JPH02111681A - Production of carbon-fiber reinforced composite material having oxidation resistance - Google Patents

Production of carbon-fiber reinforced composite material having oxidation resistance

Info

Publication number
JPH02111681A
JPH02111681A JP63263845A JP26384588A JPH02111681A JP H02111681 A JPH02111681 A JP H02111681A JP 63263845 A JP63263845 A JP 63263845A JP 26384588 A JP26384588 A JP 26384588A JP H02111681 A JPH02111681 A JP H02111681A
Authority
JP
Japan
Prior art keywords
carbon
composite material
reinforced composite
coating
depositing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63263845A
Other languages
Japanese (ja)
Other versions
JP2521795B2 (en
Inventor
Yoshiho Hayata
早田 喜穂
Yukinori Hisate
幸徳 久手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP63263845A priority Critical patent/JP2521795B2/en
Publication of JPH02111681A publication Critical patent/JPH02111681A/en
Application granted granted Critical
Publication of JP2521795B2 publication Critical patent/JP2521795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a carbon-fiber reinforced composite material excellent in oxidation resistance without peeling, etc., of the surface by depositing and coating carbon on the surface of a carbon/carbon composite material by vapor- phase thermal decomposition and further depositing and coating ceramics on the resultant surface by the vapor-phase thermal decomposition. CONSTITUTION:Carbon is deposited and coated on the surface of a carbon/ carbon composite material composed of carbon fibers and carbonaceous matrix or three-dimensional carbon fiber woven fabric by vapor-phase thermal decomposition. In this process, the vapor-phase thermal decomposition is preferably carried out at a temperature under a pressure in which the temperature pressure coefficient (X) defined by the formula [T is the temperature ( deg.K) in carrying out the vapor-phase thermal decomposition; P is the pressure (Torr) in performing the vapor-phase thermal decomposition] is <=3.29 to provide depositing and coating of carbon thereon. The vapor-phase thermal decomposition is subsequently carried out to perform depositing and coating of ceramics on the resultant surface. Thereby, the carbon-fiber reinforced composite material having oxidation resistance is obtained.

Description

【発明の詳細な説明】 痰スよ0貝」芳I 本発明は、耐酸化性を有する炭素繊維強化複合材料の製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a carbon fiber reinforced composite material having oxidation resistance.

従来の技術および 明が解決しようとする課題炭素繊維
強化複合材料は、不活性ガス中では1000℃以上の高
温においても高強度、高弾性率を維持し、かつ熱膨張率
が小さい等の特異な性質を有する材料であり、航空宇宙
機器の部品、ブレーキ、炉材等への利用が期待されてい
る。しかしながら酸化に対する抵抗は小さく、500℃
くらいから酸化消耗を受ける。このため炭素繊維強化複
合材料の表面にセラミックスの被膜を付与することが行
われているが、炭素とセラミックスとの熱膨張率の差の
ためその界面における剥離あるいは被膜のクラックなど
が発生し、本来の機能を十分発揮することが出来ない。
Conventional technology and the problem that Ming is trying to solve Carbon fiber reinforced composite materials have unique properties such as maintaining high strength and high modulus of elasticity even at high temperatures of 1000°C or higher in inert gas, and having a small coefficient of thermal expansion. It is a material with unique properties and is expected to be used in aerospace equipment parts, brakes, furnace materials, etc. However, the resistance to oxidation is low, and
It is subject to oxidative consumption from about . For this reason, a ceramic film is applied to the surface of carbon fiber reinforced composite materials, but due to the difference in thermal expansion coefficient between carbon and ceramics, peeling or cracking of the film occurs at the interface, which is not normal. cannot fully demonstrate its functions.

叩を解決するための千成 本発明者らは、前記問題点を解決し、耐酸化性に[憂れ
た炭:J:繊維強化複合材料の製造法を研究した結果、
本発明の完成に至った。
Sennari to solve the problem The present inventors solved the above problems and developed a method for producing oxidation-resistant charcoal.
The present invention has now been completed.

本発明は、(1)炭素繊維強化複合材料の表面に、気相
熱分解により炭素を沈積被覆し、続いてこの表面に気相
熱分解によりセラミックスを沈積被覆させることを特徴
とする耐酸化性を有する炭素繊維強化複合材料の製造法
、および(2)炭素繊維立体織物に、気相熱分解により
炭素を沈積被覆し、続いてこの表面に気相熱分解により
セラミックスを沈積被覆させることを特徴とする#4酸
化性を有する炭素uA維強化複合材料の製造法に関する
The present invention provides (1) oxidation resistance characterized by depositing carbon on the surface of a carbon fiber reinforced composite material by vapor phase pyrolysis, and then depositing and coating the surface with ceramics by vapor phase pyrolysis. and (2) a carbon fiber three-dimensional woven fabric is deposited and coated with carbon by vapor phase pyrolysis, and subsequently, this surface is deposited and coated with ceramics by vapor phase pyrolysis. The present invention relates to a method for producing a carbon uA fiber reinforced composite material having #4 oxidizing property.

