JP2000136967A - Temperature-detecting element - Google Patents

Temperature-detecting element

Info

Publication number
JP2000136967A
JP2000136967A JP10311440A JP31144098A JP2000136967A JP 2000136967 A JP2000136967 A JP 2000136967A JP 10311440 A JP10311440 A JP 10311440A JP 31144098 A JP31144098 A JP 31144098A JP 2000136967 A JP2000136967 A JP 2000136967A
Authority
JP
Japan
Prior art keywords
temperature
detecting element
firing
glass
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10311440A
Other languages
Japanese (ja)
Other versions
JP3510978B2 (en
Inventor
Kenichi Nagae
謙一 永江
Noriaki Hamada
紀彰 浜田
Masahiko Azuma
昌彦 東
Yoji Furukubo
洋二 古久保
Masaya Kokubu
正也 國分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP31144098A priority Critical patent/JP3510978B2/en
Publication of JP2000136967A publication Critical patent/JP2000136967A/en
Application granted granted Critical
Publication of JP3510978B2 publication Critical patent/JP3510978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new temperature-detecting element which can highly accurately detect temperatures near 800-1000 deg.C. SOLUTION: The temperature-detecting element is formed of a molding including 20-80 vol.% of a lithium silicate-based glass ceramic containing 5-30 wt.% of Li2O and 20-80 vol.% of a ceramic filler of forsterite, quartz or the like. The size change of the element because of a shrinkage incident to baking after kept in an unknown temperature is measured, from which an unknown temperature of 800-1000 deg.C can be detected. For example, a temperature inside a ceramics or metallic container or sheath at the time of baking the glass ceramics can be measured accurately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックス配線
基板などの製造工程に用いられる焼成炉の炉内の熱履歴
の最高温度を簡易的に測定できる温度検知素子に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature detecting element capable of simply measuring the maximum temperature of a heat history in a firing furnace used in a manufacturing process of a ceramic wiring substrate or the like.

【0002】[0002]

【従来技術】従来より、セラミックスの1 つの応用分野
として、半導体パッケージ、デバイスの分野にみられる
ように、セラミックス絶縁基板に対してメタライズ配線
層を形成したセラミックス配線基板が知られている。こ
のようなセラミック配線基板は、例えば、セラミックス
原料粉末を用いて所定形状に成形した後、適宜メタライ
ズペーストを塗布し、所定の条件で焼成することにより
成形体を焼成緻密化するとともに、メタライズ配線層の
焼成も行われる。
2. Description of the Related Art Conventionally, as one field of application of ceramics, there is known a ceramic wiring board in which a metallized wiring layer is formed on a ceramic insulating substrate as seen in the fields of semiconductor packages and devices. Such a ceramic wiring board is formed, for example, by molding into a predetermined shape using ceramic raw material powder, then appropriately applying a metallizing paste and firing under a predetermined condition, thereby firing and densifying the formed body, and also forming a metallized wiring layer. Is also performed.

【0003】また、セラミックスの比誘電率、誘電損
失、熱膨張係数、熱伝導率、強度などセラミックスの諸
特性も、この焼成工程の条件によって大きく変化するこ
とが知られている。従って、この焼成工程の温度パター
ンや雰囲気が、セラミックス基板の特性を決定する最も
大きな要素であると言える。
It is also known that various characteristics of ceramics, such as relative permittivity, dielectric loss, coefficient of thermal expansion, thermal conductivity, and strength, of ceramics vary greatly depending on the conditions of the firing step. Therefore, it can be said that the temperature pattern and atmosphere in the firing step are the most important factors for determining the characteristics of the ceramic substrate.

【0004】セラミックスの焼成工程に用いられる焼成
炉においては、焼成炉内の温度を管理することは、常に
機能の安定した基板を焼成するためにも非常に重要であ
る。焼成炉内の温度管理には一般的に熱電対が用いられ
る。しかし、基板を焼成する際は、成形体をセラミック
スあるいは金属製の容器内に置いたり、平板、支柱を用
いて組みあげたサヤに置いたりするため、成形体付近の
温度を厳密に管理することは困難である。
In a firing furnace used in a firing process of ceramics, it is very important to control the temperature in the firing furnace in order to always fire a substrate having a stable function. In general, a thermocouple is used for temperature control in the firing furnace. However, when sintering the substrate, the temperature near the molded body must be strictly controlled because the molded body is placed in a ceramic or metal container or placed on a sheath that is assembled using flat plates and columns. It is difficult.

