JPH02111660A - Production of ceramic thin film-like shaped article - Google Patents

Production of ceramic thin film-like shaped article

Info

Publication number
JPH02111660A
JPH02111660A JP63262046A JP26204688A JPH02111660A JP H02111660 A JPH02111660 A JP H02111660A JP 63262046 A JP63262046 A JP 63262046A JP 26204688 A JP26204688 A JP 26204688A JP H02111660 A JPH02111660 A JP H02111660A
Authority
JP
Japan
Prior art keywords
deep drawing
thin film
thickness
press
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63262046A
Other languages
Japanese (ja)
Other versions
JPH0519503B2 (en
Inventor
Kazuo Yamana
山名 一男
Shizuo Nakamura
静夫 中村
Takuji Yoshimura
卓二 吉村
Toshimasa Mano
稔正 真野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP63262046A priority Critical patent/JPH02111660A/en
Publication of JPH02111660A publication Critical patent/JPH02111660A/en
Publication of JPH0519503B2 publication Critical patent/JPH0519503B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain ceramics having thin film-like and threedimensionally complex shape by performing deep drawing processing under specific condition to thin plate-like sintered material obtained by burning green sheet of zirconia- based ceramic. CONSTITUTION:Green sheet of zirconia-based ceramics burned to form thin plate-like sintered material having <=2mm thickness and the sintered material is subjected to deep drawing processing under the condition satisfying the following equations to afford thin film-like shaped article: logV<=(0.01/d).(T-1350); 1400<=T<=1500. In said equations, V is press speed (mm/min) in deep drawing processing; T is maximum heating temperature ( deg.C) in deep drawing processing and d is thickness (mm) of thin plate-like sintered material.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、センサ素子、電子部品1機械部品等に広く
利用されるセラミックス薄膜状成形体の製法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a ceramic thin film molded body that is widely used for sensor elements, electronic parts, mechanical parts, etc.

[従来の技術] セラミックスは、優れた電気特性や光学的特性。[Conventional technology] Ceramics have excellent electrical and optical properties.

熱伝導特性等を示すことから、広く電子部品1機械部品
等に応用されている。例えば、IC絶縁基板やコンデン
サ等には薄板状に成形したセラミックスが用いられ、ガ
ス検出センサのセンサ素子等には袋管状に成形したセラ
ミックスが用いられる。
Because it exhibits heat conduction properties, it is widely applied to electronic parts, mechanical parts, etc. For example, ceramics molded into thin plates are used for IC insulating substrates, capacitors, etc., and ceramics molded into bag tube shapes are used for sensor elements of gas detection sensors, etc.

前者の薄板状成形体は、プレス成形やドクターブレード
法によって得られ、特に薄いものを得る場合にはドクタ
ーブレード法が好適である。この方法は泥漿鋳込み成形
を応用したテープ鋳込み成形で、セラミックス粉末にバ
インダー、可塑剤、溶剤等を混合して得られる泥漿(ス
リップ)を、送られてくるテープの上に流延し、この泥
漿厚みをドクターブレードで調整したのち焼成する方法
である。この方法によれば、厚み10μm〜1 mmの
薄板成形体を容易に製造することができる。一方、袋管
状成形体等の三次元形状のものは、一般に鋳込み成形で
得られるが、鋳型が作れないものは、射出成形でつくる
場合もある。しかし、いずれにせよ、このような三次元
的な形状を賦形する場合には、脱型時や焼成時に崩形し
ないよう、どの場所の厚みも211II11以上になる
よう設定されている。
The former thin plate-shaped molded product can be obtained by press molding or a doctor blade method, and the doctor blade method is particularly suitable when obtaining a thin product. This method is tape casting, which is an application of slurry casting, in which a slurry (slip) obtained by mixing ceramic powder with binder, plasticizer, solvent, etc. is cast onto the tape being fed. This is a method in which the thickness is adjusted with a doctor blade and then fired. According to this method, a thin plate molded body having a thickness of 10 μm to 1 mm can be easily produced. On the other hand, three-dimensional shaped products such as bag tubular molded products are generally obtained by casting, but if a mold cannot be made, they may be made by injection molding. However, in any case, when forming such a three-dimensional shape, the thickness at any location is set to 211II11 or more so that the shape does not collapse during demolding or firing.