以下、本発明について詳述する。The present invention will be explained in detail below.

本発明でいう炭素繊維強化複合材料とは、炭素!il維
lO〜70 VOL%、好ましく1よ20〜60%、さ
らに好ましくは30〜55%、および炭素質マトリック
ス5〜90VQL%、好ましくは10〜60%、さらに
好ましくは15〜55%から構成されろ材料である。そ
の製造法は特に限定されず、表面に通じる空隙があって
も良い。この表面に通じる空隙の割合は複合材料全体の
0〜55%、好ましくは0〜50%、さらに好ましくは
0〜45%である。
The carbon fiber reinforced composite material referred to in the present invention refers to carbon! The carbonaceous matrix is composed of 5 to 90 VQL%, preferably 10 to 60%, more preferably 15 to 55%. It is a filter material. The manufacturing method is not particularly limited, and there may be voids communicating with the surface. The proportion of voids communicating with the surface is 0 to 55%, preferably 0 to 50%, and more preferably 0 to 45% of the entire composite material.

ここでいう炭素繊維には、連続した炭素繊維の500〜
zsooo本の繊維束を一方向積層物、2次元織物ある
いはその積石物、3次元織物、マット状成形物、フェル
ト状成型物など炭素繊維を2次元あるいは3次元の成型
体としたものが含まれ、中でも3次元織物が好ましい。
The carbon fibers mentioned here include continuous carbon fibers with 500~
Includes two-dimensional or three-dimensional molded products of carbon fiber, such as unidirectional laminates of fiber bundles, two-dimensional fabrics or stacked stones thereof, three-dimensional fabrics, mat-like molded products, felt-like molded products, etc. Of these, three-dimensional fabrics are preferred.

炭素繊維としては、ピッチ系、ポリアクリロニトリル系
あるいはレーヨン系などが使用できるが、なかでもピッ
チ系炭素!!維が耐酸化性に優れろため好ましい。また
炭素質マトリックスとは炭素質ピッチ、フェノール樹脂
、フラン樹脂などの炭化により得られるものであり、な
かでも炭素質ピッチの炭化により得られるものが好まし
い。炭素質ピッチとしては、軟化点100〜400℃、
好ましくは150〜350℃を有する石炭系あるいは石
油系のピッチが用いられる。炭素質ピッチは、光学的に
等方性のピッチあるいは異方性のピッチのいずれも使用
できるが、光学的異方性相の含量が60〜100%の光
学的異方性ピッチが特に好ましく用いられる。
Pitch-based, polyacrylonitrile-based, or rayon-based carbon fibers can be used, but pitch-based carbon is especially useful! ! It is preferable because the fiber has excellent oxidation resistance. Further, the carbonaceous matrix is one obtained by carbonizing carbonaceous pitch, phenol resin, furan resin, etc. Among them, one obtained by carbonizing carbonaceous pitch is preferable. The carbonaceous pitch has a softening point of 100 to 400°C,
Preferably, a coal-based or petroleum-based pitch having a temperature of 150 to 350°C is used. As the carbonaceous pitch, either optically isotropic pitch or anisotropic pitch can be used, but optically anisotropic pitch with an optically anisotropic phase content of 60 to 100% is particularly preferably used. It will be done.

炭素繊維強化複合材料は、炭素質ピッチ、フェノール樹
脂、フラン樹脂などを炭素anの織物あるいは成型物な
どに含浸した後、常圧下、加圧下あるいはプレス下で炭
化して得られる。含浸は、炭素質ピッチなどを真空下で
加熱、溶融することにより達成される。
Carbon fiber-reinforced composite materials are obtained by impregnating carbonaceous pitch, phenolic resin, furan resin, etc. into a carbon ann fabric or molded product, and then carbonizing the impregnated material under normal pressure, pressure, or press. Impregnation is achieved by heating and melting carbonaceous pitch or the like under vacuum.

常圧下の炭化は、不活性ガス雰囲気下400〜2000
℃において実施することができる。また、加圧下の炭化
:よ、不活性ガスにより50〜10000kg/cdに
等方加圧し、400〜2000℃において実施すること
ができる。また、プレス下の炭化は、ホットプレスなど
により10〜50(1kg/dの一軸加圧下、400〜
2000℃において実施することができろ。
Carbonization under normal pressure is 400 to 2000 in an inert gas atmosphere.
It can be carried out at ℃. Further, carbonization under pressure can be carried out at 400 to 2000° C. under isostatic pressure of 50 to 10,000 kg/cd using an inert gas. In addition, the carbonization under the press is 10 to 50 (under 1 kg/d uniaxial pressure, 400 to 50
It can be carried out at 2000°C.