【0005】そこで、熱電対に代わる温度管理方法とし
て、所定の組成物からなる定められた寸法の成形体を焼
成炉内の温度を測定すべき場所に設置し、その所定の温
度で焼成した際の焼結体の寸法から焼成炉内の温度を推
定する、いわゆる温度検知素子が知られており、すでに
市販されている。
[0005] Therefore, as a temperature management method instead of a thermocouple, a molded body of a predetermined size composed of a predetermined composition is placed at a place where the temperature is to be measured in a firing furnace, and fired at the predetermined temperature. A so-called temperature detecting element for estimating the temperature in a firing furnace from the size of a sintered body of the above is known, and is already on the market.

【0006】一方で、セラミック配線基板として、最近
では、低温で焼成が可能であり、銅などの低抵抗導体が
使用できることから、低温焼成ガラスセラミックスを用
いた配線基板の開発が進められている。このガラスセラ
ミックスにおいては、焼結体の緻密度、焼結過程で生成
される結晶相によって特性が大きく変化するために、量
産時に焼成工程での最高温度のばらつきの管理が非常に
重要となる。また最近では、基板の寸法精度も重要視さ
れており、寸法精度についても最高温度のばらつきの影
響が大きい。従って、安定した特性、高寸法精度を示す
基板の焼成を行うためには、焼成炉の細かい温度管理が
必要となる。
On the other hand, recently, as a ceramic wiring board, it is possible to fire at a low temperature and a low-resistance conductor such as copper can be used. In this glass ceramic, since the characteristics greatly change depending on the denseness of the sintered body and the crystal phase generated in the sintering process, it is very important to manage the variation in the maximum temperature in the firing step during mass production. Recently, the dimensional accuracy of the substrate is also regarded as important, and the dimensional accuracy is greatly affected by variations in the maximum temperature. Therefore, in order to fire a substrate exhibiting stable characteristics and high dimensional accuracy, it is necessary to precisely control the temperature of the firing furnace.

【0007】[0007]

【発明が解決しようとする課題】このガラス・セラミッ
クス配線基板の焼成は、一般的には800〜1000℃
の範囲で行われるが、この温度域での従来の市販の温度
検知素子は、指示温度が2〜3℃刻みであり測定精度が
低い。また、使用条件が限られ、最適条件から外れる
と、指示温度の絶対値に差が生じてしまうという問題が
あった。そのため、基板に要求される諸特性や寸法精度
のばらつきを生じさせる要因となる焼成温度のばらつき
を管理するためには、従来品の精度では不十分であっ
た。
The firing of the glass / ceramic wiring substrate is generally performed at 800 to 1000 ° C.
In the conventional temperature detecting element in this temperature range, the indicated temperature is in steps of 2 to 3 ° C., and the measurement accuracy is low. In addition, there is a problem that the use condition is limited, and if the condition deviates from the optimum condition, a difference occurs in the absolute value of the indicated temperature. For this reason, the accuracy of the conventional product is insufficient to manage the variation in the firing temperature, which causes the various characteristics and dimensional accuracy required for the substrate.

【0008】また、Cu、Agなどの導体を用いたガラ
スセラミック基板の焼成には、酸素濃度の低いN2 ある
いはN2 +H2 混合ガスが用いられ、また、特公平1−
50120号に示されるような加湿した雰囲気中で積層
体の脱バインダーが行われる。しかし、従来の検知素子
に配合された有機バインダーは、その熱分解性の低さや
炉内の酸素濃度が低いことから、このような雰囲気では
十分除去することができない等の問題があった。
In firing a glass ceramic substrate using a conductor such as Cu or Ag, a low oxygen concentration N 2 or N 2 + H 2 mixed gas is used.
The binder is removed from the laminate in a humidified atmosphere as shown in No. 50120. However, the organic binder compounded in the conventional sensing element has a problem that it cannot be sufficiently removed in such an atmosphere because of its low thermal decomposability and low oxygen concentration in the furnace.

