JPH02114313A - High speed external storage device - Google Patents

High speed external storage device

Info

Publication number
JPH02114313A
JPH02114313A JP26916688A JP26916688A JPH02114313A JP H02114313 A JPH02114313 A JP H02114313A JP 26916688 A JP26916688 A JP 26916688A JP 26916688 A JP26916688 A JP 26916688A JP H02114313 A JPH02114313 A JP H02114313A
Authority
JP
Japan
Prior art keywords
external storage
data
storage device
address
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26916688A
Other languages
Japanese (ja)
Inventor
Tokuo Kumaki
徳雄 熊木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP26916688A priority Critical patent/JPH02114313A/en
Publication of JPH02114313A publication Critical patent/JPH02114313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain high speed reading by means of an existing external storage device by dispersedly writing/reading out data in each data length of a minimum reading/writing unit of plural external storage devices included in an arithmetic unit. CONSTITUTION:A series of data are rapidly divided in each minimum data length to be read out/written by the external storage devices 21A to 21D through an address control means 22. The writing addresses of a main memory 12 are allocated to the data obtained by dispersedly writing or reading out the divided data in/from the devices 21A to 21D, rapidly sent and inputted to the prescribed addresses of the main memory 22 by an address control means 22. When N external storage devices are prepared, the external storage devices may writes and read out rapidly transmitted data at 1/N speed. Thereby, when N external storage devices having slow reading/writing speed are prepared, the data can be read out and written at the N times the reading/writing speed of each external storage device.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は大聖コンピュータ或いはIdテスタのように
高速度にデータを処理する演算装置に用いることができ
る高速外部記憶袋[K関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a high-speed external storage bag [K] that can be used in an arithmetic device that processes data at high speed, such as a Daisei Computer or an ID tester.

「従来の技術」 データ量の増大に伴って、これを処理するコンピュータ
等の演算処理装置或いは大規模なICを試験するICテ
スタ等は高速化が要求されている。
``Prior Art'' As the amount of data increases, arithmetic processing units such as computers that process this data, IC testers that test large-scale ICs, and the like are required to be faster.

演算処理装置自体は半導体集積回路の改良によってかな
りつ高速化が達せられているが、演算処理装置とデータ
を授受する外部記憶装置に関し【は高速と言われている
ものでもハードディスク程度である。ハードディスクが
高速であるとは言っても半導体回路によって構成される
演算処理装置の処理速度と比較すれば、その続出書込速
度は格段に遅い。
Processing devices themselves have become considerably faster due to improvements in semiconductor integrated circuits, but external storage devices that exchange data with processing devices are only as fast as hard disks. Even though hard disks are high-speed, their continuous writing speed is much slower than the processing speed of an arithmetic processing unit composed of semiconductor circuits.

「発明が解決しようとする課題」 単に記憶装置を高速化しようとすれば半導体メモリを用
いればこの要求は満たされる。
``Problem to be Solved by the Invention'' If one simply wants to speed up a storage device, this requirement can be met by using semiconductor memory.

しかしながら、大量のデータを取扱うことを考慮すれば
、外部記憶装置に要求される記憶容量はギガとかテラの
オーダとなる。このような大容量の外部記憶装置を半導
体メモリに置き換えることは経済的に許される現状では
ない。
However, considering the handling of large amounts of data, the storage capacity required for the external storage device is on the order of giga or tera. Currently, it is not economically acceptable to replace such a large-capacity external storage device with a semiconductor memory.

記憶容量歯たりのコスト及び成る程度の読・書速度の要
求を満たすとすれば現状はハードディスタが最良であろ
う。また、今後光ディスク等が期待されているが、読、
書速度としてはハードディスクとそれ程の差はない。
Currently, hard disk drives are the best option if they meet the requirements for storage capacity, cost, and reading/writing speed. In addition, optical discs are expected in the future, but reading,
There is not much difference in writing speed compared to a hard disk.

このよ5な背景から記憶容量当たりのコストが安価で、
しかも高速の胱出、書込みが行える外部記憶装置の出現
が待たれている。
Due to this background, the cost per storage capacity is low,
Moreover, the emergence of an external storage device that can perform high-speed data storage and writing is awaited.

