JPH02114049A - Flow control valve for anti-lock - Google Patents

Flow control valve for anti-lock

Info

Publication number
JPH02114049A
JPH02114049A JP26659588A JP26659588A JPH02114049A JP H02114049 A JPH02114049 A JP H02114049A JP 26659588 A JP26659588 A JP 26659588A JP 26659588 A JP26659588 A JP 26659588A JP H02114049 A JPH02114049 A JP H02114049A
Authority
JP
Japan
Prior art keywords
spool
lock
flow path
control valve
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26659588A
Other languages
Japanese (ja)
Inventor
Seiji Nokubo
野久保 精治
Teruhisa Kono
河野 輝久
Takashi Usuki
薄木 孝
Hideaki Higashimura
東村 英昭
Koichi Hashida
浩一 橋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP26659588A priority Critical patent/JPH02114049A/en
Publication of JPH02114049A publication Critical patent/JPH02114049A/en
Pending legal-status Critical Current

Links

Landscapes

  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To prevent generation of a trouble of non-braking resulting from fast attachment of a spool by furnishing a normally open bypass connecting inlet and outlet of a flow control valve for anti-lock, and blocking the bypass when a certain specified value is exceeded by the sensed value of differential pressure between before and after a fixed orifice. CONSTITUTION:In a flow control valve 103 for anti-lock, a solenoid valve 5 is opened at the time of anti-lock decompression to allow the working liquid in a decompression chamber 36 to be exhausted from an exhaust hole 31c to a reserver 63, and thereby a spool 32 moves down according to the differential pressure between the two ends to put a minor flow path blocking part 32c in opened condition, that should form an exhaust path passing paths 31b, 32a, 31e, 31c, and thus the working liquid of a wheel brake is exhausted to the reserver 63 to attain decompression. Therein the flow control valve 103 is equipped within its casing 31 with a differential pressure valve 15 and a bypass 11 parallel with a major flow path provided at the inlet and outlet 31a, 31b via a peripheral groove 32a. Downward motion of piston 15a when a certain specified value is exceeded by the differential pressure between before and after a fixed orifice 33 will block the bypass 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、車輌のアンチロック・ブレーキ・システム
に用いる流量制御弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flow control valve used in a vehicle anti-lock brake system.

〔従来の技術〕[Conventional technology]

車両のアンチロック装置は普及期を迎え、コスト低減、
小型車への適用が急務となっている。これに応えるもの
の1つとして、例えば、特公昭49−283071号公
報に示されるような一輪当り2つの電磁弁による液圧制
御に替り、−輪当り1つの電磁弁を使用し、減圧と緩昇
圧の2つの制御モードにより制御する方式がGB851
2610に示されている。
Vehicle anti-lock devices are becoming popular, and costs are being reduced.
Application to small cars is an urgent need. One solution to this problem is to use one solenoid valve per wheel for pressure reduction and gradual pressure increase, instead of the hydraulic pressure control using two solenoid valves per wheel as shown in Japanese Patent Publication No. 49-283071. The GB851 control method uses two control modes.
2610.

これは第5図に示す如く、前記特公昭49−28307
1号公報の昇圧を制御する電磁弁を流量制御弁3に置き
替えたものである。この流量制御弁3は、マスターシリ
ンダ2に連絡する入口31a、車輪ブレーキ4へ連絡す
る出口31b、電磁弁5へ連絡する排出口31Cの3つ
のポートを有する筺体31の内部に、前記各ポートの間
の連絡状態を切替えるスプール32がスプリング34に
付勢されて摺動自在に収納されており、アンチロックの
非作動時には、スプール32が図示の原位置に止まって
入口31aからスプール32の外周溝部32aを経由し
て出口31b  に至る大流路が形成される。
As shown in Figure 5, this is
This is a version in which the electromagnetic valve for controlling pressure increase in Publication No. 1 is replaced with a flow control valve 3. The flow rate control valve 3 is installed inside a housing 31 having three ports: an inlet 31a communicating with the master cylinder 2, an outlet 31b communicating with the wheel brakes 4, and an outlet 31C communicating with the solenoid valve 5. A spool 32 is biased by a spring 34 and is housed in a slidable manner, and when the anti-lock is not activated, the spool 32 remains at the original position shown in the figure and is inserted into the outer peripheral groove of the spool 32 from the inlet 31a. A large flow path is formed that reaches the outlet 31b via the outlet 32a.

また、アンチロックの減圧時には、を磁弁5が励磁され
て開弁すると排出口31cからリザーバ63へ作動液が
排出される結果、スプール32は両端に差圧が発生して
移動し、第5A図の状態となる。すると、まずスプール
32の大流路閉鎖部32bで前記大流路が閉鎖され、さ
らにスプール32が移動して第5B図の状態となり小流
路閉鎖部32cが開状態となって出口31b、溝部32
a、通路31e、排出口31Cを結ぶ排出路が形成され
、電磁弁5を経由し、車輪ブレーキ4の作動液がリザー
バ63へ排出さ−れ減圧される。そして、この作動液は
モータ62により駆動されるポンプ61により吸引、加
圧されてマスターシリンダ2と入口31aとの間に帰還
する。
Furthermore, when the anti-lock pressure is reduced, when the magnetic valve 5 is energized and opened, the hydraulic fluid is discharged from the discharge port 31c to the reservoir 63, and as a result, the spool 32 moves due to a differential pressure generated at both ends. It will be in the state shown in the figure. Then, first, the large flow path is closed by the large flow path closing portion 32b of the spool 32, and the spool 32 further moves to the state shown in FIG. 32
A discharge path is formed that connects the passage 31e, the passage 31e, and the discharge port 31C, and the hydraulic fluid for the wheel brakes 4 is discharged to the reservoir 63 via the electromagnetic valve 5 and is depressurized. Then, this working fluid is sucked and pressurized by a pump 61 driven by a motor 62, and returned between the master cylinder 2 and the inlet 31a.