本発明において、炭化収率向上のため、炭化に先立ち、
含浸物を不融化処理することもできろ。含浸物の不融化
処理は、酸化性ガス雰囲気下、50〜400℃、好まし
くは100〜350℃で行う。酸化性ガスとしては、空
気、酸素、窒素酸化物、硫黄酸化物、ハロゲン、ある゛
いはこれらの混合物が使用できろ。不融化は、含浸物中
心まで行っても良いし、後段の炭化処理で含浸物の形状
を維持できる程度でも良い。
In the present invention, in order to improve carbonization yield, prior to carbonization,
It is also possible to treat the impregnated material to be infusible. The infusible treatment of the impregnated material is carried out at 50 to 400°C, preferably 100 to 350°C, in an oxidizing gas atmosphere. As the oxidizing gas, air, oxygen, nitrogen oxides, sulfur oxides, halogens, or mixtures thereof can be used. The infusibility may be carried out to the center of the impregnated material, or it may be performed to such an extent that the shape of the impregnated material can be maintained in the subsequent carbonization treatment.

炭素繊維強化複合材料とするために、含浸/炭化のサイ
クルを必要回数重ねて緻密化をする乙とができる。
In order to make a carbon fiber reinforced composite material, it is possible to densify it by repeating the impregnation/carbonization cycle a necessary number of times.

一方、本発明でいう炭素繊維立体織物とは、連続した炭
素繊維の500〜25000本の繊維束を一方向8IF
B物、2次元r1物あるいはその積層物、3次元織物、
マット状成形物、フェルト状成型物など炭素wA維を2
次元あるいは3次元の立体成型体としたものが含まれ、
中でも3次元織物が好ましい。
On the other hand, the carbon fiber three-dimensional fabric as used in the present invention refers to a fiber bundle of 500 to 25,000 continuous carbon fibers in one direction at 8IF.
B object, two-dimensional r1 object or its laminate, three-dimensional fabric,
Carbon wA fibers such as mat-like molded products and felt-like molded products
Includes dimensional or three-dimensional molded objects,
Among these, three-dimensional fabrics are preferred.

炭素繊維としては、ピッチ系、ポリアクリロニトリル系
あるいはレーヨン系などが使用できるが、なかでもピッ
チ系炭素wA維が耐酸化性に優れるため好ましい。
As the carbon fiber, pitch-based, polyacrylonitrile-based, or rayon-based fibers can be used, and among them, pitch-based carbon wA fibers are preferred because they have excellent oxidation resistance.

本発明の炭素wA雑強化複合材料は、前記炭素繊維強化
複合材料の表面に、または前記炭素繊維立体織物に、気
相熱分解により炭素を沈積被覆し、続いてこの表面に気
相熱分解によりセラミックスを沈積被覆させろことによ
り製造される。
In the carbon wA miscellaneous reinforced composite material of the present invention, carbon is deposited and coated on the surface of the carbon fiber reinforced composite material or the carbon fiber three-dimensional fabric by vapor phase pyrolysis, and then this surface is coated with carbon by vapor phase pyrolysis. Manufactured by deposition coating of ceramics.

炭素繊維強化複合材料の表面にあるいは炭素繊維立体織
物に気相熱分解により炭素を沈積充填する場合、温度圧
力係数Xが329以Fとなる温度および圧力において気
相熱分解を行うのが好ましい。
When carbon is deposited and filled onto the surface of a carbon fiber reinforced composite material or into a three-dimensional carbon fiber fabric by vapor phase pyrolysis, it is preferable to perform the vapor phase pyrolysis at a temperature and pressure such that the temperature-pressure coefficient X is 329 F or less.

但シj’Z度圧力係1&X=log ((T)x (P
)”07)ここで Tは気相熱分Mを行うときの温度(
K)Pは気相熱分解を行うときの圧力(Torr)好ま
しくは温度圧力係数Xが325以下、より好ましくは3
21以下、またCVDは、温度圧力係数Xが318以上
、より好ましくは321以上となる温度わよび圧力で行
う。具体的に条件を示せば、反応条件は、温度Tが11
73〜1773°に1圧力Pが01〜50Torrであ
る。
However, shij'Z degree pressure coefficient 1&X=log ((T)x (P
)”07) Here, T is the temperature (
K) P is the pressure (Torr) when performing gas phase pyrolysis, preferably the temperature-pressure coefficient X is 325 or less, more preferably 3
21 or less, and CVD is carried out at a temperature and pressure such that the temperature-pressure coefficient X is 318 or more, more preferably 321 or more. Specifically, the reaction conditions are that the temperature T is 11
One pressure P at 73-1773° is 01-50 Torr.