【0009】従って、本発明は、800〜1000℃付
近の温度を高精度に検知することのできる新規な温度検
知素子を提供することを目的とするものである。
Accordingly, an object of the present invention is to provide a novel temperature detecting element capable of detecting a temperature around 800 to 1000 ° C. with high accuracy.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記目的
に対して検討を重ねた結果、Li2 Oを5〜30重量%
含有のリチウム珪酸系結晶化ガラスを20〜80体積%
と、セラミックフィラーを20〜80体積%の割合で含
む成形体からなるものであり、上記リチウム珪酸ガラス
を用いることにより、800〜1000℃付近で結晶が
溶解することにより液相を多量に生成し、温度が高くな
るに従い成形体が収縮していき、焼成温度に整合した収
縮挙動を示すことができる。その結果、未知の温度中に
保持した後の焼成収縮による寸法の変化を測定すること
により、セラミックスの焼成工程に用いられる焼成炉内
におけるセラミックスあるいは金属製の容器やサヤ内等
の熱履歴の最高温度を精度良く測定することができる。
Means for Solving the Problems The inventors of the present invention have studied the above object and found that Li 2 O is contained in an amount of 5 to 30% by weight.
20-80 volume% lithium silicate crystallized glass
And a molded product containing a ceramic filler at a ratio of 20 to 80% by volume, and the use of the above-mentioned lithium silicate glass dissolves a crystal at around 800 to 1000 ° C. to generate a large amount of a liquid phase. As the temperature increases, the molded body shrinks, and can exhibit a shrinkage behavior matching the firing temperature. As a result, by measuring the dimensional change due to firing shrinkage after holding at an unknown temperature, the highest thermal history of ceramics or metal containers and sheaths in the firing furnace used in the firing process of ceramics was measured. Temperature can be measured accurately.

【0011】[0011]

【発明の実施の形態】本発明の温度検知素子は、リチウ
ム珪酸系結晶化ガラスを20〜80体積%と、セラミッ
クフィラーを20〜80体積%とからなり、ガラスとし
て、Li2 Oを5〜30重量%含有するリチウム珪酸系
結晶化ガラスを用いる。
Temperature sensing element of the present invention DETAILED DESCRIPTION OF THE INVENTION, 5 and 20 to 80% by volume of lithium silicate-based crystallized glass, becomes the ceramic filler from 20 to 80 vol%, a glass, a Li 2 O A lithium silicate-based crystallized glass containing 30% by weight is used.

【0012】このLi2 Oを5〜30重量%含有するリ
チウム珪酸系結晶化ガラスは、軟化点が400〜800
℃、結晶化温度が600〜900℃、結晶溶解温度が8
50〜1000℃の特性を有することから、結晶溶解温
度の850℃以上の温度で、結晶化温度域で結晶化した
リチウムシリケートが再度溶解し、液相を生成し焼結が
促進される。
The lithium silicate crystallized glass containing 5 to 30% by weight of Li 2 O has a softening point of 400 to 800.
° C, crystallization temperature 600-900 ° C, crystal melting temperature 8
Since it has a characteristic of 50 to 1000 ° C., the lithium silicate crystallized in the crystallization temperature range is dissolved again at a temperature of 850 ° C. or more of the crystal melting temperature, and a liquid phase is generated to promote sintering.

【0013】ガラス中のLi2 Oを上記の範囲に限定し
たのは、Li2 Oが5重量%よりも少ないと軟化点が高
くなり、800〜1000℃の範囲内において顕著な焼
成収縮挙動が得られず検知素子として充分機能せず、3
0重量%よりも多いと軟化点が低くなり、800〜10
00℃の寸法測定に適当な検知素子の形状が保てなくな
るためである。
The reason why the content of Li 2 O in the glass is limited to the above range is that when the content of Li 2 O is less than 5% by weight, the softening point becomes high, and the remarkable firing shrinkage behavior in the range of 800 to 1000 ° C. It could not be obtained and did not function sufficiently as a sensing element.
If the amount is more than 0% by weight, the softening point is lowered, and
This is because the shape of the sensing element suitable for the measurement at 00 ° C. cannot be maintained.

