JPH02114780A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPH02114780A
JPH02114780A JP63269679A JP26967988A JPH02114780A JP H02114780 A JPH02114780 A JP H02114780A JP 63269679 A JP63269679 A JP 63269679A JP 26967988 A JP26967988 A JP 26967988A JP H02114780 A JPH02114780 A JP H02114780A
Authority
JP
Japan
Prior art keywords
light
oxide film
film
photodiode
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63269679A
Other languages
Japanese (ja)
Inventor
Takashi Iijima
隆 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63269679A priority Critical patent/JPH02114780A/en
Publication of JPH02114780A publication Critical patent/JPH02114780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Picture Signal Circuits (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To suppress flair or ghost and to reduce interference fringe at the incidence of single wavelength light by providing a film with a prescribed thickness with respect to a specific wavelength of an incident light to a part on a face of a photodiode and making the area with the said film of the prescribed thickness provided thereto equal to a film without the said film each other on the face of the said photodiode. CONSTITUTION:The solid-state image pickup element is a solid-state image pickup element in which a filter 12 is adhered onto a substrate via a medium 15 with a refractive index lower than that of the filter and an oxide film 16 is formed on the photodiode 13. The thickness of the oxide film 16 is selected as (n+1)lambda/4. The area with the oxide film 16 is equal to the area 17 without the oxide film. A light B in a wavelength lambda radiated from a light source 11 is interferred with a light B1 through the oxide film 16 on the surface of the oxide film 16 and then reflected in the filter 12 and again interferred with a light B2 made incident on the surface of the oxide film 16. The incident lights A, B are radiated on the equal area and they have a contrast with each other, then the luminous quantity is uniform and no interference fringe takes place.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体撮像素子のゴースト、フレアーの発生を防
ぎ、さらに干渉縞の発生を低減させた固体撮像素子に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state imaging device that prevents the occurrence of ghosts and flares in the solid-state imaging device, and further reduces the occurrence of interference fringes.

〔従来の技術〕[Conventional technology]

固体撮像素子は、光電変換部と信号処理部とを備えてお
り、光電変換部は複数のフォトダイオドを1列また?−
i2次元に配置して成シ、信号処理部は光電変換部で発
生した電荷を転送する転送レジスタと、転送レジスタか
らの電荷を増幅して出力するアンプとを備えた構成にな
っている。フォトダイオードを2次元に配置した固体撮
像素子の例を第5図に示す。このような固体撮像素子に
おいては、第3図(a)に示すように、従来はフォトダ
イオード33を含む基板340表面にフィルター32と
、屈折率がフィルターの屈折率の1.5倍程度の樹脂3
5とを設けた構造になっている。しかしこの構造では第
3図ta+のように臨界角00以上の角度で光が基板3
4表面から反射してきた場合、フィルター32の上面で
全反射し、再び基板34表面上に光が入射するため、強
烈な点光源を撮像した場合、第3図fb)のように再生
画面上に光源像31を中心に半径dなる円形のゴースト
・イメージ37が現われてしまう。
The solid-state image sensor includes a photoelectric conversion section and a signal processing section, and the photoelectric conversion section includes a plurality of photodiodes arranged in one row. −
Arranged in two dimensions, the signal processing section includes a transfer register that transfers the charge generated in the photoelectric conversion section, and an amplifier that amplifies and outputs the charge from the transfer register. FIG. 5 shows an example of a solid-state imaging device in which photodiodes are arranged two-dimensionally. In such a solid-state image sensor, as shown in FIG. 3(a), conventionally, a filter 32 is placed on the surface of a substrate 340 including a photodiode 33, and a resin whose refractive index is about 1.5 times that of the filter is used. 3
It has a structure with 5. However, in this structure, as shown in FIG.
4, the light is totally reflected on the top surface of the filter 32 and enters the surface of the substrate 34 again. Therefore, when an intense point light source is imaged, the light is reflected on the playback screen as shown in Figure 3 fb). A circular ghost image 37 with a radius d centered around the light source image 31 appears.

これに対して、第4図のようにフィルター42をその屈
折率より低い媒体(たとえば空気)の間隙を介して固体
撮像素子の表面に接着した方式は、光源41から入射し
た光が基板44表面で反射してフィルター42の端部で
散乱していくため、第3図(b)のようなゴースト・イ
メージ371d現われない。しかし、この方式では、フ
レアー ゴースト等の不具合に対してきわめて抑制力が
強いものがあるのに対して、フィルター42の下面とフ
ォトダイオード43の表面での多重反射による干渉が発
生する。この干渉は太陽光のようなマルチスペクトル光
では、すべてのスペクトルで積分されるため、影響が出
ないが、単波長光の場合はフィルター42の下面とフォ
トダイオード43の距離に応じてフォトダイオード43
への入射光強度が変化する。また、この間隙の距w7i
ノを一定にして二次元センサーの基板全面で均一に貼り
合わせることは非常に困難であシ、単波長光が基板に入
射した場合には、二次元状の干渉縞が発生することにな
る。
On the other hand, in the method shown in FIG. 4 in which the filter 42 is bonded to the surface of the solid-state image sensor through a gap of a medium (for example, air) with a lower refractive index than the filter 42, the light incident from the light source 41 is transmitted to the surface of the substrate 44. Since the light is reflected at the edge of the filter 42 and scattered at the end of the filter 42, a ghost image 371d as shown in FIG. 3(b) does not appear. However, while this method has a very strong ability to suppress defects such as flare ghosts, interference occurs due to multiple reflections on the lower surface of the filter 42 and the surface of the photodiode 43. This interference does not affect multispectral light such as sunlight because it is integrated over all spectra, but in the case of single wavelength light, it depends on the distance between the bottom surface of the filter 42 and the photodiode 43.
The intensity of the incident light changes. Also, the distance of this gap w7i
It is very difficult to uniformly bond the entire surface of the substrate of a two-dimensional sensor with a constant value, and when a single wavelength light is incident on the substrate, two-dimensional interference fringes will occur.

近年固体撮像素子も感度、S/Nが向上[7十分室内で
も撮影可能に女ってきておシ、蛍光燈のような単波長ス
ペクトルのピークを持った光源下での使用が頻繁に行わ
れることから、この干渉縞の発生は大きな問題となる。
In recent years, solid-state image sensors have also improved in sensitivity and S/N [7], making it possible to take pictures even indoors, and they are often used under light sources with a single-wavelength spectrum peak, such as fluorescent lights. Therefore, the occurrence of interference fringes becomes a big problem.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように従来の固体撮像素子は、フィルターをその
フィルターの屈折率よ)低い媒体の間隙を介して固体撮
像素子の表面に接着した方式を採用しているので、フレ
アー、ゴーストの抑制ができるが、蛍光燈照明下では干
渉縞が発生し、画面の質を損ねるという欠点があった 本発明はフレアー、ゴーストを抑制し、かつ、単波長光
入射時の干渉縞を低減し、上述の問題点を解決すること
を目的としている。
As mentioned above, conventional solid-state image sensors use a method in which a filter is bonded to the surface of the solid-state image sensor through a gap in a medium that has a lower refractive index (than the filter's refractive index), making it possible to suppress flare and ghosting. However, interference fringes occur under fluorescent light illumination, which impairs the quality of the screen.The present invention suppresses flare and ghosting, and reduces interference fringes when light of a single wavelength is incident, thereby solving the above-mentioned problems. The purpose is to resolve the issue.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明の固体撮像素子は、1次元または2次元に配置し
たフォトダイオードから成る光電変換部と、光電変換部
で発生した電荷を外部に出力する信号処理部とを少くと
も有する基板にガラスフィルターの屈折率より低い屈折
率の媒体を介して、前記ガラスフィルターを貼り合わせ
、前記フォトダイオード面上の一部に入射光の特定波長
λに対し、立l土1ユノ±0.05(nは整数)の厚さ
の膜を設け、かつ前記フォトダイオード面上で前記膜厚
の膜を設けた部分と膜のない部分との面積を等しくした
ことを特徴とする構成になっている。
The solid-state image sensor of the present invention includes a glass filter on a substrate that has at least a photoelectric conversion section consisting of photodiodes arranged one-dimensionally or two-dimensionally, and a signal processing section that outputs the electric charge generated in the photoelectric conversion section to the outside. The glass filter is pasted through a medium with a refractive index lower than the refractive index, and a part of the photodiode surface is set at a specific wavelength λ of 1 unit ±0.05 (n is an integer). ), and the area of the area of the photodiode surface where the film of the thickness described above is provided is equal to the area of the area where the film is not provided.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)は本発明の第1の実施例の縦断面である。FIG. 1(a) is a longitudinal section of a first embodiment of the present invention.

この図は本発明の特徴部分であるフォトダイオードの部
分のみを描いてあシ、信号処理部等、従来と変らない部
分は省略しである。フィルターの屈折率より低い屈折率
の媒体15を介して基板14にフィルター12を貼)合
わせた固体撮像素子であシ、フォトダイオード13上に
酸化膜16を形成している。酸化膜16の厚さは (n
+t)J(λは入射光の波長、nは整数)である。この
酸化膜16を形成している部分(斑点部)は、第1図(
b)(フォトダイオードの受光面の平面図を示している
)に示すようにフォトダイオード13の酸化膜が形成さ
れない部分(斜線部)17と面積が等しくなっている。
This figure only depicts the photodiode, which is a feature of the present invention, and omits the signal processing section and other parts that are the same as in the prior art. It is a solid-state imaging device in which a filter 12 is bonded to a substrate 14 via a medium 15 having a refractive index lower than that of the filter, and an oxide film 16 is formed on a photodiode 13. The thickness of the oxide film 16 is (n
+t)J (λ is the wavelength of the incident light, n is an integer). The portion (spotted portion) where this oxide film 16 is formed is shown in FIG.
As shown in b) (which shows a plan view of the light-receiving surface of the photodiode), the area is equal to that of the portion (shaded portion) 17 of the photodiode 13 where the oxide film is not formed.

光源11から発せられた波長λの光■は基板表面で反射
し、さらにフィルター12で反射して再び基板表面に入
射した光と干渉し合う。これに対して光源11から発せ
られた波長λの光■は酸化膜16を通る光Oと、酸化膜
160表面で反射し、さらにフィルター12で反射して
再び酸化膜16の表面に入射する光Oとで干渉し合う。
The light (2) with wavelength λ emitted from the light source 11 is reflected on the substrate surface, further reflected on the filter 12, and interferes with the light that is incident on the substrate surface again. On the other hand, the light (2) with a wavelength λ emitted from the light source 11 passes through the oxide film 16 and is reflected by the surface of the oxide film 160, further reflected by the filter 12, and enters the surface of the oxide film 16 again. Interferes with O.

このとき酸化膜16は、波長λの光Oに対して、場合は
、光■の干渉は弱め合い、光■の干渉が弱め合う場合は
、光■の干渉は強め合う。このように1つのフォトダイ
オードに入射する光■、■は、入射する面積が等しく、
互いに明暗をもつため、光量が一様となシ、干渉縞は発
生しない。
At this time, when the oxide film 16 interferes with the light O having the wavelength λ, the interference of the light (2) weakens each other, and when the interference of the light (2) weakens each other, the interference of the light (2) strengthens each other. In this way, the light beams ■ and ■ incident on one photodiode have the same incident area,
Since they are both bright and dark, the amount of light is uniform and no interference fringes occur.

〔実施例2〕 第2図(a)は本発明の実施例2の縦断面である。[Example 2] FIG. 2(a) is a longitudinal section of Example 2 of the present invention.

基本的な構造は第1図の実施例1と同じであシ、実施例
1と同様に干渉縞が発生しない。
The basic structure is the same as the first embodiment shown in FIG. 1, and like the first embodiment, no interference fringes occur.

実施例1,2はもとにフォトダイオードの受光面の酸化
膜を形成した部分(斑点部)と酸化膜を形成しない部分
(斜線部)17との面積は等しいが、酸化膜を形成する
部分(斑点部)が異なる。
In Examples 1 and 2, the areas of the light-receiving surface of the photodiode where the oxide film was formed (spotted areas) and the areas where the oxide film was not formed (hatched areas) 17 were equal in area, but the areas where the oxide film was formed were the same. (spotted areas) are different.