〔発明が解決しようとする問題点] しかしながら、上記三次元形状のセラミックスにおいて
も、各部位の厚みを1鵬以下の薄膜にすることが望まれ
る場合がある。例えば、酸素ガス検出器のセンサ素子に
は、すでに述べたように袋管状のセラミックスを用いる
が、センサ素子としての性能を上げるためにはセラミッ
クスの厚みを薄クシて抵抗を小さくする必要がある。す
なわち、袋管状でかつ薄膜状のものが得られれば、■応
答速度が速くなる、■ノイズが小さくなる、■低温動作
性がよくなる、■微量酸素域での応答性、感度の向上が
なされる、等の利1点がある。し−かし、袋管状のもの
を1mm以下の薄膜で得るような成形技術は確立されて
いないため、薄膜かつ袋管状のものは得られていない。
[Problems to be Solved by the Invention] However, even in the above-mentioned three-dimensionally shaped ceramic, it may be desired to make each part a thin film of 1 mm or less in thickness. For example, the sensor element of an oxygen gas detector uses bag-tube-shaped ceramics as described above, but in order to improve the performance of the sensor element, it is necessary to reduce the thickness of the ceramic to reduce its resistance. In other words, if a bag tube-like and thin film-like product can be obtained, ■ response speed will be faster, ■ noise will be reduced, ■ low-temperature operability will be improved, and ■ responsiveness and sensitivity will be improved in the trace oxygen range. , etc. There is one advantage. However, since a molding technique for obtaining a bag-tube-like thin film with a thickness of 1 mm or less has not been established, a thin-film bag-tube-like product has not been obtained.

この発明は、このような事情に坩みなされたもので、セ
ラミックスを、薄膜状でかつ三次元的な複雑形状に成形
することのできる製法の提供をその目的とする。
The present invention has been developed in light of the above circumstances, and an object of the present invention is to provide a manufacturing method that allows ceramics to be formed into a thin film-like three-dimensional complex shape.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明のセラミックス薄
膜状成形体の製法は、ジルコニア系セラミックスのグリ
ーンシートを焼成して2 mm以下の薄板状焼結体とし
たのち、上記焼結体に対し、下記の式を満足する条件下
で深絞り加工を施し薄膜状成形体とするという構成をと
る。
In order to achieve the above object, the method for manufacturing a ceramic thin film shaped body of the present invention involves firing a green sheet of zirconia ceramics into a thin plate shaped sintered body of 2 mm or less, and then applying the steps to the above sintered body. The structure is such that a thin film-like molded product is formed by deep drawing under conditions that satisfy the following formula.

1400≦T≦1500 上記の式において、 ■は深絞り加工時のプレス速度(閣/分)Tは深絞り加
工時の最高加熱温度(°C)dは薄板状焼結体の厚み(
mm) 〔作用〕 すなわち、この発明は、ドクターブレード法等の公知の
方法を用いて2柵以下の薄板状焼結体を得たのち、これ
に特殊な条件下で深絞り加工を施して三次元的な薄膜状
成形体とするものである。
1400≦T≦1500 In the above equation, (1) is the press speed during deep drawing (k/min), T is the maximum heating temperature during deep drawing (°C), and d is the thickness of the thin plate-shaped sintered body (
mm) [Function] That is, the present invention uses a known method such as the doctor blade method to obtain a thin plate-shaped sintered body of two bars or less, and then deep-draws it under special conditions to form a tertiary product. This is an original thin film molded product.

上記特殊な条件に従うと、薄板状焼結体であっても、程
塑性現象を呈し、深絞り加工にしたがって望性変形を生
じる。
When the above-mentioned special conditions are followed, even a thin plate-like sintered body exhibits a plastic phenomenon and undergoes desired deformation during deep drawing.

つぎに、この発明を実施例にもとづいて詳細に説明する
Next, the present invention will be explained in detail based on examples.

