JPH0211348B2 - - Google Patents

Info

Publication number
JPH0211348B2
JPH0211348B2 JP55041304A JP4130480A JPH0211348B2 JP H0211348 B2 JPH0211348 B2 JP H0211348B2 JP 55041304 A JP55041304 A JP 55041304A JP 4130480 A JP4130480 A JP 4130480A JP H0211348 B2 JPH0211348 B2 JP H0211348B2
Authority
JP
Japan
Prior art keywords
layer
mold
die
core
casting mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55041304A
Other languages
Japanese (ja)
Other versions
JPS56139270A (en
Inventor
Nobuo Kashiwagi
Masaru Nakamura
Yasuo Sugiura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Shibaura Machine Co Ltd
Original Assignee
Seiko Epson Corp
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Toshiba Machine Co Ltd filed Critical Seiko Epson Corp
Priority to JP4130480A priority Critical patent/JPS56139270A/en
Publication of JPS56139270A publication Critical patent/JPS56139270A/en
Publication of JPH0211348B2 publication Critical patent/JPH0211348B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、例えば時計部品あるいはカメラ部品
等の精密機器製品をダイカストするためのダイカ
スト用金型に関する。 近年、金型加工技術が向上し、高度の寸法精度
が要求される例えば時計部品、カメラ部品、自動
車部品等がダイカストにより製作されている。し
かしながら、これら製品のうち、極端に肉が薄く
て小さい、例えばステンレス鋼、黄銅等の時計ケ
ースのダイカストにおいては、タングステンある
いはモリブデンをベースにした金型を使用してい
るが、これらの金型においては、 1 溶湯の凝固時に、金型キヤビテイ内に配設さ
れるコアへの締付力が大きく、抜勾配を大きく
しなければならないので精度を必要とする製品
の製作が不可能であり、 2 たとえ、寸法精度を犠牲にして抜勾配を大き
くしても、ステンレス鋼、黄銅等のダイカスト
では溶湯の凝固時にコアへの締付力が大きく、
型離れ時に異常摩耗例えばひつかきを起こして
コアの寿命が短縮する等の欠点があつた。 このような問題は、一般に、亜鉛合金、アルミ
合金等のダイカスト業界でも提起されており、こ
の対策として金型キヤビテイ表面に硼素を拡散、
浸透させているが、これでは前記問題を解決でき
ず、処理層の剥離、異常摩耗あるいは表面の荒れ
等種々の問題が起きている。 本発明は、かかる点に鑑み、金型寿命が長く、
しかも精密製品の歩留りを向上させることができ
るようなダイカスト用金型を提供することを目的
とする。 以下、第1図乃至第5図を参照して本発明の実
施例について説明する。 第1図において、固定金型1に対向して移動金
型2が組合わされ、それらの内部にキヤビテイ3
が形成され、このキヤビテイ3内にはコア4が設
けられている。また、前記固定金型1の下部には
コルドチヤンバー5が連結され、このコールドチ
ヤンバー5内には、ポート5aから溶湯6が注入
され、この溶湯6は、コールドチヤンバ5内を往
復動するプランジヤチツプ7によつてゲート8を
介して前記キヤビテイ3内に圧入される。 このような、ダイカスト装置においては、前記
コア4の一部あるいはゲート8の一部等は極度に
表面のすくわれ(エロージヨン現象)を起し易
く、これに対しては溶湯との耐溶着性、耐熱衝撃
性、耐火性の高い硼化処理が効果的である。 しかし、溶湯をキヤビテイ3内に圧入して凝固
させて後、凝固した製品を取出す時に、硼化処理
を施した金型においても、コア4の隅部4a,4
a,…4aは製品との間に異常摩耗を起こして極
端に製品の寸法精度を落としている。 そこで、本発明においては、異常摩耗を起こし
易い個所例えばゲート8およびコア4の隅部4a
に炭化処理を行なうことによつて前記問題を解決
した。 すなわち、第3図に示すように、ステンレス鋼
容器9内に例えばコア4を収納し、コア4の隅部
4aには浸炭材10,10,…10を、隅部以外
の平面部4b,4b,…4bには浸硼材11,1
1,…11を充填し、これら浸炭材10および浸
硼材11を酸化アルミニウムAl2O3と酸化ケイ素
SiO2からなるセラミツクシート12で被覆し、
無酸化雰囲気中において940℃で2時間半浸炭、
硼化処理を行なうと効果的である。 このように、浸炭処理と硼化処理との両処理を
行なう場合において、硼化時には炭化処理部分に
マスク(例えば銅メツキ)を行ない、炭化時には
先に施したマスクを剥離して浸炭を行なうのが一
般的であるが、本発明においては、これら両処理
を同時に行なうようにしたので効率的である。 本表面処理によつて浸炭硼化された製品の表面
硬度は処理温度、処理時間に比例して高くなる
が、処理中においては母材の熱劣化あるいは機械
的衝撃の不安定などの理由から硼化層では800〜
1300Hv、好ましくは1000Hv、炭化層では500〜
900Hv好ましくは700Hv位が適当である。 なお、各処理層の深さは、極端に深くすると熱
応力によつて該処理層にクラツクが発生する。ま
た、逆に極端に浅くするとすくわれ(エロージヨ
ン現象)を起し易い。溶湯との接触状況によつて
処理深さを5〜50μmの範囲で選択することが望