【0014】本発明によれば、上記ガラス単味において
も、寸法測定に対して適当な形状を保つことができな
い。従って、上記ガラスに対して、所定のセラミックフ
ィラーを混合することにより、800〜1000℃の焼
成後において寸法測定に適切な形状を保つことのできる
程度に緻密となる素子を得ることができる。
According to the present invention, it is impossible to maintain an appropriate shape for dimensional measurement even with the simple glass. Therefore, by mixing a predetermined ceramic filler with the above glass, an element which is dense enough to maintain a shape suitable for dimensional measurement after firing at 800 to 1000 ° C. can be obtained.

【0015】用いるセラミックフィラーとしては、フォ
ルステライト、クオーツ(石英)、Al2 3 、ZrO
2 、ムライト、スピネルなどが使用できる。これらの中
でも、リチウム珪酸系結晶化ガラスとの焼結性の観点か
ら、フォルステライトおよび/またはクオーツを少なく
とも含有することが望ましい。
As the ceramic filler used, forsterite, quartz (quartz), Al 2 O 3 , ZrO
2 , mullite, spinel, etc. can be used. Among these, it is desirable to contain at least forsterite and / or quartz from the viewpoint of sinterability with the lithium silicate-based crystallized glass.

【0016】なお、ガラス量が20体積%よりも少な
く、セラミックフィラー量が80体積%よりも多いと、
800〜1000℃の検知温度範囲において焼成収縮が
小さく、温度の検知を行うことができず、ガラス量が8
0体積%よりも多く、セラミックフィラーが20体積%
よりも少ないと800〜1000℃の検知温度範囲で寸
法測定に適当な形状が保てなくなる。
When the amount of glass is less than 20% by volume and the amount of ceramic filler is more than 80% by volume,
In the detection temperature range of 800 to 1000 ° C, shrinkage of firing is small, temperature cannot be detected, and the amount of glass is 8
More than 0% by volume, 20% by volume of ceramic filler
If it is less than this, it is not possible to maintain an appropriate shape for dimension measurement in the detection temperature range of 800 to 1000 ° C.

【0017】本発明の温度検知素子は、上記ガラスおよ
びセラミックフィラーの組成により測定可能な温度範
囲、すなわち測定温度に対して精度良く収縮する温度範
囲を定めることができる。例えば、900℃付近を測定
可能な組成物(A)に対して、より低い温度を測定する
場合は組成物(A)よりガラス量を増やし、より高い温
度を測定する場合は組成物(A)よりセラミックフィラ
ー量を増やした組成物にて成形体を作製する。
The temperature detecting element of the present invention can determine a temperature range that can be measured by the composition of the glass and the ceramic filler, that is, a temperature range in which the temperature shrinks accurately with respect to the measured temperature. For example, for the composition (A) capable of measuring around 900 ° C., when measuring a lower temperature, the amount of glass is increased from the composition (A), and when measuring a higher temperature, the composition (A) is measured. A molded body is produced from a composition in which the amount of the ceramic filler is further increased.

【0018】本発明の温度検知素子中には、上記固形成
分に対して成形助剤として、有機バインダーを上記固形
成分100重量部に対して5〜20重量部の割合で含有
してもよい。用いる有機バインダーは、800〜100
0℃の温度で完全に分解除去可能な有機バインダーであ
ることが望ましく、アクリル系、特に易分解性のイソブ
チルメタクリレート系のバインダーが好適に用いられ
る。
In the temperature detecting element of the present invention, an organic binder may be contained as a molding aid with respect to the solid component in a ratio of 5 to 20 parts by weight based on 100 parts by weight of the solid component. The organic binder used is 800 to 100
An organic binder that can be completely decomposed and removed at a temperature of 0 ° C. is desirable, and an acrylic binder, particularly an easily decomposable isobutyl methacrylate binder, is preferably used.