〔実施例〕〔Example〕

まず、下記の第1表に示す割合で、ジルコニア粉末(東
ソー社製、平均粒子径0.05μm)、溶剤、バインダ
ー、可塑剤および分散剤を配合してスリップを調製した
。調製の手順は、まずバインダーと溶剤とを混合し80
〜100°Cの温度で溶解する。ついで、ジルコニア粉
末と分散剤と溶剤を加え、自動乳鉢を用いて5時間混合
撹拌する。
First, a slip was prepared by blending zirconia powder (manufactured by Tosoh Corporation, average particle size: 0.05 μm), a solvent, a binder, a plasticizer, and a dispersant in the proportions shown in Table 1 below. The preparation procedure is to first mix the binder and solvent and
Melts at temperatures of ~100°C. Next, zirconia powder, a dispersant, and a solvent were added, and the mixture was mixed and stirred for 5 hours using an automatic mortar.

この段階で、バインダーを完全に溶解させ、凝集粉末の
粒を粉砕する。凝集粉末の粒が残っていては、後述のグ
リーンシート作製段階でドクターブレードに上記粒が引
っかかってシートが損傷する原因となるからである。こ
のようにして滑らかなスリップを得る。
At this stage, the binder is completely dissolved and the agglomerated powder grains are ground. This is because if particles of the agglomerated powder remain, the particles will be caught by a doctor blade during the green sheet production step described later, causing damage to the sheet. This way you get a smooth slip.

(以下余白) このようにして得られたスリップを、公知のドクターブ
レードWZ (DP  100)のスリップ留に溜め、
ブレード高さと送り速度を調整してキャスティングを行
い、グリーンシートを製造した。
(Left below) The slip obtained in this way was collected in the slip holder of a known doctor blade WZ (DP 100),
A green sheet was produced by casting by adjusting the blade height and feed speed.

グリーンシートは強制乾燥してもよいが、この実施例で
は自然乾燥した。そして、乾燥したグリーンシートを8
0mmX90mmの長方形に切断し、アルミナファイバ
ーを被せて焼成を行った。焼成には、公知の電気炉(モ
トヤマ社製)を用いた。なお、焼成に先立ち、グリーン
シートの脱脂を行う必要があり、まず有機物の燃焼温度
を測定するために示差熱分析を行った。その結果、約6
50 ’Cで殆どが燃焼することがわかり、脱脂温度を
75o’c、脱脂時間を30分に設定して脱脂を行うこ
とにした。
Although the green sheet may be force-dried, it was air-dried in this example. Then, 8 pieces of dried green sheet
It was cut into a rectangle of 0 mm x 90 mm, covered with alumina fiber, and fired. A known electric furnace (manufactured by Motoyama Co., Ltd.) was used for firing. Note that prior to firing, it was necessary to degrease the green sheet, and first, differential thermal analysis was performed to measure the combustion temperature of organic matter. As a result, about 6
It was found that most of the oil burned at 50'C, so it was decided to perform degreasing by setting the degreasing temperature to 75 o'C and the degreasing time to 30 minutes.

焼成の容器としては、アルミナファイバーのさやを用い
るが、このさやの中にそのままグリーンシートを置いた
のでは、グリーンシートの表面および裏面で温度むらが
生じ、得られる焼結体の縁部が反ったりクラックが入っ
て割れを生したりすることがわかったので、さ−やの中
に綿状のアルミナファイバーを詰め、この中にグリーン
シートを入れるようにした。
An alumina fiber sheath is used as the firing container, but if the green sheet is placed inside the sheath, temperature unevenness will occur on the front and back surfaces of the green sheet, and the edges of the resulting sintered body will be warped. Since it was found that the pods were prone to cracks and cracks, the pod was filled with cotton-like alumina fibers and a green sheet was placed inside the pod.

焼成温度1よ、100°C/分で上昇するようにし、度
は100°C/分で冷却した。焼成によって得られる薄
板状焼結体は、グリーンシート時の大きさに対し、ta
、横とも約30%程度収縮した。厚みの変化は殆ど見ら
れなった。
Firing temperature 1 was set to rise at a rate of 100°C/min, and cooled at a rate of 100°C/min. The thin plate-like sintered body obtained by firing has ta compared to the size of the green sheet.
, both sides shrunk by about 30%. Almost no change in thickness was observed.

