722B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121713A (en) * 2008-11-19 2010-06-03 Ritsumeikan Magnetic bearing
CN116123216A (en) * 2023-04-17 2023-05-16 山东华东风机有限公司 Magnetic bearing system based on radial-axial coupling magnetic bearing, control method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121713A (en) * 2008-11-19 2010-06-03 Ritsumeikan Magnetic bearing
CN116123216A (en) * 2023-04-17 2023-05-16 山东华东风机有限公司 Magnetic bearing system based on radial-axial coupling magnetic bearing, control method and system
CN116123216B (en) * 2023-04-17 2023-07-07 山东华东风机有限公司 Magnetic bearing system based on radial-axial coupling magnetic bearing, control method and system

Also Published As

Publication number Publication date
JPH0640722B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
US5142175A (en) Magnetic bearing system
US6727617B2 (en) Method and apparatus for providing three axis magnetic bearing having permanent magnets mounted on radial pole stack
US6359357B1 (en) Combination radial and thrust magnetic bearing
JP4938468B2 (en) Device for magnetically levitating a rotor
EP2209186B1 (en) Magnetically-levitated motor and pump
US8058758B2 (en) Apparatus for magnetic bearing of rotor shaft with radial guidance and axial control
US8482174B2 (en) Electromagnetic actuator
US4983870A (en) Radial magnetic bearing
WO2011007544A1 (en) Magnetic levitation control device and hybrid type magnetic bearing
JPH0573925B2 (en)
JP2005527176A (en) Rotary electric motor having a plurality of diagonal stator poles and / or rotor poles
US4597613A (en) Electromagnetic bearing
JP2005061578A (en) Magnetic bearing
US8110955B2 (en) Magnetic bearing device of a rotor shaft against a stator with rotor disc elements, which engage inside one another, and stator disc elements
JPS5943220A (en) Gimbal-controlled magnetic bearing
US20140265689A1 (en) Generating radial electromagnetic forces
US6570285B2 (en) Magnetic bearing apparatus having a protective non-magnetic can
JP5192271B2 (en) Magnetic bearing device
JP2010071304A (en) Thrust magnetic bearing device
JPH02114834A (en) Magnetic bearing device
US7719152B2 (en) Magnetic levitation actuator
JPWO2005039019A1 (en) Actuator
JP2004316756A (en) Five-axis control magnetic bearing
KR101064226B1 (en) Hybrid thrust magnetic bearing
US5789838A (en) Three-axis force actuator for a magnetic bearing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees