JPH02114399A - Plant abnormality diagnosing device - Google Patents

Plant abnormality diagnosing device

Info

Publication number
JPH02114399A
JPH02114399A JP63267049A JP26704988A JPH02114399A JP H02114399 A JPH02114399 A JP H02114399A JP 63267049 A JP63267049 A JP 63267049A JP 26704988 A JP26704988 A JP 26704988A JP H02114399 A JPH02114399 A JP H02114399A
Authority
JP
Japan
Prior art keywords
reference value
change
value
plant
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63267049A
Other languages
Japanese (ja)
Inventor
Akira Sakuma
佐久間 晃
Hiromitsu Imaruoka
伊丸岡 浩充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP63267049A priority Critical patent/JPH02114399A/en
Publication of JPH02114399A publication Critical patent/JPH02114399A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Alarm Systems (AREA)

Abstract

PURPOSE:To reduce calculation load and to continuously attain accurate diagnosis also in a transient change or after the change by providing the title device with a reference value changing means for deciding the state of a process value obtained from a storage means, automatically changing a reference value for abnormality detection and outputting the reference value to a diagnosing means. CONSTITUTION:A reference value changing means 5 stabilizes the state of a process value obtained from a storage means 3, automatically changes the reference value of a threshold for abnormality detection and inputs the reference value to the diagnosis means 4. The change of the process value is detected by the means 4, 5 based on the width of variation, and the speed (changing rate) of the variation. Since the reference value of the threshold is automatically changed in accordance with the change of the process value, it is unnecessary to set up the reference value even in a transient change and before and after the transient change and accurate abnormality diagnosis can be continued even after the transient change.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、計締機システムを用いてプラントの異常を
診断するプラン1〜異常診断装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to Plan 1 to an abnormality diagnosis device for diagnosing abnormality in a plant using a tightening machine system.

(従来の技術) プラント異常診断装置においては、その異常検出方法と
してプロセス値信号のりミツ]・チエツク法が広く用い
られている。リミットチエツク法では、プロセス値と予
め定めた閾値とを比較することにより変化の有無を検出
するものであり、閾値の与え方には次の2通りがある。
(Prior Art) In plant abnormality diagnosis devices, a process value signal value check method is widely used as an abnormality detection method. In the limit check method, the presence or absence of a change is detected by comparing the process value with a predetermined threshold value, and there are two ways to give the threshold value.

■絶対値で与える(原子炉水位し4以下@)■基準値(
初期値)からの相対向で与える(基準値の10%等) プラントの異常診断では■がよく用いられるが、この方
法ではプラント過渡時に基準値が変動するため、正確な
診断が行なえない。また、プラント整定後に診断を継続
する場合には、基準値を設定し直さなければならず、場
合によっては診断システムの初期化が必要となる。
■Give it as an absolute value (reactor water level below 4@) ■Reference value (
(10% of the reference value, etc.) is often used in plant abnormality diagnosis, but this method does not allow accurate diagnosis because the reference value fluctuates during plant transients. Furthermore, when continuing diagnosis after plant stabilization, reference values must be reset, and in some cases, initialization of the diagnostic system may be required.

このような欠点を補う異常検出方法としてモデル比較法
がある。このモデル比較法は、プラント動特性モデル等
を用いて求めたブ0セスmの推定値と実値との偏差を閾
値とするものであり、この方法では基準値を設定する必
要がない。しかし、個々の信号に対し推定値を求めなけ
ればならず、異常診断の前処理として用いる場合には計
算負荷が大きく現実的でない。
There is a model comparison method as an anomaly detection method that compensates for these drawbacks. This model comparison method uses as a threshold the deviation between the estimated value and the actual value of the process m obtained using a plant dynamic characteristic model, etc., and there is no need to set a reference value in this method. However, estimated values must be obtained for each signal, and when used as preprocessing for abnormality diagnosis, the computational load is large and it is not practical.

(発明が解決しようとする課題) 上述のように、リミットチエツク法に基づくプラント異
常診断装置では、基準値からの相対mで1jlllIi
Iを与えたときに過渡変化中並びに過渡変化後も継続し
て異常診断が正確に行なえない。また、モデル比較法に
基づくプラント異常診断装置では、プロセス聞の推定値
を求める計算負荷が大きく、現実的でないという欠点が
ある。
(Problems to be Solved by the Invention) As mentioned above, in the plant abnormality diagnosis device based on the limit check method, the relative m from the reference value is 1jllllIi.
When I is given, abnormality diagnosis cannot be performed accurately during or continuously after a transient change. Furthermore, the plant abnormality diagnosis device based on the model comparison method has the disadvantage that it requires a large calculation load to obtain estimated values for each process, and is therefore impractical.

この発明は、上記事実を考緻してなされたものであり、
計算負荷が小さく、かつプラン]・の過渡変化中および
過H変化後もIB続して正確な異常診断が可能なプラン
ト異常診断装置を提供することを目的とする。
This invention was made by carefully considering the above facts,
It is an object of the present invention to provide a plant abnormality diagnosing device that has a small calculation load and is capable of continuously and accurately diagnosing an abnormality during a transient change in a plan and after an excessive H change.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明は、プラントのプロセス値を検出するセンサか
らの信号を入力する入力手段と、入力されたデータを記
憶する記憶手段と、この記憶手段から上記プロセス値を
入力し、このプロセス値の状態から論理演算を用いてプ
ラントの異常を診断する診断手段とを備えたプラント異
常診断装置において、上記記憶手段からの上記プロセス
値の状態を判定して異常検出の基準値を自動的に変更し
、その基準値を上に!診断手段へ出力する基準値変更手
段を備えて構成されたことを特徴と16ものである。
(Means for Solving the Problem) The present invention includes an input means for inputting a signal from a sensor that detects a process value of a plant, a storage means for storing the input data, and a storage means for storing the process value from the storage means. In a plant abnormality diagnosing device, the plant abnormality diagnosing device is equipped with a diagnostic means for diagnosing an abnormality in the plant by inputting the input process values and using a logical operation based on the state of the process values, and determining a standard for abnormality detection by determining the state of the process values from the storage means. Automatically change the value and raise the reference value above! The present invention is characterized in that it is constructed with a reference value changing means for outputting to the diagnostic means.

(作用) したがって、この発明に係るプラント異常診断装置によ
れば、プロセス値の状態に応じて基準値を自動的に変更
させるので、過渡変化後にも基準値を設定し直す必要が
なく、過渡変化中およびその前優に亘って継続してプラ
ントの異常診断を実行できる。
(Function) Therefore, according to the plant abnormality diagnosis device according to the present invention, since the reference value is automatically changed according to the state of the process value, there is no need to reset the reference value even after a transient change, and there is no need to reset the reference value even after a transient change. Plant abnormality diagnosis can be carried out continuously throughout the entire period.

また、上述のプラントの異常診断はリミットチエツク異
常診断法によってなされ、モデル比較法を用いてなされ
ないため、プラント邑の推定値を求める必要がな(、計
算負荷が小さい。
In addition, the above-mentioned plant abnormality diagnosis is performed by the limit check abnormality diagnosis method and is not performed using the model comparison method, so there is no need to obtain estimated values for the plant (the calculation load is small).

(実施例) 以下、この発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図はこの発明に係るプラント異常診断V装置の一実
施例を示すブロック図である。プラント異常診断装置置
1は、入力手段2、記憶手段3、診断手段4および基準
値変更手段5を有して構成される。
FIG. 1 is a block diagram showing an embodiment of a plant abnormality diagnosis V device according to the present invention. The plant abnormality diagnosis device 1 includes an input means 2, a storage means 3, a diagnosis means 4, and a reference value changing means 5.

入力手段2は、センサ7が検出したプラント6のプロセ
ス値をプロセス値信号として入力する。
The input means 2 inputs the process value of the plant 6 detected by the sensor 7 as a process value signal.

また、記憶手段3は、この入力手段2に入力されたデー
タを記憶する。
Furthermore, the storage means 3 stores the data input to the input means 2.

診断手段4は、記憶手段3に入力されたプロセス値の状
態から、論]!l!演算を用いてプラントの異常を診断
する。この診断に適用される異常検出方法はリミットチ
エツク法であり、予め定めたfllifiとプロセス値
とを比較することにより、プラント6の異常を検出する
。この場合、閾値の設定は、基準値からの相対量(例え
ば基準値の10%等)で与えられる。
The diagnostic means 4 performs a diagnosis based on the state of the process values input into the storage means 3! l! Diagnose plant abnormalities using calculations. The abnormality detection method applied to this diagnosis is a limit check method, in which abnormalities in the plant 6 are detected by comparing a predetermined flifi with a process value. In this case, the threshold value is set as a relative amount from the reference value (for example, 10% of the reference value).

基準値変更手段5は、記憶手段3からのプロセス値の状
態を安定して異常検出のための閾値の基準値を自動的に
変更し、その基準値を診断手段4へ人力する。ここで、
診断手段4および基準値変更手段5におけるプロセス値
の変化の検出は、変動の幅および変動の速度(変化率)
に基づいてなされる。つまり、穏やかな変化は変動幅で
、急激な変化は変動の速さでそれぞれ検出する。これに
対応して、上記基準値は緩変化基準値Gcbと急変化基
準値RCbとの2つが設定される。このうち、緩変化基
準値GCbは緩変化の検出と同時に、整定状態をも検出
する機能を備えたものであり、過渡変化後の基準値の変
更に用いられる。
The reference value changing means 5 stabilizes the state of the process value from the storage means 3, automatically changes the reference value of the threshold for abnormality detection, and manually inputs the reference value to the diagnostic means 4. here,
Detection of changes in process values by the diagnostic means 4 and the reference value changing means 5 is performed based on the width of the fluctuation and the speed of the fluctuation (rate of change).
It is done based on. In other words, gentle changes are detected by the width of the fluctuation, and sudden changes are detected by the speed of the fluctuation. Correspondingly, two reference values, a slow change reference value Gcb and a rapid change reference value RCb, are set as the reference values. Among these, the slow change reference value GCb has a function of detecting a settling state at the same time as detecting a slow change, and is used to change the reference value after a transient change.

上記急変化基準値Rcbは急変化時には固定されるが、
それ以外の定常および緩変化時には変動する。また、緩
変化基準値GCbは、定常または緩変化時には固定され
るが、急変化時には変動する。
The sudden change reference value Rcb is fixed when there is a sudden change, but
It fluctuates during other steady and slow changes. Furthermore, the slow change reference value GCb is fixed during steady or slow changes, but fluctuates during sudden changes.

つまり、第2図に示すように、初期状態t。では(Gc
b−X (t 6 ) RCb−X (to) となる。また、時刻t およびt2では、ブ0セス値に
急激な変化がないので、このときの基準値はそれぞれ (Gcb= X (t 6 ) RCb−x(tl) (Gcb=X (to) R=X (t2) b となる。
That is, as shown in FIG. 2, the initial state t. Then (Gc
b-X (t6) RCb-X (to). In addition, at times t and t2, there is no sudden change in the value of zero, so the reference value at this time is (Gcb=X (t6) RCb-x(tl) (Gcb=X (to) R= X (t2) b .

ところが、時刻t3ではプロセス値が急激に変化してお
り、急変化閾値をR8,とすると、X (t3 ) −
RCb(=X (t2 ) ) >R8゜となっている
。そこで、急変化基準値Rcbは、時刻t5において急
変化がクリアされるまで、R=X (t2) b に固定される。一方、緩変化基準値G。、は、急変化が
検出されている間(t3〜t4 )、X (t6 )か
ら Gcb−X(t3) GCb=X (t4) へと順次自動的に変動する。
However, at time t3, the process value changes rapidly, and if the sudden change threshold is R8, then X (t3) −
RCb(=X(t2))>R8°. Therefore, the sudden change reference value Rcb is fixed at R=X (t2) b until the sudden change is cleared at time t5. On the other hand, the slow change reference value G. , automatically sequentially changes from X (t6) to Gcb-X(t3) GCb=X (t4) while a sudden change is detected (t3 to t4).

その後、時刻t5になると、プロセス値は整定状態にな
り、緩変化閾値をGeVとすると、X (t5 )−G
、b(=X (t4))<G。−となる。その模、時刻
t6でも同様であるので、急変化基準値RCbはクリア
されて変動し、緩変化基¥−11i1Gcbは固定され
て、 (Gcb=X(t4) Rcb=x(t5)→x(t6) となる。
After that, at time t5, the process value becomes stable, and if the gradual change threshold is GeV, then X (t5) - G
, b(=X (t4))<G. − becomes. The same thing happens at time t6, so the rapid change reference value RCb is cleared and fluctuates, and the slow change base ¥-11i1Gcb is fixed, (Gcb=X(t4) Rcb=x(t5)→x( t6).

さらに、時刻t7に至ると、再び急変化するので、急変
化基準値Rcb1.を固定され、緩変化基準値GCbは
変動して1 、Gcb=X (t、 ) R=X  (ts  ) b となる。
Furthermore, at time t7, there is a sudden change again, so that the sudden change reference value Rcb1. is fixed, and the slowly changing reference value GCb changes to 1, so that Gcb=X (t, ) R=X (ts) b .

上述のように、閾値は急変化および緩変化のそれぞれの
基準値に対して設定される。このとき、急変化基準値R
6bは、例えば時刻t。からt2の間の穏やかなプロセ
ス値X(t)の変化では、その間のプロセス値の変動分
が急変化基準値RCbの変動(X(to)→X(i2)
)によって除かれるので、プロセス値X(t2)をM準
にして整定される。
As described above, the threshold values are set for respective reference values of rapid change and slow change. At this time, the sudden change reference value R
6b is, for example, time t. When the process value X(t) changes slowly between
), the process value X(t2) is set to the M standard.

したがって、上記実施例によれば、プロセス値X(t)
の変化に応じてII Iaの基準値Gcb、Rcbが自
助的に変動するので、過渡変化中およびその変動変化の
前後に亘って基準値を設定する必要がなく、過渡変化後
もJ1統して正確な異常診断を実施できる。
Therefore, according to the above embodiment, the process value X(t)
Since the reference values Gcb and Rcb of IIIa change automatically in response to changes in , there is no need to set reference values during transient changes and before and after the fluctuations, and even after transient changes, J1 Accurate abnormality diagnosis can be performed.

また、診断手段4および基準値変更手段5においてなさ
れるプラン!・の異常診断は、リミットチエツク異常診
新法によってなされるので、モデル比較法を用いる場合
の如くプロセス量の推定値を求める必要がなく、計算負
荷を低減できる。
Also, the plan made by the diagnostic means 4 and the reference value changing means 5! Since the abnormality diagnosis is performed by the new limit check abnormality diagnosis method, there is no need to obtain an estimated value of the process amount as in the case of using the model comparison method, and the calculation load can be reduced.

第3図は、この発明の他の実施例を説明するための図で
ある。この第3図のように、ブ0セスliX (t)が
、上昇侵整定以前に下降することもある。この場合、前
記実施例の基準値変更手段5では、急変化基準値Rcb
が上昇時も下降時も共にRcb=a に固定されるので、上昇前のプロセス値aに戻るまでプ
ロセス値X(t)の下降が検出されないことになる。
FIG. 3 is a diagram for explaining another embodiment of the present invention. As shown in FIG. 3, the value liX (t) may fall before it settles down. In this case, in the reference value changing means 5 of the embodiment, the sudden change reference value Rcb
Since Rcb is fixed at Rcb=a both when rising and falling, a fall in the process value X(t) will not be detected until it returns to the process value a before rising.