上記薄板状焼結体の相構造をX線回折装置によって調べ
た。ジルコニアは、単斜晶系、正方品系立方晶系のいず
れかの構造をとることができるが、3モルY20.添加
ジルコニア(TZ−3Y)では殆どが正方晶系となり、
わずかに単斜晶系を生じることがあった。これに対し8
モルY2O3添加ジルコニア(TZ−8Y)では全て立
方晶系であった。その曲げ強度を3モルYzO3添加ジ
ルコニアで調べた結果、最高加熱温度1400 ’Cで
30 kg r 7mm”を示した。そして、最高加熱
温度が1400°Cより高くても低くても強度の低下が
見られた。
The phase structure of the thin plate-like sintered body was examined using an X-ray diffraction apparatus. Zirconia can have either a monoclinic system or a tetragonal cubic system structure, but 3 mol Y20. Most of the doped zirconia (TZ-3Y) is tetragonal,
A slight monoclinic system may occur. On the other hand, 8
The zirconia doped with molar Y2O3 (TZ-8Y) was all cubic system. As a result of examining the bending strength of 3 mol YzO3-added zirconia, it was found to be 30 kg r 7mm'' at a maximum heating temperature of 1400'C.The strength decreased regardless of whether the maximum heating temperature was higher or lower than 1400°C. It was seen.

最高加熱温度1400°Cで焼結した3モルY2O3添
加ジルコニア焼結体を、外径42mm(厚み2mm)の
円板状に切断し、プレス径20胴、ダイス内径25 m
mの絞り型を用いて深絞り加工を行った。温度は、12
00°Cまでは20’C/分、1200〜1450 ’
Cでは15’C/分で昇温するようにし、1450°C
に達した時点でこの温度を60分間保持したのち、複動
プレスによって約15mmストロークの絞り加工を施し
た。そして、自然冷却して袋管状成形体を得た。
A 3 mol Y2O3-added zirconia sintered body sintered at a maximum heating temperature of 1400°C was cut into a disc shape with an outer diameter of 42 mm (thickness 2 mm), a press diameter of 20 mm, and a die inner diameter of 25 m.
Deep drawing was performed using a drawing die of size m. The temperature is 12
20'C/min up to 00°C, 1200-1450'
At C, the temperature should be raised at 15'C/min to 1450°C.
After reaching this temperature, this temperature was maintained for 60 minutes, and then drawing was performed with a stroke of about 15 mm using a double-acting press. Then, it was naturally cooled to obtain a bag tubular molded product.

なお、上記深絞り加工において、焼結体が塑性変形しう
る限界値を調べるために プレス速度と最大プレス荷重
の関係を第1図にまとめた。
In addition, in order to investigate the limit value at which the sintered body can be plastically deformed in the deep drawing process described above, the relationship between press speed and maximum press load is summarized in Figure 1.

ところで、最大プレス荷重P maxは、実用的には下
記の式で示される。
By the way, the maximum press load P max is practically expressed by the following formula.

Pmax =I Dz  to 6t C+−−(1)
D2 :成形体外径、  to  :試料厚みσL :
試料の引っ張り強さ C1:絞り率に関する係数 したがって、第2図において最大プレス荷重がブレス速
度の増加とともに増加する傾向がみられるのは、塑性変
形とともに試料の引っ張り強さが増加しているものと考
えられる。
Pmax=I Dz to 6t C+--(1)
D2: Molded object outer diameter, to: Sample thickness σL:
Tensile strength of sample C1: Coefficient related to drawing ratio Therefore, the reason why the maximum press load tends to increase as the pressing speed increases in Fig. 2 is because the tensile strength of the sample increases with plastic deformation. Conceivable.

このようにして得られた成形体は、プレス時の高温によ
って絞り型の材料である黒鉛のカーボンが付着して外表
面、内表面ともに黒色を呈するが、再加熱によってもと
の白色に戻すことができる。
The molded product obtained in this way has a black color on both the outer and inner surfaces due to the adhesion of carbon from graphite, which is the material of the drawing mold, due to the high temperature during pressing, but it can return to its original white color by reheating. Can be done.