ましい。 前記コア4においては、溶損個所と異常摩耗個
所とがはつきりしているので、第3図に示すよう
な表面処理方法が適切であるが、金型のキヤビテ
イの形状により、溶損と異常摩耗とが混在する、
例えば第4図のようにゲート13に臨んでいるコ
ア4の隅部4aに対してはかかる表面処理が必ず
しも適切であるとは言えない。 そこで、硼化剤(例えば商名デンカボロナイザ
ー)と炭化剤(例えば黒鉛浸炭剤)とを混合した
混合剤で表面処理することが考えられ、金型母材
例えばW(90%)―Mo(4%)―Ni(4%)―Fe
(2%)にその混合比を重量パーセントで種々変
えて表面処理実験をして以下のような結果を得
た。
The present invention relates to a die-casting mold for die-casting precision equipment products such as watch parts or camera parts. In recent years, mold processing technology has improved and, for example, watch parts, camera parts, automobile parts, etc. that require a high degree of dimensional accuracy are manufactured by die casting. However, among these products, molds based on tungsten or molybdenum are used for die casting of watch cases made of extremely thin and small materials such as stainless steel and brass. 1. When the molten metal solidifies, the clamping force applied to the core installed in the mold cavity is large, and the draft angle must be increased, making it impossible to manufacture products that require precision; 2. Even if the draft angle is increased at the expense of dimensional accuracy, die casting of stainless steel, brass, etc. requires a large clamping force on the core when the molten metal solidifies.
There were drawbacks such as abnormal wear, such as scratching, which shortened the life of the core when it was released from the mold. Such problems are generally raised in the die casting industry for zinc alloys, aluminum alloys, etc., and as a countermeasure, boron is diffused on the surface of the mold cavity.
However, this method does not solve the above problem and causes various problems such as peeling of the treated layer, abnormal wear, and surface roughness. In view of these points, the present invention has a long mold life and
Moreover, it is an object of the present invention to provide a die-casting mold that can improve the yield of precision products. Embodiments of the present invention will be described below with reference to FIGS. 1 to 5. In FIG. 1, a movable mold 2 is combined opposite to a fixed mold 1, and a cavity 3 is installed inside them.
is formed, and a core 4 is provided within this cavity 3. Further, a cold chamber 5 is connected to the lower part of the fixed mold 1, and a molten metal 6 is injected into the cold chamber 5 from a port 5a, and the molten metal 6 reciprocates inside the cold chamber 5. The plunger tip 7 is press-fitted into the cavity 3 through the gate 8. In such a die-casting machine, a part of the core 4 or a part of the gate 8 is extremely prone to surface erosion (erosion phenomenon), and to counter this, it is necessary to have resistance to welding with the molten metal, Boring treatment with high thermal shock resistance and fire resistance is effective. However, when taking out the solidified product after press-fitting the molten metal into the cavity 3 and solidifying it, even in a mold that has undergone boriding treatment, the corners 4a, 4 of the core 4