すなわち、実施例1は第1図(b)ように酸化膜16を
形成する部分をフォトダイオード13の右半分に設けた
ことに対して、実施例2は第2図(b)のように酸化膜
16を形成した長方形の部分をフォトダイオード13の
外周から距離αの所に設けたことにより、酸化膜16を
形成するためのマスクが縦横とも距離α以内のずれであ
れば酸化膜16を形成した部分(斑点部)と酸化膜を形
成しない部分(斜線部)17との面積は等しくでき、製
造が容易となる特徴がある。
That is, in Example 1, the part where the oxide film 16 is formed is provided in the right half of the photodiode 13 as shown in FIG. Since the rectangular portion on which the film 16 is formed is provided at a distance α from the outer periphery of the photodiode 13, the oxide film 16 can be formed if the mask for forming the oxide film 16 is shifted within the distance α both vertically and horizontally. The area of the oxidized portion (spotted portion) and the portion (shaded portion) 17 where no oxide film is formed can be made equal, which facilitates manufacturing.

しかしながら、上述した実施例ではいづれも膜厚が正確
に制御される必要があるのに対し、製造工程での誤差が
必然的に発生する。干渉縞を実用上問題ない強度に減少
させるためには、膜面での反射率、フィルター下面での
反射率を10%とすると、従来の干渉縞のレベルに対し
30%となればほぼ問題ないと判断されるところからそ
の膜厚は(n+1)’±0.05λに制御すればよいこ
とがわかる。
However, in all of the embodiments described above, it is necessary to accurately control the film thickness, but errors inevitably occur during the manufacturing process. In order to reduce the intensity of interference fringes to a level that does not pose a practical problem, assuming that the reflectance on the film surface and the reflectance on the bottom surface of the filter are 10%, there is almost no problem if they are 30% of the level of conventional interference fringes. From this judgment, it can be seen that the film thickness should be controlled to (n+1)'±0.05λ.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、フィルターの屈折率より
低い屈折率の媒体を介して、前記フィルターを貼り合わ
せた固体撮像素子において、フォトダイオード上に波長
λの光が入射するときに、(n+1)λ 7−となるよりに酸化膜の厚さを形成し、かつ前記酸化
膜を形成した部分を酸化膜を形成しないフォトダイオー
ドの部分の面積と等しくすることにより、光の干渉縞を
低減することができ、またフレアー、ゴーストの抑制を
いかんなく発揮できる効果がある。
As explained above, in the present invention, when light of wavelength λ is incident on the photodiode in a solid-state image sensor in which the filter is bonded via a medium having a refractive index lower than the refractive index of the filter, (n+1 ) The thickness of the oxide film is set to λ 7−, and the area of the portion where the oxide film is formed is made equal to the area of the portion of the photodiode where no oxide film is formed, thereby reducing interference fringes of light. It also has the effect of fully suppressing flare and ghosting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)Fi本発明の第1の実施例の縦断面図、第
1図(b)fdそのフォトダイオードを上からみた図、
第2図(a)は本発明の第2の実施例の縦断面図、第2
図(b)はそのフォトダイオードを上からみた図、第3
図(a)tI′i従来の固体撮像素子の縦断面図、第3
図(b)は、第3図(a)の再生画面、第4図は従来の
固体撮像素子のゴーストイメージの発生しない説明図、
第5図は固体撮像素子の一例を示す平面図である。 図において、11.41・・・・・・光源、12,32
゜42・・・・・・フィルター、13.33.43・・
・・・・フォトダイオード、14.34.44・・・・
・・基板、15・・・・・・フィルターの屈折率より低
い媒体、35・・・・・・樹脂、16・・・・・・酸化
膜、37・・・・・・ボスト・イメージ。 代理人 弁理士  内 原   晋 (θ) (b) 陳
Fig. 1(a) Fi is a vertical cross-sectional view of the first embodiment of the present invention, Fig. 1(b) fd is a view of the photodiode viewed from above,
FIG. 2(a) is a vertical cross-sectional view of the second embodiment of the present invention;
Figure (b) is a view of the photodiode from above.
Figure (a) tI'i Longitudinal cross-sectional view of a conventional solid-state image sensor, No. 3
Figure (b) is the playback screen of Figure 3 (a), Figure 4 is an explanatory diagram of a conventional solid-state image sensor in which a ghost image does not occur,
FIG. 5 is a plan view showing an example of a solid-state image sensor. In the figure, 11.41... light source, 12,32
゜42...Filter, 13.33.43...
...Photodiode, 14.34.44...
... Substrate, 15 ... Medium having a refractive index lower than that of the filter, 35 ... Resin, 16 ... Oxide film, 37 ... Bost image. Agent Patent Attorney Susumu Uchihara (θ) (b) Chen