【0019】上記固形成分、あるいはこれに有機バイン
ダーを添加した組成物をプレス成形によって所定の形状
に成形する。温度検知素子として、成形体の密度は、常
に一定であることが必要であり、成形体の密度を一定に
保つ上で、プレス成形法によって成形されることが最も
望ましい。なお、成形体密度は、理論密度に対して40
〜60%程度が適当である。
The solid component or a composition obtained by adding an organic binder to the solid component is formed into a predetermined shape by press molding. As a temperature detecting element, it is necessary that the density of the molded body is always constant, and in order to keep the density of the molded body constant, it is most desirable to form the molded body by a press molding method. The density of the compact was 40% of the theoretical density.
About 60% is appropriate.

【0020】成形体の形状は、未知の温度中に保持され
た後の寸法を測定するのに好適な形状であればよく、例
えば、円盤状、板状の他、寸法の測定が可能であれば、
あらゆる形状が採用できる。
The shape of the molded body may be any shape suitable for measuring the dimensions after being held at an unknown temperature. For example, a disk-shaped or plate-shaped one may be used, as long as the dimensions can be measured. If
Any shape can be adopted.

【0021】本発明によれば、上記の温度検知素子の具
体的な使用方法としては、その温度検知素子を温度を測
定すべき場所に設置する。例えば、焼成時に用いられる
容器やサヤ内に置く。そして、所定の焼成処理を施すこ
とにより、温度検知素子は、焼成収縮される。焼成処理
終了後、焼成収縮した温度検知素子を取り出し、収縮後
の寸法を測定することによって、予め作製された寸法−
温度換算表に基づき、温度検知素子が設置された場所に
おける最高温度を測定することができる。
According to the present invention, as a specific method of using the above temperature detecting element, the temperature detecting element is installed at a place where the temperature is to be measured. For example, it is placed in a container or sheath used for firing. Then, by performing a predetermined firing process, the temperature detecting element is fired and contracted. After the firing treatment, the temperature-sensing element that has shrunk and fired is taken out, and the dimension after shrinkage is measured to obtain the dimension of the pre-fabricated −
Based on the temperature conversion table, the maximum temperature at the place where the temperature detecting element is installed can be measured.

【0022】[0022]

【実施例】本発明の温度検知素子を用いて、熱電対指示
温度950℃でのガラスセラミックス配線基板を作製す
る場合の焼成炉内の温度検知を行った。
EXAMPLE Using the temperature detecting element of the present invention, the temperature in a firing furnace for producing a glass ceramic wiring substrate at a thermocouple indicated temperature of 950 ° C. was detected.

【0023】ガラス・ セラミックス配線基板は、絶縁層
であるセラミックスの比誘電率および熱膨張係数に特徴
のあるもので、メタライズ配線層にCuを用いたもので
ある。
The glass / ceramic wiring board is characterized by the relative dielectric constant and the coefficient of thermal expansion of ceramics as an insulating layer, and uses Cu for the metallized wiring layer.

【0024】そこで、上記基板を焼成する際のサヤ内の
温度を管理するための温度検知用素子を作製した。90
0〜1000℃付近で結晶が溶解することにより液相を
多量に生成し、温度が高くなるに従い成形体が収縮して
いくガラスとして、重量比でLi2 O14.6%、Si
2 76.2%、P2 5 2.7%、Al2 3 3.7
%、Sb2 5 0.5%、K2 O2.3%の組成からな
る軟化点594.4℃、結晶化温度671.2〜85
0.3℃、結晶溶解温度 850.3℃以上のリチウム
珪酸系結晶化ガラスを用いた。
Therefore, a temperature detecting element for controlling the temperature in the sheath when the substrate was fired was manufactured. 90
The glass melts around 0 to 1000 ° C. to generate a large amount of liquid phase, and the glass shrinks as the temperature increases. As a glass, Li 2 O 14.6% by weight, Si 2
O 2 76.2%, P 2 O 5 2.7%, Al 2 O 3 3.7
%, Sb 2 O 5 0.5% , K 2 O2.3% softening point 594.4 ° C. having a composition, the crystallization temperature from 671.2 to 85
Lithium silicate crystallized glass having a temperature of 0.3 ° C. and a crystal melting temperature of 850.3 ° C. or higher was used.