a,...4a causes abnormal wear between the parts and the product, resulting in extremely low dimensional accuracy of the product. Therefore, in the present invention, areas where abnormal wear is likely to occur, such as the gate 8 and the corner 4a of the core 4, are
The above problem was solved by carrying out carbonization treatment. That is, as shown in FIG. 3, for example, a core 4 is housed in a stainless steel container 9, and carburized materials 10, 10, . , ... 4b contains the boron-immersed material 11,1
1,...11, and these carburized material 10 and boronized material 11 are filled with aluminum oxide Al 2 O 3 and silicon oxide.
Covered with a ceramic sheet 12 made of SiO2 ,
Carburizing at 940℃ for 2 and a half hours in a non-oxidizing atmosphere.
Boriding treatment is effective. In this way, when both carburizing and boriding treatments are performed, it is best to apply a mask (for example, copper plating) to the carbonized area during boronization, and to perform carburization by peeling off the previously applied mask during carbonization. However, in the present invention, both of these processes are performed simultaneously, which is efficient. The surface hardness of products carburized by this surface treatment increases in proportion to the treatment temperature and treatment time. 800~ in the layer
1300Hv, preferably 1000Hv, 500~ in carbonized layer
Approximately 900Hv, preferably about 700Hv. Note that if the depth of each treated layer is made extremely deep, cracks will occur in the treated layer due to thermal stress. On the other hand, if the depth is extremely shallow, erosion (erosion phenomenon) is likely to occur. It is desirable to select the treatment depth within the range of 5 to 50 μm depending on the contact situation with the molten metal. In the core 4, there are areas with melting damage and areas with abnormal wear, so a surface treatment method as shown in Fig. 3 is appropriate. mixed with abnormal wear,
For example, such surface treatment is not necessarily appropriate for the corner 4a of the core 4 facing the gate 13 as shown in FIG. Therefore, it is considered to treat the surface with a mixture of a boronizing agent (for example, Denka Boronizer) and a carbonizing agent (for example, graphite carburizing agent), and the mold base material, for example, W (90%) - Mo ( 4%) - Ni (4%) - Fe
(2%), and surface treatment experiments were carried out by varying the mixing ratio in terms of weight percent, and the following results were obtained.