つぎに、3モルY2O3添加ジルコニア焼結体の厚みを
2帥から1.0閾、0.5鵬と減らして深絞り加工を行
った。試料が薄くなればなる程得られる成形体にしわが
入りやすいので、これを防ぐため、絞り型と試料の隙間
をなるべく小さくする方がよい。しかし、逆に小さくし
すぎると試料肩口で破断しやすいため、プレス径は20
mmでそのままとし、ダイス内径を23Mとしてその隙
間を1゜5 mmに設定した。また、プレス速度は、0
.2,0゜5.1.0mm/分の3通りとした。その結
果を第2図に示す。前記(1)式によれば、最大プレス
荷重Pwaxは試料の厚みtoに比例するが、第2図か
らはそのような関係が得られない。これは、試料の厚み
の違いによって絞り率に関する係数01が変化したため
と考えられる。
Next, the thickness of the 3 mol Y2O3-added zirconia sintered body was reduced from 2 mm to 1.0 mm and 0.5 mm, and deep drawing was performed. The thinner the sample, the more likely wrinkles will appear in the resulting molded product, so to prevent this, it is better to make the gap between the drawing die and the sample as small as possible. However, if the diameter is too small, the sample will easily break at the shoulder, so the press diameter should be 20 mm.
The inner diameter of the die was set to 23M, and the gap was set to 1°5 mm. Also, the press speed is 0
.. Three different speeds were used: 2.0°, 5.1.0 mm/min. The results are shown in FIG. According to the above equation (1), the maximum press load Pwax is proportional to the thickness to of the sample, but such a relationship cannot be obtained from FIG. 2. This is considered to be because the coefficient 01 related to the reduction rate changed due to the difference in sample thickness.

このようにして得られた成形体は、前記厚み2mmのも
ので生じたクラックが全く発生せず、良好なものであっ
た。ただし、厚み1.0 mmのものは外縁部がやや波
打っており(耳付き現象)、厚み0゜5 mmのものは
しわが生じていた。
The molded product thus obtained was in good condition, with no cracks occurring in the 2 mm thick molded product. However, the outer edge of the one with a thickness of 1.0 mm was slightly wavy (ear phenomenon), and the one with a thickness of 0.5 mm had wrinkles.

さらに、3モルY2O3添加ジルコニア焼結体(厚み2
閣)を用い、深絞り加工時の加工温度が焼結体の塑性変
形に与える影習について調べるために、所定の温度を1
350.1400,1450.1500°Cの4通りに
して深絞り加工を行った。上記温度に至る昇温は15°
C/分とし、上記温度を保持する時間は60分とした。
Furthermore, 3 mol Y2O3 added zirconia sintered body (thickness 2
In order to investigate the influence of the processing temperature during deep drawing on the plastic deformation of the sintered body, the predetermined temperature was set to 1.
Deep drawing was performed at four different temperatures: 350°C, 1400°C, 1450°C, and 1500°C. The temperature increase to reach the above temperature is 15°
C/min, and the time for maintaining the above temperature was 60 minutes.

また、プレス速度は、0.2 、 0.5 、 1.0
 mm 7分の3通りとした。ただし、1350°Cの
場合は試料が加工途中ですべて破断してしまった。また
、1400°Cにおいては、肩口にわずかなりラックを
生じたものの、成形は良好であった。1450°Cと1
500°Cの場合では全くクラックを生じず滑らかな成
形体が得られた。
In addition, the press speed is 0.2, 0.5, 1.0
The number of mm was 3/7. However, in the case of 1350°C, all the samples were broken during processing. Further, at 1400°C, molding was good although slight racking occurred at the shoulder. 1450°C and 1
At 500°C, a smooth molded product was obtained without any cracks.

これらの実験データから、好適な深絞り加工の条件を客
観化な数式で表すことができる。すなわち、まず下記の
式にもとづいて、プレス荷重とプレス速度の関係を、プ
レス圧とプレス速度の関係に直す。
From these experimental data, it is possible to express suitable deep drawing conditions using an objective mathematical formula. That is, first, based on the following equation, the relationship between press load and press speed is changed to the relationship between press pressure and press speed.

プレス圧=プレス荷重÷ポンチ面積 そして、例えばプレス温度が1450°Cとした場合の
プレス圧Pは、第3図に示すように、プレス速度Vを関
数とする一次式で示される。同様に、1400°Cの場
合、1500°Cの場合についてもプレス圧Pとプレス
速度に関する一次式が得られる。
Press pressure = Press load ÷ Punch area For example, when the press temperature is 1450° C., the press pressure P is expressed by a linear equation as a function of the press speed V, as shown in FIG. Similarly, linear equations relating to press pressure P and press speed can be obtained for 1400°C and 1500°C.