この発明の目的は現に存在する外部記憶装置を利用して
高速読書可能な外部記憶装置を提供しよ5とするもので
ある。
An object of the present invention is to provide an external storage device that is capable of high-speed reading and writing using existing external storage devices.

「課題を解決するための手段」 この発明では中央処理装置と半導体メモリから成る高速
読出書込可能な主メモリとによって構成されるコンピュ
ータのような演算処理装置に対し、複数の外部記憶装置
を設けると共に、各外部記憶装置には外部記憶装置の最
小読出、書込単位のデータ長のデータを分散して書込読
出すように構成する。
"Means for Solving the Problem" In the present invention, a plurality of external storage devices are provided for an arithmetic processing device such as a computer that is constituted by a central processing unit and a main memory that can read and write at high speed and is made of semiconductor memory. At the same time, each external storage device is configured to read and write data in a distributed manner with a minimum data length in units of read and write units of the external storage device.

この発明の構成によれば、高速で一連に連なるデータを
アドレス制御手段によつ【外部記憶装置″m−,@可能
な最小データ長ごとに分断し、この分断したデータを複
数の外部記憶装置に分散して書込み、また読出されたデ
ータにはアドレス制御手段によって主メモリの書込アド
レスが与えられて高速に送出され、主メモリの所定アド
レスに取り込まれるら このように高速で伝送される一連のデータを読・書可能
な最小データ長に分断し、この分断したデータを各外部
記憶装置に分散して、書込み、読出す構成とすることに
よって各外部記憶装置をN側設ければ外部記憶装置は高
速で伝送されるデータを1/Nの速度で書込み及び読出
しを行えばよいことになる。
According to the configuration of the present invention, a series of data that is continuous at high speed is divided by the address control means into [external storage device "m-, @ possible minimum data length, and the divided data is divided into multiple external storage devices The written and read data is given a write address in the main memory by the address control means and sent out at high speed. By dividing the data into the minimum data length that can be read and written, and distributing this divided data to each external storage device for writing and reading, if each external storage device is provided on the N side, the external storage The device only needs to write and read data transmitted at high speed at a speed of 1/N.

従っ【、読出し及び書込み速度が遅い外部記憶装置をN
個用意すれば、各外部記憶装置の読出し及び書込速度の
N倍の速度でデータを読出し、書込みすることかできる
Therefore, if you use an external storage device with slow read and write speeds,
If each external storage device is provided, data can be read and written at N times the read and write speed of each external storage device.

「実施例」 第1図にこの発明の一実施例を示す。図中10はコンピ
ュータのような演算処理装置を示す。この演算処理装置
10は周知のように中央処理装置11と、高速書込読出
可能な主メモリ12とによって構成され、これら中央処
理装置11と主メモリ1zはデータバスライン13とア
ドレスバスライン14とによって接続され、データの授
受によって演算処理が実行される。
"Embodiment" FIG. 1 shows an embodiment of the present invention. In the figure, numeral 10 indicates an arithmetic processing device such as a computer. As is well known, the arithmetic processing unit 10 is composed of a central processing unit 11 and a main memory 12 that can be read and written at high speed. are connected, and arithmetic processing is executed by exchanging data.

20はこの発明によって構成した高速外部記憶装置を示
す。この発明による高速外部記憶装置20はハードディ
スクドライブ装置のような複数の外部記憶装[21A、
21B、21C,21Dと、この複数の外部記憶装置2
1A〜21Dのそれぞれを最小書込読出単位でアクセス
する制御器22と、各外部記憶装置21A〜21Dとデ
ータバスライン13との間に接続したバッファ23人、
23B。
Reference numeral 20 indicates a high-speed external storage device constructed according to the present invention. The high-speed external storage device 20 according to the present invention includes a plurality of external storage devices such as hard disk drives [21A,
21B, 21C, 21D, and the plurality of external storage devices 2
a controller 22 that accesses each of the external storage devices 1A to 21D in minimum write/read units; 23 buffers connected between each of the external storage devices 21A to 21D and the data bus line 13;
23B.

23C,23Dとによって構成することができる。23C and 23D.

アドレス制御器22はマイクロコンビ瓢−タMPと、各
外部記憶装@21A〜21Dに対応して設けたアドレス
カウンタ22人〜22Dとによって構成することができ
る。
The address controller 22 can be constituted by a microcombiner MP and address counters 22 to 22D provided corresponding to the respective external storage devices @21A to 21D.