【0025】図1に、用いた結晶化ガラスの示差熱分析
結果を示す。図1の結果によれば、850℃以降結晶が
溶解し、1000℃付近まで液相の生成が継続している
ことが理解される。
FIG. 1 shows the results of differential thermal analysis of the crystallized glass used. According to the results of FIG. 1, it is understood that the crystals dissolve after 850 ° C. and the generation of the liquid phase continues up to around 1000 ° C.

【0026】950℃付近の温度検知用として、上記ガ
ラスa)30体積%に対して、セラミックフィラーとし
てフォルステライトを35体積%、クォーツ35体積%
の割合で混合し、この固形成分に対して、さらに有機バ
インダーとしてイソブチルメタクリレートを固形成分1
00重量部に対して12重量部の割合で混合した。そし
て、これに溶媒としてトルエンを添加して、スラリーを
調製した後、このスラリーを用いてドクターブレード法
によって、厚さ300μmのグリーンシートを作製し
た。なお、このグリーンシートの成形体密度は対理論密
度比51%であった。そして、このグリーンシートを積
層して、厚さ3mmの積層体を作製した後、これを30
mm×35mmの形状に切断し、温度検知素子とした。
作製した温度検知素子に対して、長辺寸法と指示温度と
の関係を測定し、その結果を表1に示した。
For temperature detection around 950.degree. C., 35% by volume of forsterite and 35% by volume of quartz are used as a ceramic filler for 30% by volume of the glass a).
, And isobutyl methacrylate as an organic binder was further added to the solid component.
It was mixed at a ratio of 12 parts by weight to 00 parts by weight. Then, toluene was added thereto as a solvent to prepare a slurry, and then a green sheet having a thickness of 300 μm was produced using the slurry by a doctor blade method. The green sheet density of this green sheet was 51% of the theoretical density. Then, after stacking the green sheets to form a laminate having a thickness of 3 mm,
It was cut into a shape of mm × 35 mm to obtain a temperature detecting element.
The relationship between the long side dimension and the indicated temperature was measured for the manufactured temperature sensing element, and the results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】表1の結果から明らかなように、長辺寸法
の29.35〜29.65mmの寸法の変化で、945
〜955℃の高精度に温度を検知することができる。
As is evident from the results in Table 1, 945 changes in the long side dimension of 29.35 to 29.65 mm.
The temperature can be detected with high accuracy of 955 ° C.

【0029】次に、上記温度検知素子を温度測定を行う
サヤ内に図2に示すように設置した。なお図2中、1は
温度検知素子、2は、ガラスセラミック配線基板用成形
体、3は棚板、4は支柱である。その後、加湿された窒
素雰囲気中で、図3に示す温度パターンにて、ガラスセ
ラミック配線基板用の成形体とともに焼成した。
Next, as shown in FIG. 2, the temperature detecting element was set in a sheath for measuring the temperature. In FIG. 2, 1 is a temperature detecting element, 2 is a molded body for a glass ceramic wiring board, 3 is a shelf, and 4 is a column. Then, it was fired in a humidified nitrogen atmosphere with a molded body for a glass-ceramic wiring board in a temperature pattern shown in FIG.

【0030】その後、焼成終了後の温度検知素子の外形
寸法を測定し、予め作成しておいた焼結体寸法−温度換
算表(表1)にて温度を確認した。繰り返しテストを行
った結果を表2に、また、設定温度を変更したテストの
結果を表3に示す。
Thereafter, the external dimensions of the temperature detecting element after the completion of the firing were measured, and the temperatures were confirmed by a sintered body size-temperature conversion table (Table 1) prepared in advance. Table 2 shows the results of the repeated test, and Table 3 shows the results of the test in which the set temperature was changed.

【0031】なお、比較のために、市販品の「リファサ
ーモ」((財)ファインセラミックセンター製)を用い
て同様に温度検知を行った。
For comparison, temperature detection was carried out in the same manner using a commercially available product "Refathermo" (manufactured by Fine Ceramics Center).

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】表2および表3の結果から、本発明の温度
検知素子を用いることにより焼成時のサヤ内の温度を市
販品よりも精度良く測定できることがわかる。但し、作
製した本発明の温度検知素子が、950℃を測定するた
めの組成物であるため、955℃付近で精度が若干低く
なることがわかる。
From the results shown in Tables 2 and 3, it can be seen that the temperature in the sheath during firing can be measured with higher accuracy than the commercial product by using the temperature detecting element of the present invention. However, since the manufactured temperature detecting element of the present invention is a composition for measuring 950 ° C., it can be seen that the accuracy is slightly lowered around 955 ° C.