炭素繊維強化複合材料の表面に気相熱分解により炭素を
沈積した後、気相熱分解によりセラミックスを沈積被覆
処理する操作は通常CV D (CHEMICAL V
APORDEPO5ITION) ト呼ばれている。炭
素繊維強化複合材料の表面に気相熱分解により炭素およ
びセラミックスを沈v1被覆する場合、被覆層の厚さは
炭素繊維強化複合材料のサイズ、各被覆層の厚さは炭素
繊維強化複合材料のサイズ、熱処理温度なとによって任
意に決定されるが、例えば0.01〜100μ転好まし
くは01〜50μmである。
The operation of depositing carbon on the surface of a carbon fiber reinforced composite material by vapor phase pyrolysis and then depositing and coating ceramics by vapor phase pyrolysis is usually CV D (CHEMICAL V
APORDEPO5ITION) is called. When coating carbon and ceramics on the surface of a carbon fiber reinforced composite material by vapor phase pyrolysis, the thickness of the coating layer is determined by the size of the carbon fiber reinforced composite material, and the thickness of each coating layer is determined by the size of the carbon fiber reinforced composite material. Although it is arbitrarily determined depending on the size, heat treatment temperature, etc., it is, for example, 0.01 to 100 μm, preferably 0.1 to 50 μm.

一方、炭素繊維立体織物に気相熱分解により炭素あるい
はセラミックスを沈積充填処理する操作はCV I  
(CHEMICALVAPORINFILTRATIO
N) ト呼ばしrl、’ル。CvIにより炭素繊維立体
i物の空隙部に炭素およびセラミックスを沈積充填する
場合、3被v!jL層の厚さは炭素繊維立体織物の繊維
体積含有率、織物構造などによって任意に決定されるが
、例えば0.01〜100μm1好ましくは01〜50
μ−である。
On the other hand, the operation of depositing and filling carbon or ceramics into a carbon fiber three-dimensional fabric by vapor phase pyrolysis is CV I.
(CHEMICALVAPORINFILTRATIO
N) To call rl,'r. When carbon and ceramics are deposited and filled into the voids of a carbon fiber three-dimensional object by CvI, 3 times v! The thickness of the jL layer is arbitrarily determined depending on the fiber volume content of the carbon fiber three-dimensional fabric, the fabric structure, etc., but is, for example, 0.01 to 100 μm, preferably 0.1 to 50 μm.
μ-.

CVIあるいはCVDにより炭素を沈積する場合、熱分
解ガスとしては炭化水素ガス、例えばメタン、プロパン
、ブタン、アセチレン、ベンゼンなどが使用できる。
When depositing carbon by CVI or CVD, hydrocarbon gases such as methane, propane, butane, acetylene, benzene, etc. can be used as the pyrolysis gas.

CVIあるいはCVDにより、セラミックスを沈積する
場合、セラミックスとしては、SiC,ZrC,TiC
,HfC。
When depositing ceramics by CVI or CVD, the ceramics include SiC, ZrC, and TiC.
, HfC.

B4C,NbC,WC,TiB2.BNあろいばSi3
N4などがあげられ、中でもSiC,ZrC,’TiC
およびHfCが好ましい。
B4C, NbC, WC, TiB2. BN Aroiba Si3
N4, among others, SiC, ZrC, 'TiC
and HfC are preferred.

具体的IC1,t、熱CVI/CVD、 ブーy:y:
マCVI/CVD等が挙げられろ。セラミックスを得ろ
ための熱分解ガスとしては、ハロゲン化物、水素化物、
有機金属化合物等あるいはこれらとml記炭化水素ガス
や水素、不活性ガスとの混合物が用いられろ。
Specific IC1, t, thermal CVI/CVD, boo y: y:
Examples include MacVI/CVD. The pyrolysis gas used to obtain ceramics includes halides, hydrides,
Organometallic compounds or mixtures of these with hydrocarbon gas, hydrogen, or inert gas may be used.

具体的には、SiCにはS iC14,CH,S iC
l、、ZrCにはZrCl4、TiCにばTiCl4、
HfCには)IfCI4などが使用できろ。
Specifically, SiC includes SiC14, CH, SiC
l,, ZrCl4 for ZrC, TiCl4 for TiC,
For HfC, IfCI4 etc. can be used.

反応条件:よCVIあるいはCVDで異なり、CVDに
より、炭素繊維強化複合材料の表面に気相熱分解により
セラミックスを沈積被覆する場合、温度は1000〜2
000℃、圧力は5〜760Torrである。CVIに
より炭素繊維立体m物の空隙部にセラミックスを沈枯充
填する場合、温度ば1000〜1500℃、圧力は0.
1〜50 Torrである。
Reaction conditions: CVI or CVD. When coating ceramics by vapor phase pyrolysis on the surface of a carbon fiber reinforced composite material by CVD, the temperature is 1000~2
000°C, and the pressure is 5 to 760 Torr. When ceramics are submerged and filled into the voids of a three-dimensional carbon fiber object by CVI, the temperature is 1000 to 1500°C and the pressure is 0.
1 to 50 Torr.