さらにアンチロックの再加圧時に電磁弁5を消磁すると
第5B図の状態でスプール32がエツジ32dと通路3
1「の内周端とでメタリング作用を行い、入口31a1
”通路31d、固定オリフィス33、減圧室36、通路
31f、通路31e1外周溝部32a、出口31bを結
ぶ小流路が形成され、車輪ブレーキ4を緩昇圧させる。
Furthermore, when the solenoid valve 5 is demagnetized when repressurizing the anti-lock, the spool 32 moves between the edge 32d and the passage 3 in the state shown in FIG. 5B.
1" performs a metal ringing action with the inner peripheral end of the inlet 31a1.
A small flow path is formed that connects the passage 31d, the fixed orifice 33, the decompression chamber 36, the passage 31f, the passage 31e1, the outer circumferential groove 32a, and the outlet 31b, and gradually increases the pressure of the wheel brake 4.

入口31aと出口31bの差圧が小さくなるとスプール
が原位置へ復帰して第5図の状態となる。
When the differential pressure between the inlet 31a and the outlet 31b decreases, the spool returns to its original position, resulting in the state shown in FIG. 5.

この方式の場合−輪当り電磁弁が1つで良く、コスト的
に有利であり、又第5B図の状態でのアンチロック再加
圧時の流量がスプール32の有効断面積とスプリング3
4の付勢力とで定まる差圧が固定オリフィス33め前後
に作用した状態の流量となるようにメタリングエツジ3
2dと通路31fとの間の通路(以下これを可変オリフ
ィスと云う)の開度が調整されるため、入口31aと出
口31bとの差圧によらず一定となり、又固定オリフィ
ス前後の差圧を小さくできるため比較的大きなオリフィ
ス径で小さな流量を確保することが可能であり、小さな
消費液量の小型ブレーキを有する小型車への適用が容易
である。
In the case of this method, only one solenoid valve is required per wheel, which is advantageous in terms of cost, and the flow rate when repressurizing the antilock in the state shown in FIG.
The metering edge 3 is adjusted so that the flow rate is such that the differential pressure determined by the biasing force of 4 is applied before and after the fixed orifice 33.
Since the opening degree of the passage between 2d and the passage 31f (hereinafter referred to as variable orifice) is adjusted, it remains constant regardless of the differential pressure between the inlet 31a and the outlet 31b, and the differential pressure before and after the fixed orifice is adjusted. Since it can be made small, it is possible to secure a small flow rate with a relatively large orifice diameter, and it is easy to apply to small cars with small brakes that consume a small amount of fluid.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のスプールを有する流量制御弁においては、先に述
べたように、アンチロックの減圧時に、スプール32が
先ず第5A図の位置に移動して入口31aと出口31b
を結ぶ大流路を遮断し、その後更に移動して第5B図の
位置で出口31bと排出口31Cとを結ぶ減圧流路を開
く、またアンチロックの再加圧時には固定オリフィス3
3を経由する小流路を開く。従って、スプール32が第
5A図と第5B図の中間位置にある場合には、入口31
aと出口31b間の大流路が大流路閉鎖部32bにより
、また小流路が小流路閉鎖部32Cにより共に閉鎖され
ていることになり、万一、請、異物等でスプール32が
この位置で固着した場合、マスターシリンダ2による車
輪ブレーキの加圧が不能になると云う問題がある。
In the flow control valve having the spool, as described above, when the anti-lock pressure is reduced, the spool 32 first moves to the position shown in FIG. 5A, and the inlet 31a and the outlet 31b
After that, move further and open the depressurization flow path connecting the outlet 31b and the discharge port 31C at the position shown in Fig. 5B. Also, when repressurizing the anti-lock, the fixed orifice 3
Open a small channel via 3. Therefore, when the spool 32 is in the intermediate position between FIGS. 5A and 5B, the inlet 31
The large flow path between a and the outlet 31b is closed by the large flow path closing part 32b, and the small flow path is closed by the small flow path closing part 32C, so that in the unlikely event that the spool 32 is If it becomes stuck in this position, there is a problem in that the master cylinder 2 becomes unable to apply pressure to the wheel brake.

この問題は、図示の制御弁だけに生じるものではない、
即ち、スプールが大流路の開かれる原位置と小流路の開
かれる再加圧位置との間を移動するとき、入口と出口の
連通を一旦遮断するタイプの制御弁の全てに共通した問
題である。
This problem does not only occur with the illustrated control valve;
In other words, this is a common problem with all types of control valves that temporarily cut off communication between the inlet and outlet when the spool moves between the original position where the large flow path is opened and the repressurized position where the small flow path is opened. It is.