【0035】また、950℃付近での本発明品と市販品
の寸法変化を図4に示した。図4から明らかなように、
本発明品の方が市販品に比べ温度に対する寸法変化が顕
著であるため、温度変化に対して焼成後の寸法が顕著に
変化することより、炉内温度を精度良く測定できること
がわかる。
FIG. 4 shows the dimensional changes of the product of the present invention and the commercial product at around 950 ° C. As is clear from FIG.
Since the dimensional change with respect to the temperature of the product of the present invention is more remarkable than that of the commercially available product, it can be seen that the temperature in the furnace can be measured with high accuracy because the dimension after firing changes significantly with the temperature change.

【0036】なお、下記表4に示す通り、上記950℃
の温度検知素子に対して、セラミックフィラー量を上記
範囲よりも少なくするに従い、温度検知領域を950℃
よりも低く、また、セラミックフィラー量を多くするに
従い、温度検知領域を950℃よりも高くすることがで
きた。
As shown in Table 4 below, the above 950 ° C.
As the amount of the ceramic filler is made smaller than the above range, the temperature detection region is set to 950 ° C.
And the temperature detection region could be made higher than 950 ° C. as the ceramic filler amount was increased.

【0037】[0037]

【表4】 [Table 4]

【0038】また、比較のために、上記ガラス量を15
体積%、上記セラミックフィラー量を85体積%となる
組成系で素子を作製したところ、800〜1000℃の
検知温度範囲において焼成収縮が小さく温度との相関を
精度よく検知することができなかった。また、上記ガラ
ス量を85体積%、上記セラミックフィラーを15体積
%となる組成系で組成を作製したところ、800〜10
00℃の検知温度範囲で素子の形状がくずれてしまい焼
成収縮による寸法変化を測定することができなかった。
For comparison, the above glass amount was 15
When the device was manufactured using a composition system in which the volume percentage and the amount of the ceramic filler were 85 volume%, the firing shrinkage was small in the detection temperature range of 800 to 1000 ° C., and the correlation with the temperature could not be accurately detected. When a composition was prepared in a composition system in which the glass content was 85% by volume and the ceramic filler was 15% by volume, the composition was 800 to 10%.
In the detection temperature range of 00 ° C., the shape of the element was distorted, and the dimensional change due to shrinkage during firing could not be measured.

【0039】さらに、上記のガラスに代えて、Li2
が3重量%のガラスBを30体積%、上記比率のセラミ
ックフィラー70体積%で素子を作製したところ、80
0〜1000℃の範囲内において焼成収縮が非常に小さ
く温度との相関がとれなかった。また、同様に、Li2
Oが35重量%のガラスを用いる以外、上記と同様にし
て素子を作製したところ、800〜1000℃の温度範
囲で素子の形状がくずれてしまい焼成収縮による寸法変
化を測定することができなかった。
Further, instead of the above glass, Li 2 O
Was prepared by using 30% by volume of glass B having 3% by weight and 70% by volume of ceramic filler having the above ratio.
Within the range of 0 to 1000 ° C., the firing shrinkage was extremely small and could not be correlated with the temperature. Similarly, Li 2
When an element was manufactured in the same manner as described above except that glass containing 35% by weight of O was used, the element was deformed in a temperature range of 800 to 1000 ° C., and a dimensional change due to firing shrinkage could not be measured. .

【0040】[0040]

【発明の効果】以上に詳述したように、本発明の温度検
知素子によれば、熱電対では測定が困難である焼成炉内
の焼成用容器やサヤ内の温度を精度良く測定することが
でき、しかもこの温度検知素子は、ガラスセラミックス
の焼成時の800〜1000℃の温度を精度よく測定で
きる。
As described above in detail, according to the temperature detecting element of the present invention, it is possible to accurately measure the temperature in a firing vessel or a sheath in a firing furnace, which is difficult to measure with a thermocouple. In addition, this temperature detecting element can accurately measure the temperature of 800 to 1000 ° C. when firing the glass ceramic.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例において用いたリチウム珪酸系
結晶化ガラスの示差熱分析結果を示す。
FIG. 1 shows the results of differential thermal analysis of a lithium silicate-based crystallized glass used in Examples of the present invention.