本発明においては、気相熱分解によりCVDあるいはC
VIによるセラミックスを沈積被覆処理する場合、好ま
しくはこの操作を少なくとも2回行う。被覆の回数は、
さらに好ましくは3回以上、より好ましくは4回以上で
ある。上限は特に制限されないが、通常10回程度行え
ば十分である。さらに各沈積被覆処理工程の間に熱分解
温度よりも50℃以上高い1度、好ましくは100〜1
500℃高い温度において、真空下あるいは不活性ガス
雰囲気下で熱処理する工程を含むことが一層好ましい。
In the present invention, CVD or C
When depositing ceramics with VI, this operation is preferably carried out at least twice. The number of coatings is
More preferably 3 or more times, more preferably 4 or more times. The upper limit is not particularly limited, but it is usually sufficient to perform the process about 10 times. Furthermore, during each deposition coating treatment step, the heating temperature is 1 degree or more, preferably 100 to 1 degree, higher than the pyrolysis temperature.
It is more preferable to include a step of heat treatment at a temperature 500° C. higher under vacuum or in an inert gas atmosphere.

CVD各被覆層の厚さは炭素繊維強化複合材料のサイズ
、熱処理温度などによって任意に決定されるが、例えば
10〜500μ鴫、好ましくは50〜30OAImであ
る。また波5!層の合計の厚さも任意に決定されるが、
例えば10〜2000μ転好ましくは50〜1000μ
■である。CVI各被覆層の厚さは炭素繊維立体置物の
仏様体積含有率、織物構造などによって任意に決定され
るが、例えば1〜500μ閣、好ましくは5〜300μ
mである。各工程におけるCVDあるいはCVIの条件
は、必ずしも同一としなくてもよい。
The thickness of each CVD coating layer is arbitrarily determined depending on the size of the carbon fiber reinforced composite material, heat treatment temperature, etc., and is, for example, 10 to 500 μm, preferably 50 to 30 OAIm. Wave 5 again! The total thickness of the layers is also arbitrarily determined, but
For example, 10 to 2000μ, preferably 50 to 1000μ
■It is. The thickness of each CVI coating layer is arbitrarily determined depending on the Buddha volume content of the carbon fiber three-dimensional figurine, the fabric structure, etc., but is, for example, 1 to 500 μm, preferably 5 to 300 μm.
It is m. The CVD or CVI conditions in each step do not necessarily have to be the same.

実施例 以下に実施例をあげ、本発明を具体的に説明する。Example EXAMPLES The present invention will be specifically explained below with reference to Examples.

(実施例1) 炭素繊維の3次元織物50VOL%および炭素質を原料
とするマトリックスから構成されろ炭素繊維強化複合材
料を加熱炉中におき、メタンを流しながら、温度T=1
473°に1圧力P = 2 Torrで熱CVDを行
い、表面に気相分解により炭素を平均1μ町となるよう
に沈積した。乙の場合CVDの温度圧力係数X=3.1
9である。続いて1623°に、 5 Torrにおい
てCll3S iC13(50c++?/win)とH
2(800crd/ m1n)の混合物(流層はいずれ
も標準状態)を流しながらCVDによりSiCを沈着さ
せた。得られた炭素繊維強化複合材料の表面のクラック
は杼めて少なかった。
(Example 1) A carbon fiber-reinforced composite material composed of 50 VOL% of a three-dimensional woven fabric of carbon fibers and a matrix made of carbonaceous material was placed in a heating furnace and heated to a temperature of T=1 while flowing methane.
Thermal CVD was performed at 473° and 1 pressure P = 2 Torr, and carbon was deposited on the surface by vapor phase decomposition to an average thickness of 1 μm. In case B, CVD temperature-pressure coefficient X = 3.1
It is 9. Then at 1623°, Cll3S iC13 (50c++?/win) and H
SiC was deposited by CVD while flowing a mixture of 2 (800 crd/ml) (all flow layers were in standard conditions). There were very few cracks on the surface of the obtained carbon fiber reinforced composite material.

(比較例1) 実施例1の炭素繊維強化複合材料を加熱炉中におき、1
623°に15 TorrにおいてCH3S iCl、
 (50c!/ akin)とH2(800cゴ/m1
n)の混合物(流肚;まいずれも標準状態)を流しなが
らCVDによりSiCを沈着させた。表面に;まクラッ
クが生成していた。
(Comparative Example 1) The carbon fiber reinforced composite material of Example 1 was placed in a heating furnace, and 1
CH3S iCl at 15 Torr at 623°,
(50c!/akin) and H2 (800c/m1
SiC was deposited by CVD while flowing the mixture (n) (in a standard state). Cracks had formed on the surface.