この発明は、かかる不具合を解消することを目的として
なされたものである。
This invention was made with the aim of solving such problems.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の流量制御B弁は、上記の目的を達成するため
、マスターシリンダに連通ずる入口、車輪ブレーキに連
通ずる出口の少なくとも2つのポートを有する筐体と、 この筐体内に摺動自在に挿入され、2つのポート間の連
絡状態を切替可能であり、固定オリフィスと、筐体との
相当位置を変化させることにより流路面積を変更し得る
可変オリフィスとを有するスプールと、 このスプールを一方向に付勢するスプリングとを具備し
、 アンチロックの非作動時には前記スプールが非作動位置
にあって前記入口と出口を結ぶ大流路を形成し、 アンチロックの再加圧時には前記スプールが前記スプリ
ングの付勢力に抗して前記非作動位置から移動して先ず
大流路閉鎖部で前記大流路を閉鎖し、その後、小流路閉
鎖部が開放位置にくるまで更に移動して前記入口と出口
間に前記固定オリフィス及び可変オリフィスを経由して
連絡する小流路を形成し、この流路の流量が入口と出口
の圧力差によらず、前記スプールの有効受圧面積と前記
スプリングの付勢力とで定まる一定差圧が前記固定オリ
フィスの前後に作用したききの一定流量となるよう前記
可変オリフィスの流路面積が調整される如く構成された
アンチロック用流量制御弁において、 前記固定オリフィス前後の液圧差を検出する差圧検出手
段と、前記入口と出口とを結ぶ常開のバイパス路とを設
け、前記差圧検出手段による検出差圧が所定値を越えた
ときにバイパス路を閉鎖せしめるようにしたものである
In order to achieve the above object, the flow control valve B of the present invention includes a housing having at least two ports, an inlet communicating with the master cylinder and an outlet communicating with the wheel brake, and the valve is slidably inserted into the housing. a spool, which is capable of switching the communication state between two ports, and has a fixed orifice and a variable orifice whose flow path area can be changed by changing the corresponding position with respect to the casing; the spool is in a non-operating position and forms a large flow path connecting the inlet and outlet when the anti-lock is not activated, and when the anti-lock is re-pressurized, the spool is biased against the spring. The main channel is moved from the non-operating position against the biasing force of the main channel to first close the large channel with the large channel closing section, and then further moved until the small channel closing section is in the open position and the inlet is closed. A small channel is formed between the outlets, communicating via the fixed orifice and the variable orifice, and the flow rate of this channel is independent of the pressure difference between the inlet and the outlet, and the effective pressure receiving area of the spool and the biasing force of the spring are formed. In the anti-lock flow control valve, the flow path area of the variable orifice is adjusted so that a constant flow rate is obtained by applying a constant pressure difference between the front and rear of the fixed orifice. A differential pressure detection means for detecting a fluid pressure difference and a normally open bypass passage connecting the inlet and the outlet are provided, and the bypass passage is closed when the differential pressure detected by the differential pressure detection means exceeds a predetermined value. This is what I did.

なお、前記差圧検出手段としては、前記固定オリフィス
前後の圧力を各々対向方向に受ける液圧応動ピストンが
考えられ、この液圧応動ピストンには必要に応してバイ
パス路開閉のための弁部を設けてもよい。また、前記筐
体とスプールの間にスプールを収納するスリーブを軸方
向摺動自在に設け、このスリーブを前記差圧検出手段と
なしてもよい。
Note that the differential pressure detection means may be a hydraulic piston that receives the pressures before and after the fixed orifice in opposite directions, and this hydraulic piston may be provided with a valve portion for opening and closing the bypass path, if necessary. may be provided. Further, a sleeve for housing the spool may be provided between the housing and the spool so as to be slidable in the axial direction, and this sleeve may serve as the differential pressure detection means.

(作用〕 かかる構成の流量制御弁の場合、正常状態下でスプール
が非作動位置から移動するときには固定オリフィスの前
後に必ずスプール付勢用スプリングの力に打ち勝つ差圧
が生じている。従って、その差圧を差圧検出手段によっ
て検出し、スプールが移動を開始するときの差圧以下で
バイパス路を閉鎖すれば、アンチロックの減圧、緩昇圧
の再加圧には何ら影響が生じない。
(Function) In the case of a flow control valve having such a configuration, when the spool moves from the non-operating position under normal conditions, a pressure difference is generated before and after the fixed orifice that overcomes the force of the spool biasing spring. If the differential pressure is detected by the differential pressure detection means and the bypass path is closed when the differential pressure is lower than the differential pressure at which the spool starts moving, there will be no effect on anti-lock pressure reduction and slow pressure increase repressurization.

一方、前記大流路、小波路が共に閉ざされる位置でスプ
ールが固着した場合には、小流路が閉鎖されて固定オリ
フィスを通過する液量がないため、オリフィス前後には
差圧が発生せず、従って、バイパス路は開いたままであ
り、このバイパス路を通る液圧によってノーブレーキの
トラブルを防止することができる。
On the other hand, if the spool is stuck at a position where both the large flow path and the small wave path are closed, the small flow path is closed and no liquid volume passes through the fixed orifice, so a pressure difference is generated before and after the orifice. Therefore, the bypass path remains open, and the hydraulic pressure passing through this bypass path can prevent troubles due to no braking.

なお、アンチロック非作動時にもバイパス路は開いたま
まとなるが、このときには大流路を介して入口と出口が
連通しているので、制動圧は抵抗の少ない通路を通るだ
けであって、バイパス路が開いても何ら問題は生じない
Note that the bypass path remains open even when the anti-lock is not activated, but at this time, the inlet and outlet communicate through a large flow path, so the braking pressure only passes through the path with less resistance. No problem will occur even if the bypass path is opened.

〔実施例〕〔Example〕

第1図乃至第4図に、この発明の実施例を示す。 Embodiments of the present invention are shown in FIGS. 1 to 4.

第1図に示す第1実施例の流量制御弁103は、第5図
に示す制御弁にこの発明の特徴部を付加したものであっ
て、使用スプールと筐体のスプール収納部の構成及び便
宜上自動車4輪のうち1輪の系統についてのみ液圧制御
系統を示した点は第5図と同じである。従って、同一部
分には同一符号を付すに止め、以下ではこの発明の特徴
部のみを説明する。なお、第5図で未説明の1はブレー
キペダル、6はポンプ61、モータe、?、リザーバ6
3から成る加圧源、PIはマスターシリンダからの制動
圧である。
The flow rate control valve 103 of the first embodiment shown in FIG. 1 is the control valve shown in FIG. This is the same as FIG. 5 in that the hydraulic pressure control system is shown only for one of the four wheels of the automobile. Therefore, the same parts will be denoted by the same reference numerals, and only the characteristic parts of the present invention will be described below. Note that 1, which is not explained in FIG. 5, is the brake pedal, 6 is the pump 61, and the motor e, ? , reservoir 6
PI is the braking pressure from the master cylinder.

図のように、流量制御弁103の筺体31内には、外周
溝部32aを経由して入口31aと出口31b間に作ら
れる大流路とは並列なバイパス路1)と差圧弁15を設
けである。
As shown in the figure, a bypass passage 1) and a differential pressure valve 15 are provided in the housing 31 of the flow rate control valve 103, which are parallel to the large flow passage created between the inlet 31a and the outlet 31b via the outer circumferential groove 32a. be.

差圧弁15は、上端に入口31aからの導入液圧を、下
端に減圧室36からの導入液圧を各々受ける差圧検出手
段としての液圧応動ピストン15aと、このピストンを
上向きに付勢するスプリング15bから成る。バイパス
路1)を横切るピストン15aはバイパス路の連絡通路
15cを有し、固定オリフィス33前後の差圧でピスト
ン15aが下向きに移動して通路15Cが閉鎖点に移る
と、バイパス路1)が遮断される。また、固定オリフィ
ス33前後の差圧がスプリング15bの付勢力より小さ
くなると、ピストン15aが図の位置に復帰してバイパ
ス路が再開通する。従って、スプール32が、第5A図
に示す大流路閉鎖部32bと小流路閉鎖部32cが共に
閉鎖された位置で固着してもアンチロック非作動時は電
磁弁5が閉であり、固定オリフィス33を通過する液流
がないため、固定オリフィス33前後の差圧は発生せず
、ピストン15aは移動せず、バイパス路は連通状態と
なる。なお、アンチロックの減圧時には電磁弁5が開と
なり、固定オリフィス33を通って排出口31cへ向う
液流が発生し、ピストン15aが移動し、バイパス路1
)は閉となるが、前記位置でのスプール固着下では小流
路閉鎖部32cが閉のままであるため、車輪ブレーキ4
の液圧は降下せず、そのため、ソフトウェアにより異常
を検出できる。そして、再加圧指令により電磁弁5が閉
になると、固定オリフィス33を通る液流が無くなり、
前後の差圧が消失するため、直ちにアンチロック非作動
時の状態へ復帰する。
The differential pressure valve 15 has a hydraulic pressure responsive piston 15a as a differential pressure detection means which receives the hydraulic pressure introduced from the inlet 31a at the upper end and the hydraulic pressure introduced from the decompression chamber 36 at the lower end, and urges this piston upward. It consists of a spring 15b. The piston 15a that crosses the bypass passage 1) has a communication passage 15c for the bypass passage, and when the piston 15a moves downward due to the pressure difference before and after the fixed orifice 33 and the passage 15C moves to the closing point, the bypass passage 1) is shut off. be done. Furthermore, when the differential pressure across the fixed orifice 33 becomes smaller than the biasing force of the spring 15b, the piston 15a returns to the position shown in the figure and the bypass passage is reopened. Therefore, even if the spool 32 is stuck in the position where both the large passage closing part 32b and the small passage closing part 32c shown in FIG. 5A are closed, the solenoid valve 5 is closed when the anti-lock is not activated, Since there is no liquid flow passing through the orifice 33, no differential pressure is generated before and after the fixed orifice 33, the piston 15a does not move, and the bypass path is in a communicating state. Note that when the anti-lock pressure is reduced, the solenoid valve 5 is opened, a liquid flow is generated passing through the fixed orifice 33 toward the discharge port 31c, the piston 15a moves, and the bypass passage 1
) is closed, but when the spool is stuck in the above position, the small flow passage closing portion 32c remains closed, so the wheel brake 4
The hydraulic pressure does not drop, so the software can detect the abnormality. Then, when the solenoid valve 5 is closed by the repressurization command, the liquid flow through the fixed orifice 33 disappears.
Since the differential pressure between the front and rear disappears, the state immediately returns to the state when the anti-lock is not activated.

次に、第2図に示す第2実施例は、アンチロック非作動
時の大流路をスプール内の流路を経由して作り出す制御
弁にこの発明の特徴部を付加したものである。この制御
弁203は、加工性の観点から筺体31にポート37a
〜3?Cを有するスリーブ37を含めである。また、ス
プール32には、非作動位置で入力室35をポート37
aを介して入口31aに連通させるポートP+、入力室
35をポート37bを介して出口31bに連通させるポ
ートP、、及びアンチロック減圧時に出口31bをポー
ト37cを介して減圧室36に連通させるポートP、を
設けである。
Next, in a second embodiment shown in FIG. 2, features of the present invention are added to a control valve that creates a large flow path via a flow path in the spool when the anti-lock is not activated. This control valve 203 is provided with a port 37a in the housing 31 from the viewpoint of workability.
~3? Including a sleeve 37 having a C. The spool 32 also has an input chamber 35 connected to a port 37 in the non-operating position.
a port P+ that communicates with the inlet 31a via port 31a, a port P that communicates the input chamber 35 with the outlet 31b via port 37b, and a port that communicates the outlet 31b with the decompression chamber 36 via port 37c during anti-lock depressurization. P, is provided.

電磁弁5も、筐体31に一体化して排出路の開閉を減圧
室36と排出口31Cとの間で行なうようにしである。
The solenoid valve 5 is also integrated into the housing 31 to open and close the discharge path between the decompression chamber 36 and the discharge port 31C.

この制御弁は、非制動時に図示の状態にあり、入口31
a、ポート37a、ポートP l s入力室35、ポー
トPz、ポート37bを経由して出口31bに至る大流
路が確保される。
This control valve is in the state shown when not braking, and the inlet 31
A, port 37a, port P l s A large flow path leading to the outlet 31b via the input chamber 35, port Pz, and port 37b is secured.

そして、アンチロックの減圧時に電磁弁5を励磁し、開
弁させると、減圧室36の作動液が出口31cより排出
される。すると、固定オリフィス33を境に入力室35
と減圧室36との間に差圧を生じてスプール32が下方
へ移動し、第2A図の位置で大流路閉鎖部32bにより
前記大流路が遮断される。更にスプール32が下方へ移
動して小流路閉鎖部32C部が開になると、出口31b
、ポート37C、ポートP1、減圧室36を経由して排
出口31Cに至る減圧流路が連通し、車輪ブレーキの液
圧が減少する。また、アンチロックの再加圧指令により
電磁弁5を消磁し、閉弁させると、排出口31Cへ向う
流れは停止し、第2B図の状態で入口31a、ポート3
7a、このポートとメタリングエツジ32dで構成され
る可変オリフィス、ポートPl、入力室35、固定オリ
フィス33、減圧室36、ポートP1、ポート37Cを
経由して出口31bに至る小流路が確保される。
When the solenoid valve 5 is energized and opened during anti-lock pressure reduction, the hydraulic fluid in the pressure reduction chamber 36 is discharged from the outlet 31c. Then, the input chamber 35 with the fixed orifice 33 as a boundary
A pressure difference is generated between the spool 32 and the decompression chamber 36, and the spool 32 moves downward, and the large flow path is blocked by the large flow path closing portion 32b at the position shown in FIG. 2A. When the spool 32 further moves downward and the small passage closing portion 32C opens, the outlet 31b
, the port 37C, the port P1, and the depressurization flow path leading to the discharge port 31C via the decompression chamber 36 are communicated with each other, and the hydraulic pressure of the wheel brakes is reduced. Furthermore, when the solenoid valve 5 is demagnetized and closed by the anti-lock repressurization command, the flow toward the discharge port 31C is stopped, and the inlet 31a, port 3 is in the state shown in FIG.
7a, a small flow path leading to the outlet 31b via the variable orifice composed of this port and the metering edge 32d, the port Pl, the input chamber 35, the fixed orifice 33, the decompression chamber 36, the port P1, and the port 37C is secured. Ru.

そして、この小流路の流量が入口31aと出口31bと
の差圧によらず常に一定となるよう、前記可変オリフィ
スの開度が自動調整される。その流量は、第5図の先行
技術の場合と同様、スプリング34の付勢力とスプール
32の有効断面積とで定まる差圧がオリフィス33の前
後に作用した場合の流量となり一定に保たれる。しかし
、この制御弁もボー)P、、P、がポート3?b、37
C間のスリーブ壁に同時に塞がれる位置でスプール32
が固着するとノーブレーキのトラブルが起こる。
Then, the opening degree of the variable orifice is automatically adjusted so that the flow rate of this small flow path is always constant regardless of the differential pressure between the inlet 31a and the outlet 31b. As in the case of the prior art shown in FIG. 5, the flow rate becomes the flow rate when a differential pressure determined by the biasing force of the spring 34 and the effective cross-sectional area of the spool 32 acts before and after the orifice 33, and is kept constant. However, this control valve is also bo) P,,P, is port 3? b, 37
The spool 32 is at a position where it is simultaneously blocked by the sleeve wall between C.
If it gets stuck, problems with no braking will occur.

そこで、第2実施例の制御弁203は、入口31aから
車輪ブレーキ側に至るバイパス路12と差圧弁16を設
け、ボー) P sが37cと僅かに重なった時点では
、入力室35はまだ入口31aと連通し、大流路は大流
路閉鎖部32bがポート37bを閉じて閉鎖されるよう
にポート位置を設定して入力室35と減圧室36の圧力
差を検出するようにしである。その圧力差を比較して作
動する差圧弁16は、入力室35からの液圧と減圧室3
6からの液圧を対向方向に受ける差圧検出用のピストン
16aと、このピストンを上向きに付勢するスプリング
16bと、弁体の離反スプリング16Cを具備する弁手
段16dから成るが、その作用は、第1実施例とほぼ同
じであるので説明を省く、この第2実施例の制御弁も、
スプール32が第2A図の位置で固着すると、第1実施
例と同様、アンチロック非作動時には、差圧弁16が第
2図の状態となり、バイパス路12が開となる。
Therefore, the control valve 203 of the second embodiment is provided with a bypass passage 12 leading from the inlet 31a to the wheel brake side and a differential pressure valve 16. 31a, and the port position of the large flow path is set so that the large flow path closing portion 32b closes the port 37b to detect the pressure difference between the input chamber 35 and the decompression chamber 36. The differential pressure valve 16 operates by comparing the pressure difference between the hydraulic pressure from the input chamber 35 and the pressure reducing chamber 3.
It consists of a piston 16a for detecting a differential pressure that receives hydraulic pressure from 6 in opposite directions, a spring 16b that urges the piston upward, and a valve means 16d that has a separation spring 16C for the valve body. , the control valve of this second embodiment, which is almost the same as the first embodiment and will not be explained here, also has the following:
When the spool 32 is fixed at the position shown in FIG. 2A, the differential pressure valve 16 is in the state shown in FIG. 2 when the anti-lock is not activated, and the bypass passage 12 is opened, as in the first embodiment.

第3図の流量制御弁も、差圧弁17の構造及び設置位置
は第2図のものと異なるが、基本的な動作には大差がな
い、この制御弁303は、マスターシリンダと出口31
bとの間に設けたバイパス路13を差圧弁17で開閉す
る。その差圧弁17は、減圧室36の圧力とマスターシ
リンダ圧を対向方向に受けるピストン17aとこのピス
トンを加圧源圧力の受圧面倒に付勢するスプリング17
bを設け、さらに、ピストン1?aとケース17Cとの
間に弁手段17dを設けてマスターシリンダ圧と減圧室
36の差圧を検出するようにしてあり、第2図の差圧弁
と同一原理で動作してバイパス路13を開閉する。
The flow control valve shown in FIG. 3 also differs from the one shown in FIG. 2 in the structure and installation position of the differential pressure valve 17, but there is no major difference in basic operation.
A bypass passage 13 provided between the air and the air is opened and closed by a differential pressure valve 17. The differential pressure valve 17 includes a piston 17a that receives the pressure of the decompression chamber 36 and the master cylinder pressure in opposite directions, and a spring 17 that urges this piston to receive the pressure of the pressurizing source.
b, and furthermore, piston 1? A valve means 17d is provided between the case 17C and the master cylinder pressure to detect the differential pressure between the master cylinder pressure and the pressure reducing chamber 36, and operates on the same principle as the differential pressure valve shown in FIG. 2 to open and close the bypass passage 13. do.

第4図の制御弁403は、入口31aと入力室35間が
遮断され、ポートPsと37cは連通して減圧室36と
出口31bがつながった位置でスプール32が固着した
場合の対応策として考えられたものである。この制御弁
は、バイパス路14を出口31bと入力室35との間に
設けである。
The control valve 403 in Fig. 4 is considered as a countermeasure in case the spool 32 becomes stuck at a position where the inlet 31a and the input chamber 35 are cut off, the ports Ps and 37c are communicated, and the decompression chamber 36 and the outlet 31b are connected. It is something that was given. In this control valve, a bypass passage 14 is provided between an outlet 31b and an input chamber 35.

また、スリーブ37をポート37aがメタリングエツジ
32dに閉じられるストロークLよりも小さなストロー
クL、だけ軸方向に移動可能にしてスプリング18bで
上向きに付勢し、さらに、スリーブ37の前方において
バイパス路14にはスリーブ端の操作軸に押されて開弁
する逆止弁18dを設け、以上の要素で差圧弁18を構
成して全体の構造を簡素化しである。
Further, the sleeve 37 is made axially movable by a stroke L smaller than the stroke L at which the port 37a is closed to the metering edge 32d, and is biased upward by the spring 18b. A check valve 18d that opens when pushed by an operating shaft at the end of the sleeve is provided, and the differential pressure valve 18 is constructed from the above elements to simplify the overall structure.

この制御弁は、入力室35と減圧室36間の圧力差が零
又は小さいと、スプリング力で差圧検出用のスリーブ3
7が図の位置に保持されてバイパス路14が開く。その
ため、通路14から固定オリフィス33を経由して減圧
室36に流れた液圧が、ポートPs、3Tcを通って出
口31bに移動し、また、逆の経路を通って出口側から
戻ることができる。
When the pressure difference between the input chamber 35 and the pressure reduction chamber 36 is zero or small, this control valve uses a spring force to close the sleeve 3 for detecting the pressure difference.
7 is held in the position shown, and the bypass path 14 is opened. Therefore, the hydraulic pressure flowing from the passage 14 to the decompression chamber 36 via the fixed orifice 33 can move to the outlet 31b through the ports Ps and 3Tc, and can also return from the outlet side through the opposite path. .

また、スプール32ガ(非固着下で減圧室36が開放さ
れるときには、2つの部屋35.36間の差圧でスリー
ブ37が下向きに移動して差圧弁18がバイパス路14
を閉じるので、アンチロック制御にも影響がない。この
第4図の制御弁は、逆止弁18dを通過した制動圧を出
口31b側に直接導くこともでき、この場合、ボー)P
、、P3が3?b、3Tc間にある位置でスプール32
が固着しても車輪ブレーキの昇降圧が可能である。
In addition, when the decompression chamber 36 is opened with the spool 32 (not fixed), the sleeve 37 moves downward due to the differential pressure between the two chambers 35 and 36, and the differential pressure valve 18 opens the bypass passage 14.
is closed, so anti-lock control is not affected. The control valve shown in FIG. 4 can also directly guide the braking pressure that has passed through the check valve 18d to the outlet 31b. In this case, the control valve shown in FIG.
,,P3 is 3? Spool 32 at a position between b and 3Tc
Even if the wheel brakes become stuck, it is possible to raise and lower the pressure of the wheel brakes.

なお、第2図以降の実施例は、いずれも固定オリフィス
33をシム板38に形成してスプリング34の力でスプ
ール32の内径段部に押し付け、高圧の入力室35と低
圧の減圧室36との間の差圧が異常に増加したとき、ス
プリング34を圧縮して減圧室側に移動可能となしであ
る。この点は必須の構成ではないが、このようにしてお
くと、固定オリフィス33が異物に塞がれて入力室35
から減圧室36への液流が断たれたとき、異常差圧でシ
ム板38が減圧室側に移動し、そのシム板の外径面とス
プール32の大径穴部32eとの間に35.36間のバ
イパス路が生じるので、35.36間に、画室の差圧消
去のために液流を生じさせる本願の制御弁には、この構
成は極めて有効なものと云える。
In the embodiments shown in FIG. 2 and later, the fixed orifice 33 is formed in the shim plate 38 and pressed against the inner step of the spool 32 by the force of the spring 34, thereby creating a high-pressure input chamber 35 and a low-pressure decompression chamber 36. When the differential pressure between them increases abnormally, the spring 34 can be compressed and moved toward the decompression chamber. Although this is not an essential configuration, if the fixed orifice 33 is blocked by foreign matter, the input chamber 35
When the liquid flow from the spool to the decompression chamber 36 is cut off, the shim plate 38 moves toward the decompression chamber due to the abnormal pressure difference, and a 35 Since a bypass path is created between .36 and 35.36, this configuration can be said to be extremely effective for the control valve of the present invention, which generates a liquid flow between 35 and 36 to eliminate the differential pressure in the compartment.

〔効果〕〔effect〕

以上述べたように、この発明の流量制御弁は、差圧検出
手段を用いて固定オリフィス前後の差圧が一定値以下で
は大流路と並列なバイパス路が開放され、前記差圧が一
定以上になるとバイパス路が閉ざされるようにしたので
、アンチロック作動時の機能低下を生じさせずに、大流
路・小流路が共に閉ざされる位置でスプールが固着した
ときにマスターシリンダ圧を車輪ブレーキに往来させる
ことができ、スプール固着に起因したノーブレーキのト
ラブルが無くなって車輪ブレーキの信頼性が冑まると云
う効果がある。
As described above, the flow control valve of the present invention uses the differential pressure detection means to open the bypass passage parallel to the large flow passage when the differential pressure before and after the fixed orifice is below a certain value, and when the differential pressure exceeds a certain value. Since the bypass passage is closed when the anti-lock is activated, the master cylinder pressure can be applied to the wheel brake when the spool becomes stuck at a position where both the large flow passage and the small flow passage are closed, without causing any functional deterioration during anti-lock operation. This has the effect of eliminating the trouble of no-brake caused by the spool sticking and improving the reliability of the wheel brake.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の流量制御弁の一例を使用状態にして
示す断面図、第2図は第2実施例の断面図、第2A図、
第2B図は第2実施例におけるアンチロック作動時のス
ケール位置を示す図、第3図は第3実施例の断面図、第
4図は第4実施例の断面図、第5図は従来例の断面図、
第5A図、第5B図は第5図の制御弁のアンチロック作
動時の動作説明図である。 1・・・・・・ブレーキペダル、2・・・・・・マスタ
ーシリンダ、4・・・・・・車輪ブレーキ、 5・・・
・・・電磁弁、6・・・・・・加圧源、 103.203.303.403・・・・・・流量制御
弁、1).12.13.14・・・・・・バイパス路、
15.16.17.18・・・・・・差圧弁、31・・
・・・・筐体、     32・・・・・・スプール、
32b・・・・・・大流路閉鎖部、 32c・・・・・・小流路閉鎖部、 32d・・・・・・メタリングエツジ、33・・・・・
・固定オリフィス、
Fig. 1 is a sectional view showing an example of the flow control valve of the present invention in a used state, Fig. 2 is a sectional view of a second embodiment, Fig. 2A,
Fig. 2B is a diagram showing the scale position during anti-lock operation in the second embodiment, Fig. 3 is a sectional view of the third embodiment, Fig. 4 is a sectional view of the fourth embodiment, and Fig. 5 is the conventional example. A cross-sectional view of
5A and 5B are explanatory views of the operation of the control valve of FIG. 5 during anti-lock operation. 1... Brake pedal, 2... Master cylinder, 4... Wheel brake, 5...
... Solenoid valve, 6 ... Pressure source, 103.203.303.403 ... Flow rate control valve, 1). 12.13.14...Bypass road,
15.16.17.18...Differential pressure valve, 31...
...Housing, 32...Spool,
32b...Large channel closing part, 32c...Small channel closing part, 32d...Metering edge, 33...
・Fixed orifice,

Claims (4)