そこで、この他の実施例における基準値変更手段5では
、急変化基準値Rcbを上昇方向の急変化基準値Rと下
降方向の急変化基準値Rとcbu          
    cbdに分離する。さらに、緩変化基準値RC
bも、同様に、上昇方向の緩変化基準1iIIGCbU
と、下降方向の緩変化基準(illGCbdとに分離す
る。したがって、第3図に示すように変化するプロセス
値X(t)の場合には、急変化基準値R6,がRcbu
とRcbdとに分離されているので、 (Rcbu”a R=b cbd となる。この結果、プロセス値X (t)がX (t)
=bから下降した時点で、プロセス値X(t)下降を検
出できる。緩変化基準値をGcbuおよびGcbdに分
離した場合も同様である。
Therefore, the reference value changing means 5 in this other embodiment sets the sudden change reference value Rcb to the sudden change reference value R in the upward direction, the sudden change reference value R in the downward direction, and cbu.
Separate into cbd. Furthermore, the slow change reference value RC
Similarly, b is also based on the gradual upward change criterion 1iIIIGCbU
and a slow change reference value (illGCbd) in the downward direction. Therefore, in the case of the process value X(t) changing as shown in FIG.
and Rcbd, (Rcbu”a R=b cbd. As a result, the process value
When the process value X(t) decreases from =b, a decrease in the process value X(t) can be detected. The same applies when the slow change reference value is separated into Gcbu and Gcbd.

このように、この他の実施例では、基準値を上昇方向基
準値R、G   と下降方向基準値cbu   cbu Rcbd、Gcbdとに分離したことから、これに応じ
て、急変化閾値および緩変化閾値をそれぞれ上昇側と下
降側とで異なった値に設定すれば、プロセス値X(t)
のような変化パターンを詳細に検出でき、その結果、高
精度な異常診断が可能となる。
In this way, in this other embodiment, since the reference values are separated into the upward direction reference values R, G and the downward direction reference values cbu cbu Rcbd, Gcbd, the rapid change threshold and the slow change threshold are set accordingly. If set to different values on the rising side and falling side, the process value X(t)
It is possible to detect such change patterns in detail, and as a result, highly accurate abnormality diagnosis is possible.

〔発明の効宋〕[Efficacy of invention Song Dynasty]

以上のように、この発明に係るプラント異常診断装置に
よれば、記憶手段からのプロセス値の状態を判定して異
常検出の基準値を自動的に変更し、その基準値を診断手
段へ出力する基準値変更手段を備えたことから、プロセ
ス値の過渡変化中およびその前後に亘って継続してプラ
ントの異常診断を実行できる。さらに、この異常診断で
はリミットチエツク異常診断法が採用されているので、
計算負荷も小さい。
As described above, the plant abnormality diagnosis device according to the present invention determines the state of the process value from the storage means, automatically changes the reference value for abnormality detection, and outputs the reference value to the diagnosis means. Since the reference value changing means is provided, abnormality diagnosis of the plant can be performed continuously during, before and after the transient change in the process value. Furthermore, this abnormality diagnosis uses a limit check abnormality diagnosis method, so
The calculation load is also small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るプラント異常診断装置の一実施
例を示すブロック図、第2図はこの一実施例において基
準値の設定方法を説明するための図、第3図は他の実施
例において基準値を変化方向により分離して設定する方
法を説明するための図である。 1・・・プラント異常診断装置、2・・・入力手段、3
・・・記憶手段、4・・・診断手段、5・・・基準値変
更手段、6・・・プラント、7・・・ヒンサ、”cb・
・・緩変化基準値、Rcb・・・急変化基準値。
Fig. 1 is a block diagram showing one embodiment of the plant abnormality diagnosis device according to the present invention, Fig. 2 is a diagram for explaining a method of setting a reference value in this embodiment, and Fig. 3 is another embodiment. FIG. 3 is a diagram for explaining a method of setting reference values separately depending on the direction of change. 1... Plant abnormality diagnosis device, 2... Input means, 3
...Storage means, 4.Diagnosis means, 5.Reference value changing means, 6.Plant, 7.Hinsa, "cb.
... Slow change reference value, Rcb... Rapid change reference value.