(実施例2) 実施例1の炭素繊維強化複合材料を加熱炉中におき、メ
タンを流しながら、温度T=1473’に、圧力P =
 2 TorrでBCVDを行い、表面に気相分解によ
り炭素を平均1μmとなるように沈積した。この場合C
VDの温度圧力係数X=3.19である。続いて162
3’に、 5TorrにおいてCH35iCI3(50
cn?/m1n)とH,、(800ci/m1n)のS
t=物(流旦(よいずれも標す状態)を原料ガスとして
表面に熱CVDによるS1Cを平均被覆厚さが30μm
となるように沈積被覆処理した。
(Example 2) The carbon fiber reinforced composite material of Example 1 was placed in a heating furnace and heated to a temperature of T = 1473' and a pressure of P =
BCVD was performed at 2 Torr, and carbon was deposited on the surface by vapor phase decomposition to an average thickness of 1 μm. In this case C
The temperature-pressure coefficient X of VD is 3.19. followed by 162
3', CH35iCI3 (50
cn? /m1n) and H,, (800ci/m1n) S
t = S1C coated on the surface by thermal CVD using material (flowing material) as raw material gas with an average coating thickness of 30 μm
The deposited coating was applied so that

ついで窒素気流中て1973°にまで昇温し、30分子
IrI熱処理した。再び、1623°に、 5 Tor
rにおいて前記条件でSiCを沈積被覆処理した。この
ようにして各沈積被覆処理工程の間に1973°Kにお
ける熱処理を行いながら、沈積被覆処理を3回行った。
Then, the temperature was raised to 1973° in a nitrogen stream, and 30 molecules of IrI were heat-treated. Again, at 1623°, 5 Tor
SiC was deposited and coated under the conditions described above. Three deposit coatings were carried out in this manner, with a heat treatment at 1973° K between each deposition step.

得られた炭″A繊維強化浅さ材11を、空気中1773
°Kにおいて90分処理したところ、重量減少はなく、
また表面の剥離も見られなかった。
The obtained charcoal A fiber-reinforced shallow material 11 was placed in air at 1773 m
When treated at °K for 90 minutes, there was no weight loss.
Moreover, no peeling on the surface was observed.

(ノミM!、例3J 直径10ミクロンのピッチ系炭素&l維2000本を用
い、炭素t3維体積含有$30VOL%である直交3次
元置物を加熱炉中におき、メタンを流しながら、温度T
=1473°に1圧力P = 2 Torrで熱CVI
を行い、表面に気相分解により炭素を平均01μmとな
るように沈積した。この場合CVIの温度圧力係rJ、
X=3.19である。続いて1623°に15 Tor
rにおいてCHS iCl  (50c+//+++i
n)とH(800ctrl/ lll1n)の混合物(
流量はいすねも標準状F!りを流しながらCVIにより
s+cを沈セさせた。得られた炭素繊維強化複合材料の
表面のクラックは極めて少なかった。
(Chisel M!, Example 3J) An orthogonal three-dimensional figurine made of 2000 pitch-based carbon fibers with a diameter of 10 microns and a carbon t3 fiber volume content of $30 VOL% was placed in a heating furnace, and while methane was flowing, the temperature T
= thermal CVI at 1 pressure P = 2 Torr at 1473°
Carbon was deposited on the surface by vapor phase decomposition to an average thickness of 01 μm. In this case, the temperature and pressure coefficient rJ of CVI,
X=3.19. Then 15 Tor at 1623°
CHS iCl (50c+//+++i
A mixture of (n) and H (800 ctrl/lll1n) (
The flow rate is also standard F! The s+c was precipitated by CVI while the solution was flowing. There were extremely few cracks on the surface of the obtained carbon fiber reinforced composite material.

(比較例2) ″A施例1の3次元二物を加熱炉中におき、1350’
に、5TorrにおいてCH3S iCI、 (25I
:d/5in)とH2(800i/m1n)の混合物(
流量はいずれも標準状態)を流しながらCVDによりS
iCを沈着させた。表面にはクラックが生成していた。
(Comparative Example 2) The three-dimensional object of Example 1 was placed in a heating furnace and heated to 1350'
CH3S iCI, (25I
:d/5in) and H2 (800i/m1n) mixture (
S by CVD while flowing (all flow rates are standard)
iC was deposited. Cracks were formed on the surface.

(実施例4) 直径10ミクロンのピッチ系炭素繊維2000本をZ軸
方向に、また同じ繊維4000本をX軸およびY軸方向
に用いた直交3次元織物を加熱炉中におき、メタンを流
しながら、ン昂度T= 1473’に、圧力P = 2
 TorrでjQcVIを行い、表面に気相分解により
炭素を平均01μmとなるように沈積した。
(Example 4) An orthogonal three-dimensional fabric using 2,000 pitch-based carbon fibers with a diameter of 10 microns in the Z-axis direction and 4,000 of the same fibers in the X-axis and Y-axis directions was placed in a heating furnace, and methane was poured into it. While the pressure T = 1473', the pressure P = 2
jQcVI was performed at Torr, and carbon was deposited on the surface by vapor phase decomposition to an average thickness of 01 μm.