【表】 なお、モリブデンをベースにした金型母材Ti
(0.5%)―Zr(0.08%)―Mo(残)についても同
様の結果を得た。 これによれば、炭化剤が増加する程、処理硬度
は低くなるが、炭化剤のみによれば炭化剤と硼化
剤とを混合した場合よりも硬度が高くなることが
判る。種々実験の結果、第4図のコアの隅部4a
の処理においては、混合比を20%すなわち、硬度
550〜950Hv好ましくは660Hv位の表面処理を行
なうと、溶損、異常摩耗に対して好結果を得るこ
とができ、今迄の金型では500シヨツト位で寿命
となつたが、本発明の金型の寿命は1000シヨツト
位に伸びた。 また、コアを有するキヤビテイ内に充填された
隅肉部14(第5図)の溶湯の凝固速度は他の部
分のそれよりも遅くなるため、凝固過程で製品に
大きな熱応力が発生してクラツクが生じることが
ある。これは、前記隅肉部14の容積が他に比較
して大きく、しかも、コア4の隅部4aは溶湯よ
り集中的に熱を受けその部分の温度が上昇し、さ
らに、凝固収縮によつて隅肉部14と金型の隅部
2a間に空隙Oが形成されるために、前記隅肉部
14は他の部分よりも徐冷され、先に収縮した他
の部分から前記隅肉部14が引張力を受けるため
である。 しかしながら、この場合においても、前記コア
の隅部4aに前述したように炭化処理を行なうと
ともに他の部分には硼化処理を行なうと完全にク
ラツクの発生が防止できた。すなわち、硼化処理
層の熱伝導率は0.076cal/cm・℃・secで、炭化
処理層のそれは0.47cal/cm・℃・secであり、炭
化処理層の熱伝導率が硼化処理層のそれよりもか
なり大であるので前記コアの隅部4aの熱伝導が
良好となり均一に溶湯が冷却するからである。 なお、本実施例においては、コアの表面処理に
ついて説明したが、他の金型のキヤビテイ表面の
表面処理についても同様のことが言える。 以上説明したように、本発明は、金型キヤビテ
イ表面(コアを含む)の溶損個所には硼化層を、
異常摩耗個所には炭化層を溶損と異常摩耗の両方
が起きる個所には硼化層と炭化層の混合層を形成
したので、金型キヤビテイ表面の溶損と異常摩耗
が防止され、金型の寿命が著しく増大するととも
に製品にクラツクが発生することなく、製品の歩
留りを向上できるという効果を奏する。
[Table] In addition, mold base material Ti based on molybdenum
Similar results were obtained for (0.5%) - Zr (0.08%) - Mo (remainder). According to this, it can be seen that as the amount of carbonizing agent increases, the treated hardness decreases, but if only the carbonizing agent is used, the hardness becomes higher than when the carbonizing agent and boronizing agent are mixed. As a result of various experiments, the corner 4a of the core in FIG.
In the treatment of
Surface treatment at 550 to 950 Hv, preferably around 660 Hv, can provide good results in preventing erosion and abnormal wear. Conventional molds had a lifespan of around 500 shots, but the molds of the present invention The lifespan of the mold has been extended to about 1000 shots. In addition, the solidification rate of the molten metal in the fillet 14 (Fig. 5) filled in the cavity with the core is slower than that in other parts, so large thermal stress is generated in the product during the solidification process, resulting in cracks. may occur. This is because the volume of the fillet portion 14 is larger than the other portions, and the corner portion 4a of the core 4 receives heat intensively from the molten metal, increasing the temperature of that portion, and furthermore, due to solidification contraction. Since a gap O is formed between the fillet part 14 and the corner 2a of the mold, the fillet part 14 is cooled more slowly than other parts, and the fillet part 14 is cooled more slowly than other parts that have contracted first. This is because it is subjected to tensile force. However, even in this case, the generation of cracks could be completely prevented by carbonizing the corner 4a of the core as described above and boriding the other parts. In other words, the thermal conductivity of the boriding layer is 0.076 cal/cm・℃・sec, and that of the carbonizing layer is 0.47 cal/cm・℃・sec. This is because since it is considerably larger than that, the heat conduction at the corner 4a of the core becomes good and the molten metal is cooled uniformly. In this example, the surface treatment of the core has been described, but the same can be said of the surface treatment of the cavity surface of other molds. As explained above, the present invention provides a boride layer at the melted parts of the mold cavity surface (including the core).
A mixed layer of a boride layer and a carbonized layer is formed in areas where both melting loss and abnormal wear occur, so melting loss and abnormal wear on the mold cavity surface are prevented, and the mold This has the effect that the life of the product is significantly increased, and the yield of the product can be improved without any cracks occurring in the product.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はダイカスト装置の縦断面図、第2図は
第1図のA―A矢視図、第3図は表面処理装置の
正面図、第4図はコアを内蔵した金型の横断面図
および第5図はコアと金型のキヤビテイ隅部の拡
大断面図である。 1……固定金型、2……移動金型、3……キヤ
ビテイ、4……コア、8,13……ゲート、9…
…ステンレス鋼容器、10……浸炭材、11……
浸硼材、12……セラミツクシート。
Figure 1 is a vertical cross-sectional view of the die-casting device, Figure 2 is a view taken along arrow A-A in Figure 1, Figure 3 is a front view of the surface treatment equipment, and Figure 4 is a cross-sectional view of the mold containing the core. 5 and 5 are enlarged sectional views of the core and the corner of the cavity of the mold. 1...Fixed mold, 2...Moveable mold, 3...Cavity, 4...Core, 8, 13...Gate, 9...
...Stainless steel container, 10...Carburized material, 11...
Boring material, 12...Ceramic sheet.