Claims (1)

【特許請求の範囲】[Claims]  1次元または2次元に配置したフォトダイオードから
なる光電変換部と、光電変換部で発生した電荷を外部に
出力する信号処理部とを少くとも備えている基板にガラ
スフィルターの屈折率より低い屈折率の媒体を介して、
前記ガラスフィルターを貼り合わせた固体撮像素子にお
いて、前記フォトダイオードの受光面の一部に入射光の
特定波長λに対し、((n+1)λ/4)±0.05λ
(nは整数)の厚さの膜を設け、かつ前記フォトダイオ
ードの受光面上で前記膜厚の膜を設けた部分と膜のない
部分との面積を等しくしたことを特徴とする固体撮像素
子。
A substrate with a refractive index lower than the refractive index of the glass filter is provided, which includes at least a photoelectric conversion section consisting of photodiodes arranged in one or two dimensions, and a signal processing section that outputs the electric charge generated in the photoelectric conversion section to the outside. through the medium of
In the solid-state image sensor to which the glass filter is bonded, a part of the light-receiving surface of the photodiode has a specific wavelength λ of ((n+1)λ/4)±0.05λ of the incident light.
(n is an integer), and a solid-state image pickup device characterized in that a film having a thickness of (n is an integer) is provided, and the area of a portion of the light-receiving surface of the photodiode where the film of the film thickness is provided and a portion without the film are equal to each other. .
JP63269679A 1988-10-25 1988-10-25 Solid-state image pickup device Pending JPH02114780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63269679A JPH02114780A (en) 1988-10-25 1988-10-25 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63269679A JPH02114780A (en) 1988-10-25 1988-10-25 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPH02114780A true JPH02114780A (en) 1990-04-26

Family

ID=17475683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63269679A Pending JPH02114780A (en) 1988-10-25 1988-10-25 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPH02114780A (en)

Similar Documents

Publication Publication Date Title
US4939380A (en) Topographical camera operable by applying a grid-generated Moire image onto a CCD image sensor
JP2002503066A (en) Multiple linear array sensor with infrared line
JPH0618331A (en) Image data signal forming method and optical scanning device
JP2000036587A (en) Solid-state image pickup element
CN210867853U (en) Imaging layer, imaging device, electronic apparatus, wave zone plate structure and photosensitive pixel
JP2006344709A (en) Imaging device
JPH0415630B2 (en)
JPH02114780A (en) Solid-state image pickup device
TWI253597B (en) Solid-state image sensor for improving sensing quality and manufacturing method thereof
JPH04343470A (en) Solid-state image pickup device
JPS59123259A (en) Solid-state image pickup device
US6744032B1 (en) Arrangement of microlenses in a solid-state image sensor for improving signal to noise ratio
JPH0434977A (en) Solid-state image sensor
JPH06120461A (en) Solid-state image sensing device
JPS61154283A (en) Solid image pick-up element
CN111770292A (en) Pixel structure, image sensor and electronic equipment
JPS5911085A (en) Solid-state image pickup device
JPS63147365A (en) Solid-state image sensing device
JPH02244761A (en) Solid image pickup element and manufacture thereof
RU2516194C2 (en) Dichroic cut-off filter for obtaining images
JPS6266755A (en) Image reader
JPS59150358A (en) Radiation detector
JP2871760B2 (en) Solid-state imaging device
JPH04252074A (en) Solid-state image sensing element
JPH0617322Y2 (en) Solid-state imaging device