ところで、いずれの加熱温度の場合でも、プレス圧力が
200 kg/cfflを超えると、プレス治具の破損
あるいは試料の破壊が発生するので、プレス圧力の上限
を2 Q Okg/ CTIIに設定することができる
。そこで、上記3つの一次式から、プレス圧力が200
 kg/crAとなるときのプレス速度を算出し、これ
を最大プレス速度(V)とする。このようにして求めら
れたVの値と、プレス時の加熱温度の関係をまとめると
、第4図に示すようになる。
By the way, regardless of the heating temperature, if the press pressure exceeds 200 kg/cffl, damage to the press jig or destruction of the sample will occur, so it is recommended to set the upper limit of the press pressure to 2 Q Okg/CTII. can. Therefore, from the above three linear equations, the press pressure is 200
The press speed at which kg/crA is obtained is calculated, and this is set as the maximum press speed (V). The relationship between the value of V thus determined and the heating temperature during pressing is summarized as shown in FIG. 4.

この図に示される3つの直線の式から、下記の式を得る
ことができる。
The following equation can be obtained from the equations of the three straight lines shown in this figure.

1400≦T≦1500 ■:最大プレス速度(mm/分) を二試料厚み(mm) T:加熱温度(°C) これは、最大プレス速度を示す弐であるから、適正な深
絞り加工を行うことのできるプレス速度は、下記の不等
式で示すことができる。
1400≦T≦1500 ■: Maximum press speed (mm/min) Sample thickness (mm) T: Heating temperature (°C) This indicates the maximum press speed, so perform proper deep drawing. The press speed that can be achieved can be expressed by the following inequality.

l 400≦T≦1500 ■;プレス速度(謳/分) t:試料厚み(mm) T:加熱温度(°C) したがって、上記式を満足する範囲内の条件下で、薄板
状焼結体を深絞り加工して、三次元的な形状の薄膜状成
形体を得ることができる。
l 400≦T≦1500 ■;Press speed (min/min) t: Sample thickness (mm) T: Heating temperature (°C) Therefore, under the conditions that satisfy the above formula, the thin plate-shaped sintered body is By deep drawing, a three-dimensional shaped thin film shaped body can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の薄膜状成形体の製法によれば
、薄板状焼結体に対し深絞り加工を施すことができるた
め、従来不可能とされていた2iun以下、特に1 m
m以下のJ’;<状成形体を得ることができる。
As described above, according to the method for producing a thin film shaped body of the present invention, deep drawing can be performed on a thin plate shaped sintered body.
It is possible to obtain a molded article with J′;< of m or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプレス温度1450°Cにおけるプレス速度と
最大プレス荷重の関係を示す線図、第2図は試料厚みと
最大プレス荷重の関係を示す線図、第3図はプレス温度
1.450 ”Cにおけるプレス速度とプレス圧力の関
係を示す線図、第4圓は加熱温度と最大プレス速度の常
用対数の関係を示す線図である。
Figure 1 is a diagram showing the relationship between press speed and maximum press load at a press temperature of 1450°C, Figure 2 is a diagram showing the relationship between sample thickness and maximum press load, and Figure 3 is a diagram showing the relationship between sample thickness and maximum press load at a press temperature of 1.450°C. A diagram showing the relationship between press speed and press pressure in C, and the fourth circle is a diagram showing the relationship between the heating temperature and the common logarithm of the maximum press speed.