アドレス制御器22は各外部記憶装置21人〜21Dの
書込み、胱出しアドレスの管理を行う。
The address controller 22 performs writing in each of the external storage devices 21 to 21D and manages the bladder address.

つまり、演算処理装置lO側のアドレス空間を複数の外
部記憶装置21人〜21Dによつ【構築すルタメのイン
ターフェースとし【動作する。
In other words, the address space on the side of the arithmetic processing unit 10 is used as an interface for constructing a plurality of external storage devices 21 to 21D.

演算処理装置10側のアドレス空間を複数の外部記憶装
置によって構築する方法として、従来は各外部記憶装置
のアドレスを継続的に継いで構築したが、このように複
数の外部記憶装置のアドレスを縦続的に継いだ場合には
、アクセスの速度は各外部記憶装置のアクセス速度で決
められる。従って、各外部記憶装置のアクセス速度より
速くすることはできない。つまり、N台の外部記憶装置
にデータを書込むにはN台分の書込時間が必要である。
Conventionally, the address space on the arithmetic processing unit 10 side was constructed using multiple external storage devices by successively inheriting the addresses of each external storage device. In this case, the access speed is determined by the access speed of each external storage device. Therefore, it is not possible to make the access speed faster than each external storage device. In other words, writing data to N external storage devices requires writing time for N external storage devices.

これに対し、この発明では各外部記憶装置21A〜21
Dのアドレスを並列的に継いで演算処理装置側のアドレ
ス空間を構築しようとするものである。
In contrast, in the present invention, each external storage device 21A to 21
This is an attempt to construct an address space on the arithmetic processing unit side by inheriting the addresses of D in parallel.

つまり、アドレス制御器22は第2図に示すよ5に外部
記憶装置21人の1番地を1番地、21Bの1番地を2
番地、21Cの1番地を3番地、21Dの1番地を4番
地とし、21Aの2番地を5番地、21Bの2番地を6
番地、21Cの2番地を7番地、21Dの2番地を8番
地、・・・・・・となるよ、5 Kアドレス変換を行う
In other words, as shown in FIG.
Address: 21C 1st address is 3rd, 21D 1st address is 4th address, 21A 2nd address is 5th address, 21B 2nd address is 6th address.
5K address conversion is performed so that address 21C becomes address 7, address 21D becomes address 8, etc.

このようにアドレス変換することによつ【各外部記憶装
921人〜21Dのそれぞれにデータを書込む時間及び
各外部記憶装置21A〜21Dのそれぞれからデータな
胱出す時間T(第2図参照)でN台分、つまり、この例
では4台分の外部記憶装[21A〜21Dの全【に、デ
ータを書込むことができ、またデータを読出すことがで
きる。
By converting addresses in this way, [the time for writing data into each of the external storage devices 921 to 21D and the time to output data from each of the external storage devices 21A to 21D (see Figure 2) Data can be written to and read from all external storage devices 21A to 21D for N units, that is, four units in this example.

以下にその実施例を更に詳細に説明する。この例では、
ハードディスクのよ5な外部記憶装置を4台設けた場合
である。このため、演算処理装置10と高速外部記憶装
置20との間のデータの伝達速度は従来の4倍以上の速
度に設定する。
The examples will be explained in more detail below. In this example,
This is a case where four external storage devices such as hard disks are provided. Therefore, the data transmission speed between the arithmetic processing unit 10 and the high-speed external storage device 20 is set to be four times faster than the conventional speed.

制御器22にはマイクロコンピュータMPの他にアドレ
スカウンタ22人、22B、22C。
The controller 22 includes a microcomputer MP and 22 address counters, 22B and 22C.

Z2Dが設けられる。これらアドレスカウンタ22人〜
22Dは各外部記憶装[21A〜21DK対応して設け
られ、各外部記憶装[21A〜21Dのそれぞれのアド
レス(以下これを外部アドレスと称することにする)と
、演算処理装置側のアドレス(以下これを内部アドレス
と称することにする)とを記憶し、自己がアクセスされ
たか否かを検出する。
Z2D is provided. These 22 address counters ~
22D is provided corresponding to each external storage device [21A to 21DK, and has an address (hereinafter referred to as an external address) of each external storage device [21A to 21D] and an address on the arithmetic processing unit side (hereinafter referred to as an external address). This address will be referred to as an internal address) and detects whether or not it has been accessed.