このノ、5合CVIのi温度圧力係数X=3.19であ
る。続いてSiCl4(200cd/ lll1n)と
C,H,(40cm’/m1n)十I!、 (700c
rtr/I!l1n)の混合ガスを流しながら、167
3°に、 5 Torrにおける熱CVIを行い、開孔
空隙部に気相分解によりおよびSiCを沈着充填した。
In this case, the i-temperature-pressure coefficient X of the 5-coupled CVI is 3.19. Next, SiCl4 (200cd/lll1n) and C, H, (40cm'/m1n) 10I! , (700c
rtr/I! 167 while flowing a mixed gas of
At 3°, thermal CVI at 5 Torr was performed and the open-pore voids were filled with SiC by vapor phase decomposition and deposition.

得られた炭素繊維強化複合材料の表面のクラックは極め
て少なかった。
There were extremely few cracks on the surface of the obtained carbon fiber reinforced composite material.

(実施例5) 直径10ミクロンのピッチ系炭素a維2000本をZ軸
方向に、また同じ繊維6000本をX軸およびY軸方向
に用いた直交3次元織物を加熱炉中におき、メタンを流
しながら、温度T=1200°に1圧力p = i T
orrで熱CVtを行い、表面に気相分解により炭素を
平均O】μ罹となるよう(こ沈積した。
(Example 5) An orthogonal three-dimensional fabric using 2000 pitch-based carbon a fibers with a diameter of 10 microns in the Z-axis direction and 6000 of the same fibers in the X-axis and Y-axis directions was placed in a heating furnace, and methane was heated. While flowing, 1 pressure p = i T at temperature T = 1200°
Carbon was deposited on the surface by vapor phase decomposition to an average thickness of 0.0 μm.

この局舎CVIのl晶度圧力係数X=3.19である。The crystallinity pressure coefficient X of this station CVI is 3.19.

続いて1623°に、5 Torrにおいて、CH,、
S iCIJ(50crd/ win)とH2(800
cm/ m1n)の混合物(流−リ:ぼいずれも4″、
’: 塗状態Jを原料がスとして表面に熱CVIによろ
SiCを沈積被覆処f’lした。ついで窒素気流中で1
923°Kまで昇温し、30分間熱処理した。再び、1
623“K15 Torrにおいて前記条件でSIC/
e沈傾m濯処理17た。このようにして各沈h1被閲処
工里工程の間に1923°Kにおける熱処理を行いなが
ら、沈積被覆処理を3回行った。得られた炭素d雑強化
複合材料を、空気中1773’Kにおいて90分処理し
たところ、重量減少(よなく、また表面の剥離も見られ
なかった。
Then at 1623°, at 5 Torr, CH,...
SiCIJ (50crd/win) and H2 (800crd/win)
cm/m1n) mixture (flow: almost 4″,
': Using coating state J as the raw material, SiC was deposited and coated on the surface by thermal CVI. Then, in a nitrogen stream,
The temperature was raised to 923°K and heat treated for 30 minutes. Again, 1
623 “SIC/ at K15 Torr under the above conditions.
eSilting treatment 17. In this way, the deposition coating process was performed three times, with heat treatment at 1923°K being performed between each precipitation process. When the obtained carbon d miscellaneous reinforced composite material was treated in air at 1773'K for 90 minutes, no weight loss or surface peeling was observed.

Claims (3)