Claims (1)

【特許請求の範囲】[Claims] プラントのプロセス値を検出するセンサからの信号を入
力する入力手段と、入力されたデータを記憶する記憶手
段と、この記憶手段から上記プロセス値を入力し、この
プロセス値の状態から論理演算を用いてプラントの異常
を診断する診断手段とを備えたプラント異常診断装置に
おいて、上記記憶手段からの上記プロセス値の状態を判
定して異常検出の基準値を自動的に変更し、その基準値
を上記診断手段へ出力する基準値変更手段を備えて構成
されたことを特徴とするプラント異常診断装置。
an input means for inputting a signal from a sensor that detects a process value of the plant; a storage means for storing the input data; the process value is inputted from the storage means, and a logical operation is used from the state of the process value. and a diagnostic means for diagnosing an abnormality in the plant based on the storage means, the system automatically changes a reference value for abnormality detection by determining the state of the process value from the storage means, and sets the reference value to the 1. A plant abnormality diagnosing device comprising: reference value changing means for outputting to a diagnosing means.
JP63267049A 1988-10-25 1988-10-25 Plant abnormality diagnosing device Pending JPH02114399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63267049A JPH02114399A (en) 1988-10-25 1988-10-25 Plant abnormality diagnosing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63267049A JPH02114399A (en) 1988-10-25 1988-10-25 Plant abnormality diagnosing device

Publications (1)

Publication Number Publication Date
JPH02114399A true JPH02114399A (en) 1990-04-26

Family

ID=17439331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63267049A Pending JPH02114399A (en) 1988-10-25 1988-10-25 Plant abnormality diagnosing device

Country Status (1)

Country Link
JP (1) JPH02114399A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194487A (en) * 1992-12-25 1994-07-15 Toshiba Corp Monitoring/diagnostic system
JP2014078209A (en) * 2012-10-10 2014-05-01 Ho Jinyama State monitoring method using multi-condition-monitor and state monitoring device system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194487A (en) * 1992-12-25 1994-07-15 Toshiba Corp Monitoring/diagnostic system
JP2014078209A (en) * 2012-10-10 2014-05-01 Ho Jinyama State monitoring method using multi-condition-monitor and state monitoring device system

Similar Documents

Publication Publication Date Title
CN109275353B (en) Motor control device
CN108984376A (en) A kind of system anomaly detection method, device and equipment
US10797623B2 (en) Semiconductor device and method of detecting its rotation abnormality
JPH02114399A (en) Plant abnormality diagnosing device
KR101708739B1 (en) Apparatus for detecting and suppressing resonance in servo system using a plurality of fixed notch filter and method thereof
Chang et al. An application of robust feedback linearization to a ball and beam control problem
JP2005180924A (en) Gear damage detector and gear damage detection method
CN115962768A (en) Harmonic oscillator closed-loop excitation phase shift control method, device and equipment
Khan et al. Simple output-feedback 2-sliding controller for systems of relative degree two
US11487275B2 (en) Analyzer
CN114047690A (en) Parallel output redundant servo control method, device and medium
KR102654240B1 (en) Apparatus and System for Detecting Anomaly in Industrial Facilities Using Deep Learning, Machine Learning and Statistical Models
Shendge et al. Robust sliding mode control for systems with noise and unmodeled dynamics based on uncertainty and disturbance estimation (UDE)
JP6117841B2 (en) Numerical control device with function to prevent erroneous input of tool offset data
JPS60103401A (en) Process control computer
CN113829352B (en) Single joint fluctuation observation method and device, electronic equipment and medium
CN116950957B (en) Wisdom hydraulic pressure cloud simulation system
JPS5833751A (en) Analog input reader for electronic computer
CN113514148A (en) Equipment vibration early warning method and system based on low-delay data smoothing
CN117149593A (en) Data monitoring method and device, electronic equipment and storage medium
Yamashita On-line extraction of qualitative movements for monitoring process plants
Back et al. Alternative discrete-time operators: An algorithm for optimal selection of parameters
JPH0119159B2 (en)
Milanese et al. Linear vs. nonlinear approaches to robustness analysis of LTI control systems
JPS60207033A (en) Yield elongation detector