【特許請求の範囲】[Claims] (1)マスターシリンダに連通する入口、車輪ブレーキ
に連通する出口の少なくとも2つのポートを有する筺体
と、 この筐体内に摺動自在に挿入され、2つのポート間の連
絡状態を切替可能であり、固定オリフィスと、筺体との
相当位置を変化させることにより流路面積を変更し得る
可変オリフィスとを有するスプールと、 このスプールを一方向に付勢するスプリングとを具備し
、 アンチロックの非作動時には前記スプールが非作動位置
にあって前記入口と出口を結ぶ大流路を形成し、 アンチロックの再加圧時には前記スプールが前記スプリ
ングの付勢力に抗して前記非作動位置から移動して先ず
大流路閉鎖部で前記大流路を閉鎖し、その後、小流路閉
鎖部が開放位置にくるまで更に移動して前記入口と出口
間に前記固定オリフィス及び可変オリフィスを経由して
連絡する小流路を形成し、この流路の流量が入口と出口
の圧力差によらず、前記スプールの有効受圧面積と前記
スプリングの付勢力とで定まる一定差圧が前記固定オリ
フィスの前後に作用したときの一定流量となるよう前記
可変オリフィスの流路面積が調整される如く構成された
アンチロック用流量制御弁において、 前記固定オリフィス前後の液圧差を検出する差圧検出手
段と、前記入口と出口とを結ぶ常開のバイパス路とを設
け、前記差圧検出手段による検出差圧が所定値を越えた
ときにバイパス路を閉鎖せしめるようにしたことを特徴
とするアンチロック用流量制御弁。
(1) A housing having at least two ports, an inlet that communicates with the master cylinder and an outlet that communicates with the wheel brake, and is slidably inserted into the housing and can switch the communication state between the two ports, It is equipped with a spool having a fixed orifice and a variable orifice whose flow path area can be changed by changing the corresponding position with respect to the housing, and a spring that biases this spool in one direction, and when the anti-lock is not activated. When the spool is in a non-operating position, it forms a large flow path connecting the inlet and the outlet, and when the anti-lock is re-pressurized, the spool moves from the non-operating position against the biasing force of the spring and first The large flow path is closed by the large flow path closing portion, and then the small flow path is further moved until the small flow path closure portion is in the open position, and the small flow path is connected between the inlet and the outlet via the fixed orifice and the variable orifice. When a flow path is formed, and the flow rate of this flow path is independent of the pressure difference between the inlet and the outlet, and a constant pressure difference determined by the effective pressure receiving area of the spool and the biasing force of the spring acts on the front and rear of the fixed orifice. The anti-lock flow control valve is configured such that the flow path area of the variable orifice is adjusted to provide a constant flow rate, comprising: differential pressure detection means for detecting a fluid pressure difference before and after the fixed orifice; 1. A flow control valve for an anti-lock system, comprising: a normally open bypass path connecting said pressure difference detection means; and said bypass path is closed when the differential pressure detected by said pressure difference detection means exceeds a predetermined value.
(2)前記差圧検出手段が、前記固定オリフィス前後の
圧力を各々対向方向に受ける液圧応動ピストンである請
求項(1)記載のアンチロック用流量制御弁。
(2) The anti-lock flow control valve according to claim (1), wherein the differential pressure detection means is a hydraulic pressure responsive piston that receives pressures before and after the fixed orifice in opposite directions.
(3)前記液圧応動ピストンにバイパス路開閉のための
弁部を設けた請求項(2)記載のアンチロック用流量制
御弁。
(3) The anti-lock flow control valve according to claim (2), wherein the hydraulic pressure responsive piston is provided with a valve portion for opening and closing a bypass passage.
(4)前記筺体とスプールの間にスプールを収納するス
リーブを軸方向摺動自在に設け、このスリーブを前記差
圧検出手段となした請求項(1)記載のアンチロック用
流量制御弁。
(4) The anti-lock flow control valve according to claim (1), wherein a sleeve for housing the spool is provided between the housing and the spool so as to be slidable in the axial direction, and the sleeve serves as the differential pressure detection means.
JP26659588A 1988-10-21 1988-10-21 Flow control valve for anti-lock Pending JPH02114049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26659588A JPH02114049A (en) 1988-10-21 1988-10-21 Flow control valve for anti-lock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26659588A JPH02114049A (en) 1988-10-21 1988-10-21 Flow control valve for anti-lock

Publications (1)

Publication Number Publication Date
JPH02114049A true JPH02114049A (en) 1990-04-26

Family

ID=17432994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26659588A Pending JPH02114049A (en) 1988-10-21 1988-10-21 Flow control valve for anti-lock

Country Status (1)

Country Link
JP (1) JPH02114049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129869A (en) * 1990-09-20 1992-04-30 Sumitomo Precision Prod Co Ltd Brake pressure controlling circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129869A (en) * 1990-09-20 1992-04-30 Sumitomo Precision Prod Co Ltd Brake pressure controlling circuit

Similar Documents

Publication Publication Date Title
US5002344A (en) Fluid pressure controller for antilock brake control device
JP3886145B2 (en) Hydraulic brake system with slip control
JPH02102857A (en) Antilocking flow control valve
JPH01257652A (en) Antilock system for automobile
JPH0288350A (en) Flow control valve for antilock
JPS60255562A (en) Hydraulic brake system
JPH07503204A (en) Hydraulic brake system with anti-lock control
JPH0285046A (en) Brake device and antiskid brake device
US3937127A (en) Hydraulic brake booster with shut-off means
JPH0661631U (en) Antilock modulator
JPH02114049A (en) Flow control valve for anti-lock
US20060071547A1 (en) Valve assembly for anti-skid aircraft brakes
US5690397A (en) Solenoid-operated fluid flow control valves
JPS62187640A (en) Wheel lock prevention device
JPH061225A (en) Vehicle braking device
JPH0288353A (en) Flow control valve for antilock
JP4201937B2 (en) Brake system
JP3561357B2 (en) Anti-lock brake control device for vehicles
JP2998524B2 (en) Anti-skid device
JPH04356262A (en) Anti-skid brake controller
JPH0771928B2 (en) Flow control valve for antilock
JP3561358B2 (en) Anti-lock brake control device for vehicles
JP3605459B2 (en) Anti-lock brake control device for vehicles
JPH07315191A (en) Brake fluid pressure control device
JPH07112658A (en) Antiskid control device