例えば、演算処理装置10から書込みを行5場合は演算
処理装置10からその書込データの先頭アドレスが付加
されて送り出される。
For example, if the arithmetic processing unit 10 writes to row 5, the arithmetic processing unit 10 adds the start address of the write data and sends it out.

この先頭アドレスはアドレス制御器22において外部ア
ドレスに変換され、その外部アドレスが存在する外部記
憶装置を検出し、その外部記憶装置のアドレスカウンタ
にセットする。先頭アドレスか指定された外部記憶装置
はそのアドレスカウンタによってアクセスされる。先頭
アドレスがアクセスされると、次のアドレスは隣りの外
部記憶装置となる。
This start address is converted into an external address by the address controller 22, the external storage device in which the external address exists is detected, and the address counter of the external storage device is set. The external storage device designated by the start address is accessed by its address counter. When the first address is accessed, the next address becomes the adjacent external storage device.

つまり、先頭アドレスが例えば外部記憶装置21Bに存
在したとすると、次のデータのアドレスは外部記憶装置
21Cとなる。外部記憶装置21Cへの書込みか終了す
ると、外部記憶装置21Dがアクセスされ、この外部記
憶装置21Dにデータが書込まれる。−回のアクセスで
書込まれるデータは各外部記憶装置21人〜21Dの書
込み、読出し可能な最小単位(例えばセクタ単位)に選
定する。
In other words, if the first address exists in the external storage device 21B, for example, the address of the next data will be in the external storage device 21C. When writing to the external storage device 21C is completed, the external storage device 21D is accessed and data is written to the external storage device 21D. - The data to be written in the number of accesses is selected in the smallest unit (for example, sector unit) that can be written and read from each external storage device 21 to 21D.

外部記憶装置21Bがアクセスされてから次の外部記憶
装置21Cがアクセスされるまでの時間は、各装[21
A〜21Dの各アクセス時間のにの時間に対応する。
The time from when the external storage device 21B is accessed until the next external storage device 21C is accessed depends on each device [21
This corresponds to the time of each access time of A to 21D.

従って、外部記憶装置21B、21C,21D。Therefore, the external storage devices 21B, 21C, and 21D.

21人、21B・・・・・・の順に順次アクセスされた
場合、各外部記憶装置21人〜21Dはそれぞれ従来と
同じ速度で書込みを行うのと等価である。
When the external storage devices 21, 21B, . . . are accessed sequentially in the order of 21, 21B, .

書込まれるデータはアドレスの順序でバッファ23B、
23C,23D、23A、23B・・・・・・の順に取
り込まれ、各外部記憶装置21A〜21Dに書込まれる
The data to be written is stored in the buffer 23B in the order of addresses.
23C, 23D, 23A, 23B, . . . are fetched in this order and written to each external storage device 21A to 21D.

演算処理装置10から高速外部記憶装置20に読出指令
が出された場合は、読出先頭アドレスがアドレス制御器
22で外部アドレスに変換され、その外部アドレスが存
在する外部記憶装置のアドレスカウンタにストアされる
。例えば、外部記憶装fi21Aのアドレスカウンタ2
2Aに先頭アドレス(これは外部アドレス)がストアさ
れると、その外部記憶装置21Aの指定されたアドレス
が読出され、次に外部記憶装置21Bの対応するアドレ
スが読出され、21C,21D、21A、21B・・・
・・・の順に各外部記憶装置21A、21Dに設けたバ
ッファ23人〜23Dにデータが読出される。
When a read command is issued from the arithmetic processing unit 10 to the high-speed external storage device 20, the read start address is converted into an external address by the address controller 22, and stored in the address counter of the external storage device where the external address exists. Ru. For example, address counter 2 of external storage device fi21A
When the start address (this is an external address) is stored in 2A, the specified address of the external storage device 21A is read out, and then the corresponding address of the external storage device 21B is read out, and the addresses 21C, 21D, 21A, 21B...
Data is read out to buffers 23 to 23D provided in each of the external storage devices 21A and 21D in this order.