【特許請求の範囲】[Claims] (1)炭素/炭素複合材料の表面に、気相熱分解により
炭素を沈積被覆し、続いてこの表面に気相熱分解により
セラミックスを沈積被覆させることを特徴とする耐酸化
性を有する炭素繊維強化複合材料の製造法。
(1) Oxidation-resistant carbon fiber characterized by depositing and coating carbon on the surface of a carbon/carbon composite material by vapor phase pyrolysis, and then depositing and coating the surface with ceramics by vapor phase pyrolysis. Method of manufacturing reinforced composite materials.
(2)炭素繊維立体織物に、気相熱分解により炭素を沈
積被覆し、続いてこの表面に気相熱分解によりセラミッ
クスを沈積被覆させることを特徴とする耐酸化性を有す
る炭素繊維強化複合材料の製造法。
(2) A carbon fiber-reinforced composite material with oxidation resistance characterized by coating a carbon fiber three-dimensional fabric by depositing carbon by vapor phase pyrolysis, and then coating the surface by depositing ceramics by vapor phase pyrolysis. manufacturing method.
(3)請求項1又は2における気相熱分解により炭素を
沈積被覆する工程において、温度圧力係数Xが3.29
以下となる温度および圧力において気相熱分解により炭
素を沈積充填させるこを特徴とする耐酸化性を有する炭
素繊維強化複合材料の製造法。 但し温度圧力係数X=log((T)×(P)^0^.
^0^7) ここでTは気相熱分解を行うときの温度(°K) Pは気相熱分解を行うときの圧力(Torr)
(3) In the step of depositing and coating carbon by vapor phase pyrolysis according to claim 1 or 2, the temperature pressure coefficient X is 3.29.
A method for producing a carbon fiber reinforced composite material having oxidation resistance, which comprises depositing and filling carbon by vapor phase pyrolysis at the following temperatures and pressures. However, temperature-pressure coefficient X=log((T)×(P)^0^.
^0^7) Here, T is the temperature when performing gas phase pyrolysis (°K) P is the pressure when performing gas phase pyrolysis (Torr)
JP63263845A 1988-10-21 1988-10-21 Method for producing carbon fiber reinforced composite material having oxidation resistance Expired - Lifetime JP2521795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63263845A JP2521795B2 (en) 1988-10-21 1988-10-21 Method for producing carbon fiber reinforced composite material having oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63263845A JP2521795B2 (en) 1988-10-21 1988-10-21 Method for producing carbon fiber reinforced composite material having oxidation resistance

Publications (2)

Publication Number Publication Date
JPH02111681A true JPH02111681A (en) 1990-04-24
JP2521795B2 JP2521795B2 (en) 1996-08-07

Family

ID=17395023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63263845A Expired - Lifetime JP2521795B2 (en) 1988-10-21 1988-10-21 Method for producing carbon fiber reinforced composite material having oxidation resistance

Country Status (1)

Country Link
JP (1) JP2521795B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265285A (en) * 2001-03-08 2002-09-18 Japan Science & Technology Corp METHOD FOR MANUFACTURING HIGH STRENGTH SiC FIBER/SiC COMPOSITE MATERIAL
JP2012184152A (en) * 2011-03-08 2012-09-27 Ibiden Co Ltd Ceramic base material support and method of manufacturing ceramic member
CN103806267A (en) * 2013-12-21 2014-05-21 中国科学院上海硅酸盐研究所 Method for preparing zirconium carbide ceramic boundary phase on surface of carbon fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234788A (en) * 1988-07-21 1990-02-05 Refractory Composites Inc Fire-proof composite material and method for its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234788A (en) * 1988-07-21 1990-02-05 Refractory Composites Inc Fire-proof composite material and method for its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265285A (en) * 2001-03-08 2002-09-18 Japan Science & Technology Corp METHOD FOR MANUFACTURING HIGH STRENGTH SiC FIBER/SiC COMPOSITE MATERIAL
JP2012184152A (en) * 2011-03-08 2012-09-27 Ibiden Co Ltd Ceramic base material support and method of manufacturing ceramic member
CN103806267A (en) * 2013-12-21 2014-05-21 中国科学院上海硅酸盐研究所 Method for preparing zirconium carbide ceramic boundary phase on surface of carbon fiber

Also Published As

Publication number Publication date
JP2521795B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
JP2722198B2 (en) Method for producing carbon / carbon composite material having oxidation resistance
US5217657A (en) Method of making carbon-carbon composites
岡村清人 et al. SiC-based ceramic fibers prepared via organic-to-inorganic conversion process-a review
US5093156A (en) Process for preparing carbon material
JPH0543364A (en) Oxidation-resistant corbon fiber-reinforced carbon composite material and its production
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
JP3218092B2 (en) Method for producing oxidation resistant C / C composite
JPH02111681A (en) Production of carbon-fiber reinforced composite material having oxidation resistance
Marković Use of coal tar pitch in carboncarbon composites
US5523035A (en) Process for producing carbonaceous material
JP3422515B2 (en) Method for forming oxidation-resistant coating on carbonaceous substrate
JPH0848509A (en) Production of carbonaceous porous body
JP2000103686A (en) Production of carbon fiber reinforced carbon composite material
JP3076914B2 (en) Method for producing fiber-reinforced ceramic composite material
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP3324653B2 (en) Manufacturing method of ceramic coated carbon / carbon composite material
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP3548605B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JPH01212277A (en) Production of carbon/carbon compound material
JPH06345571A (en) Production of high-temperature oxidation resistant c/c composite material
JP2001048664A (en) Production of carbon fiber-reinforced carbon material
JPH01212276A (en) Production of carbon/carbon compound material
JP2000219584A (en) Carbon fiber reinforced carbon composite material coated with silicon carbide and its production
JP2002145675A (en) Production process of carbon-fiber-reinforced carbon material
JPH0733565A (en) Carbon material coated with boron carbide and its production