Claims (1)

【特許請求の範囲】 1 タングステンあるいはモリブデンをベースに
した金型のキヤビテイ表面を表面処理したダイカ
スト用金型において、前記キヤビテイ表面および
溶湯流路の溶損個所には硼化層を形成し、異常摩
耗個所には炭化層を形成し、溶損と異常摩耗の両
方が起きる個所に浸炭材と浸硼材とをそれぞれ充
填し浸炭、硼化処理を施して硼化層と炭化層との
混合層を形成したことを特徴とするダイカスト用
金型。 2 前記炭化層の硬度を500〜900HV、前記硼化
層の硬度を800〜1300HV、前記混合層の硬度を
550〜950HVとしたことを特徴とする特許請求の
範囲第1項記載のダイカスト用金型。
[Scope of Claims] 1. In a die-casting mold in which the cavity surface of a mold based on tungsten or molybdenum is surface-treated, a boride layer is formed on the cavity surface and the molten metal flow path to prevent abnormalities. A carbonized layer is formed at the worn locations, and the locations where both erosion and abnormal wear occur are filled with a carburizing material and a boronizing material, and then carburized and borated to form a mixed layer of a borated layer and a carbonized layer. A die-casting mold characterized by forming. 2. The hardness of the carbonized layer is 500 to 900 HV, the hardness of the borated layer is 800 to 1300 HV, and the hardness of the mixed layer is 500 to 900 HV.
The die-casting mold according to claim 1, characterized in that the die-casting mold has a HV of 550 to 950 HV.
JP4130480A 1980-03-31 1980-03-31 Metallic mold for die-casting Granted JPS56139270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4130480A JPS56139270A (en) 1980-03-31 1980-03-31 Metallic mold for die-casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4130480A JPS56139270A (en) 1980-03-31 1980-03-31 Metallic mold for die-casting

Publications (2)

Publication Number Publication Date
JPS56139270A JPS56139270A (en) 1981-10-30
JPH0211348B2 true JPH0211348B2 (en) 1990-03-13

Family

ID=12604738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4130480A Granted JPS56139270A (en) 1980-03-31 1980-03-31 Metallic mold for die-casting

Country Status (1)

Country Link
JP (1) JPS56139270A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100391650C (en) * 2006-09-18 2008-06-04 苏州工业园区明志铸造装备有限公司 Cold core

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840629A (en) * 1971-09-30 1973-06-14
JPS5118326A (en) * 1974-06-28 1976-02-13 American Standard Inc

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840629A (en) * 1971-09-30 1973-06-14
JPS5118326A (en) * 1974-06-28 1976-02-13 American Standard Inc

Also Published As

Publication number Publication date
JPS56139270A (en) 1981-10-30

Similar Documents

Publication Publication Date Title
US2206395A (en) Process for obtaining pure chromium, titanium, and certain other metals and alloys thereof
JP6453427B1 (en) Die-casting sleeve and processing method of die-casting sleeve
US3848847A (en) Casting method for aluminum or aluminum alloys and a mold therefor
US3170452A (en) Valve seat
KR100581198B1 (en) Process of diecasting titanium and titanium-alloy mould
US7601389B2 (en) Metal material and method for production thereof
JPH0211348B2 (en)
JP2007308788A (en) Nitriding/oxidizing treatment method for metal member and reoxidizing method therefor
JP2002086248A (en) Die for continuous casting
JPS6133734A (en) Surface treatment of metallic mold for casting
JP4392087B2 (en) Surface treatment method of die casting mold and die
JPH04258356A (en) Al die casting die
KR20190023843A (en) Method for manufacturing stick-resistant and wear-resistant aluminum die-casting sleeve and apparatus thereof
US3257177A (en) Ferrous castings with siliconized inserts
RU2060105C1 (en) Process of production of article from uranium
JPS62279255A (en) Cast iron cylinder block and its manufacture
GB1390618A (en) Casting of metal articles
JPS6297744A (en) Metallic mold for molding
JPS60135518A (en) Surface hardening method of cast iron member
JPS6347337A (en) Manufacture of roll for continuous casting
JP3691623B2 (en) Casting member having excellent resistance to melting Al and method for producing the same
JPS62290802A (en) Permanent magnet
KR100536838B1 (en) Reinforcement for inner wall of titanium and titanium-alloy diecasting mould
JP2004167505A (en) Member for die casting machine, and method for manufacturing the same
JPS5858212A (en) Manufacture of cast iron for nitriding