バッファ23人〜23Dは蓄えられた各データ:を各バ
ッファ23人〜23Dのそれぞれが送信許可を受けるご
とにデータバスライン13に送り出される。このとき、
そのデータの行先アドレス(内部アドレス)がアドレス
制御器22から送り出され、主記憶器12の所定アドレ
スに送り込まれる。
The buffers 23 to 23D send out the stored data to the data bus line 13 each time each of the buffers 23 to 23D receives transmission permission. At this time,
The destination address (internal address) of the data is sent out from the address controller 22 and sent to a predetermined address in the main memory 12.

データバスライン13上の転送速度は各外部記憶装置i
21人〜21Dの各続出速度の4倍以上に採られ、各外
部記憶装置21A〜21Dが次のデータな読出すタイミ
ングではバッファ23人〜23Dは全て空の状態となる
The transfer speed on the data bus line 13 is
This is more than four times the successive output speed of each of the buffers 21 to 21D, and the buffers 23 to 23D are all empty at the timing when each external storage device 21A to 21D reads the next data.

なお、上述の実施例では外部記憶装置を4台設けた場合
を説明したが、特に4台VC@られるものではない。ま
た、データバスライン13及びアドレスライン14のデ
ータ転送速度は各外部記憶装置の書込み、読出し速度の
台数倍として説明したが1台数倍以上に選定してもバス
ツイン上に空き時間が生じるだけでデータの授受には何
等支障か生じることはない。
In addition, although the above-mentioned embodiment explained the case where four external storage devices were provided, it is not particularly possible to provide four VC@s. In addition, although the data transfer speed of the data bus line 13 and address line 14 has been explained as the write/read speed of each external storage device multiplied by the number of external storage devices, even if it is selected to be one or more times the number of external storage devices, idle time will only occur on the bus twin. There is no problem with data exchange.

また、外部記憶装置はハードディスクに限らず他の例え
ば書換可能な光ディスク等も使うことができる。
Further, the external storage device is not limited to a hard disk, but other types such as a rewritable optical disk can also be used.

「発明の効果」 以上説明したよ5K、この発明によれば、外部記憶装置
として書込み、読出しが機械的な手段で行われるハード
ディスクのよ5な記憶装置を用いたとして、この記憶装
置をN台設けるととKよって書込み、読出し速度をN倍
に高めることができる。
``Effects of the Invention'' As explained above, according to the present invention, assuming that a 5K storage device such as a hard disk in which writing and reading are performed by mechanical means is used as an external storage device, this storage device can be stored in N units. By providing K, the writing and reading speed can be increased by N times.

よって、記憶容量当たりのコストが低い記憶装置を使っ
て高速外部記憶装置を構成することができ、コンピュー
タ、ICC試製装置の6遅速度を向上させることができ
る利点が得られる。
Therefore, it is possible to configure a high-speed external storage device using a storage device with a low cost per storage capacity, and there is an advantage that the speed of computers and ICC prototype devices can be improved.

【図面の簡単な説明】 tlc1図はこの発明の一実施例を示すブロック図。 第2図はこの発明の詳細な説明するための図である。 lO:演算処理装置、21人〜21D:外部記憶装置、
22人〜22D=アト、し2カウンタ、22ニアドレス
制御器、23A〜23D=バク7ア・
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention. FIG. 2 is a diagram for explaining the invention in detail. lO: Arithmetic processing unit, 21 people to 21D: External storage device,
22 people ~ 22D = at, 2 counters, 22 near address controller, 23A ~ 23D = back 7 a.