Claims (1)

【特許請求の範囲】[Claims] (1)ジルコニア系セラミックスのグリーンシートを焼
成して2mm以下の薄板状焼結体としたのち、上記焼結
体に対し、下記の式を満足する条件下で深絞り加工を施
し薄膜状成形体とすることを特徴とするセラミックス薄
膜状成形体の製法。 logV≦(0.01/d)・(T−1350)140
0≦T≦1500 上記の式において、 Vは深絞り加工時のプレス速度(mm/分) Tは深絞り加工時の最高加熱温度(℃) dは薄板状焼結体の厚み(mm)
(1) After firing a green sheet of zirconia ceramics into a thin plate-like sintered body of 2 mm or less, the above-mentioned sintered body is deep-drawn under conditions that satisfy the following formula to form a thin film-like molded body. A method for producing a ceramic thin film shaped body, characterized by: logV≦(0.01/d)・(T-1350)140
0≦T≦1500 In the above formula, V is the press speed during deep drawing (mm/min) T is the maximum heating temperature during deep drawing (℃) d is the thickness of the thin plate-shaped sintered body (mm)
JP63262046A 1988-10-18 1988-10-18 Production of ceramic thin film-like shaped article Granted JPH02111660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63262046A JPH02111660A (en) 1988-10-18 1988-10-18 Production of ceramic thin film-like shaped article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63262046A JPH02111660A (en) 1988-10-18 1988-10-18 Production of ceramic thin film-like shaped article

Publications (2)

Publication Number Publication Date
JPH02111660A true JPH02111660A (en) 1990-04-24
JPH0519503B2 JPH0519503B2 (en) 1993-03-16

Family

ID=17370279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63262046A Granted JPH02111660A (en) 1988-10-18 1988-10-18 Production of ceramic thin film-like shaped article

Country Status (1)

Country Link
JP (1) JPH02111660A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536763A (en) * 2005-02-15 2008-09-11 ソノコ・ディベロップメント・インコーポレーテッド Base rail
US10485530B2 (en) 2012-03-29 2019-11-26 Depuy Ireland Unlimited Company Orthopedic surgical instrument for knee surgery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536763A (en) * 2005-02-15 2008-09-11 ソノコ・ディベロップメント・インコーポレーテッド Base rail
US10485530B2 (en) 2012-03-29 2019-11-26 Depuy Ireland Unlimited Company Orthopedic surgical instrument for knee surgery
US11589857B2 (en) 2012-03-29 2023-02-28 Depuy Ireland Unlimited Company Orthopedic surgical instrument for knee surgery

Also Published As

Publication number Publication date
JPH0519503B2 (en) 1993-03-16

Similar Documents

Publication Publication Date Title
EP0708068B1 (en) Method for controlling firing shrinkage of ceramic green body
US20170050244A1 (en) Process for producing shaped refractory metal bodies
CN110128115A (en) A kind of method that flash burning prepares oxide eutectic ceramics
CN106946574A (en) High-purity high-strength zirconia alumina zirconia composite ceramics and preparation method thereof
JPH08114571A (en) Manufacture of oxygen sensor
JPH02111660A (en) Production of ceramic thin film-like shaped article
CN106977201A (en) High-purity high-strength high-ductility zirconia composite ceramics ultra thin plate and preparation method thereof
JPH04270165A (en) Slurry composition for forming sheet and its sintered product
CN116768626B (en) PbNb (PbNb) material 2 O 6 Base piezoelectric ceramic material and preparation method thereof
JPH07240217A (en) Electrolyte substrate and flat cell manufacturing method
CN106588003A (en) Zirconia ceramic chip and preparation method thereof, cover plate of induction identification module and preparation method and application of cover plate
JPH06237054A (en) Green sheet for ceramic substrate
JPH10212166A (en) Ceramic sheet, green sheet and production of ceramic sheet
CN105541321B (en) A kind of piezoceramic materials of high-k P 52 and preparation method thereof
JP2000136967A (en) Temperature-detecting element
JP3274330B2 (en) Method for controlling firing shrinkage of ceramic molded body
KR20140072301A (en) High strength Aluminum Nitride ceramics and the method of low temperature sintering thereof
JPH06318412A (en) Manufacture of oxide superconducting molded body
CN116573933A (en) Zirconia ceramic stacking sintering method
JP3038425B2 (en) Manufacturing method of laminated ceramic sheet
JPH1179845A (en) Production of silicon carbide having high toughness
JPH10305416A (en) Method for molding non-plastic material
JPH07133149A (en) Production of magnesia sintered body
Zuo et al. Mutual diffusion at heterogeneous interfaces in co-fired composite MLCCs
CN106747422A (en) High energy storage density and the multi-functional lead-free ceramicses of electric field induced strain high and preparation method