Claims (1)

【特許請求の範囲】[Claims] (1)中央処理装置と高速書込読出可能な主記憶器とに
よって構成される演算装置に対し、複数の外部記憶装置
を設け、この複数の外部記憶装置にこの外部記憶装置の
最小読出書込単位のデータ長ごとに分散してデータを書
込読出するように構成した高速外部記憶装置。
(1) A plurality of external storage devices are provided for an arithmetic unit consisting of a central processing unit and a main memory capable of high-speed writing/reading, and the minimum reading/writing of this external storage device is performed on the plurality of external storage devices. A high-speed external storage device configured to write and read data in a distributed manner for each unit of data length.
JP26916688A 1988-10-24 1988-10-24 High speed external storage device Pending JPH02114313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26916688A JPH02114313A (en) 1988-10-24 1988-10-24 High speed external storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26916688A JPH02114313A (en) 1988-10-24 1988-10-24 High speed external storage device

Publications (1)

Publication Number Publication Date
JPH02114313A true JPH02114313A (en) 1990-04-26

Family

ID=17468599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26916688A Pending JPH02114313A (en) 1988-10-24 1988-10-24 High speed external storage device

Country Status (1)

Country Link
JP (1) JPH02114313A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04322378A (en) * 1991-04-01 1992-11-12 Xerox Corp File storing method for electronic printing system having a plurality of disks
JPH06500186A (en) * 1990-03-02 1994-01-06 イーエムシー コーポレーション disk array system
JP2002236612A (en) * 2002-01-21 2002-08-23 Hitachi Ltd Semiconductor storage device
JP2004240993A (en) * 2004-04-12 2004-08-26 Hitachi Ltd Semiconductor storage device
JP2005100470A (en) * 2004-12-28 2005-04-14 Hitachi Ltd Semiconductor storage device
JP2007307753A (en) * 2006-05-17 2007-11-29 Fuji Xerox Co Ltd Printing controlling apparatus and method
JP2008108281A (en) * 2008-01-10 2008-05-08 Renesas Technology Corp Semiconductor disk device
US8001319B2 (en) 1992-06-22 2011-08-16 Solid State Storage Solutions, Inc. Semiconductor storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594054B2 (en) * 1979-04-17 1984-01-27 株式会社日立製作所 Multiprocessor failure detection method
JPS6162920A (en) * 1984-09-05 1986-03-31 Hitachi Ltd Magnetic disk device system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594054B2 (en) * 1979-04-17 1984-01-27 株式会社日立製作所 Multiprocessor failure detection method
JPS6162920A (en) * 1984-09-05 1986-03-31 Hitachi Ltd Magnetic disk device system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06500186A (en) * 1990-03-02 1994-01-06 イーエムシー コーポレーション disk array system
JPH04322378A (en) * 1991-04-01 1992-11-12 Xerox Corp File storing method for electronic printing system having a plurality of disks
US8001319B2 (en) 1992-06-22 2011-08-16 Solid State Storage Solutions, Inc. Semiconductor storage device
JP2002236612A (en) * 2002-01-21 2002-08-23 Hitachi Ltd Semiconductor storage device
JP2004240993A (en) * 2004-04-12 2004-08-26 Hitachi Ltd Semiconductor storage device
JP2005100470A (en) * 2004-12-28 2005-04-14 Hitachi Ltd Semiconductor storage device
JP2007307753A (en) * 2006-05-17 2007-11-29 Fuji Xerox Co Ltd Printing controlling apparatus and method
JP2008108281A (en) * 2008-01-10 2008-05-08 Renesas Technology Corp Semiconductor disk device

Similar Documents

Publication Publication Date Title
JP4532542B2 (en) System and method for organizing data transfer in a memory module with a memory hub
JP4560646B2 (en) Apparatus and method for direct memory access in a hub-based memory system
US4633440A (en) Multi-port memory chip in a hierarchical memory
JP3639464B2 (en) Information processing system
JPH01158553A (en) Memory controller
JPS62102497A (en) Random access memory
JPH02114313A (en) High speed external storage device
JPS6389961A (en) Semaphore circuit
US5579484A (en) System for performing fast data accessing in multiply/accumulate operations while using a VRAM
JPH0427583B2 (en)
JPS62216046A (en) Record control system for logical simulation device
JP2870285B2 (en) register
JPH1124989A (en) Variable word length memory access system
JPS63251965A (en) Disk managing system
JPH04248641A (en) Memory controller
JPH04278651A (en) Main storage device
JPS6289085A (en) Data transfer
JP2590695B2 (en) Time division switch circuit
JPS63245745A (en) Buffer storage controller
JPH034938B2 (en)
JPS6047628B2 (en) shared storage
JPH01258161A (en) Memory device
JPH04105148A (en) Data transfer control system
JPS6314231A (en) Data transfer device
JPS61276195A (en) Storage device