【図2】本発明の実施例における焼成時の温度検知素子
の使用時の設置状態を説明するための概略図である。
FIG. 2 is a schematic diagram for explaining an installation state when a temperature sensing element is used at the time of firing in an embodiment of the present invention.

【図3】本発明の実施例において用いた焼成炉の温度パ
ターンを示す図である。
FIG. 3 is a diagram showing a temperature pattern of a firing furnace used in an example of the present invention.

【図4】本発明の温度検知素子と市販の温度検知素子と
の950℃付近での焼成後の寸法変化を示す図である。
FIG. 4 is a diagram showing a dimensional change after firing at around 950 ° C. of the temperature detecting element of the present invention and a commercially available temperature detecting element.

【符号の説明】[Explanation of symbols]

1 温度検知素子 2 基板用成形体 3 棚板 4 支柱 DESCRIPTION OF SYMBOLS 1 Temperature sensing element 2 Molded body for board 3 Shelf 4 Support

フロントページの続き (72)発明者 古久保 洋二 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 (72)発明者 國分 正也 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内Continued on the front page. (72) Inventor Yoji Kokubo 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima Inside the Kyocera Research Institute (72) Inventor Masaya Kokubu 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima Kyocera Corporation Inside the company research institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Li2 Oを5〜30重量%含有するリチウ
ム珪酸系結晶化ガラスを20〜80体積%と、セラミッ
クフィラーを20〜80体積%の割合で含む成形体から
なり、未知の温度中に保持した後の焼成収縮による寸法
の変化を測定することにより、未知の温度を検知するこ
とのできる温度検知素子。
1. A molded body comprising 20 to 80% by volume of lithium silicate crystallized glass containing 5 to 30% by weight of Li 2 O and 20 to 80% by volume of a ceramic filler, and having an unknown temperature. A temperature detecting element that can detect an unknown temperature by measuring a dimensional change due to firing shrinkage after being held inside.
【請求項2】前記セラミックフィラーが、少なくともフ
ォルステライトおよび/またはクォーツを含有すること
を特徴とする請求項1記載の温度検知素子。
2. The temperature sensing element according to claim 1, wherein said ceramic filler contains at least forsterite and / or quartz.
JP31144098A 1998-10-30 1998-10-30 Temperature sensing element Expired - Fee Related JP3510978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31144098A JP3510978B2 (en) 1998-10-30 1998-10-30 Temperature sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31144098A JP3510978B2 (en) 1998-10-30 1998-10-30 Temperature sensing element

Publications (2)

Publication Number Publication Date
JP2000136967A true JP2000136967A (en) 2000-05-16
JP3510978B2 JP3510978B2 (en) 2004-03-29

Family

ID=18017249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31144098A Expired - Fee Related JP3510978B2 (en) 1998-10-30 1998-10-30 Temperature sensing element

Country Status (1)

Country Link
JP (1) JP3510978B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062055A (en) * 2000-08-18 2002-02-28 Aida Kagaku Kogyo Kk Temperature sensing method, method for manufacturing precious metal sintered product and method for manufacturing cloisonne ware
WO2004057287A1 (en) * 2002-12-20 2004-07-08 Xiamen Quantum Star Technology Co.,Ltd A temperature-proofreading ring for monitoring and proofreading the burning process of the high-temperature furnace
JP2005274553A (en) * 2004-02-24 2005-10-06 Kyocera Corp Wiring board and manufacturing method therefor
JP2008064627A (en) * 2006-09-07 2008-03-21 Kyocera Corp Thermal history sensor
EP2026027A1 (en) * 2007-08-09 2009-02-18 Gary Childress Furnace temperature monitoring device and method
JP2011027300A (en) * 2009-07-23 2011-02-10 Murata Mfg Co Ltd Method of measuring furnace interior temperature, furnace interior temperature measuring device, heat treatment device and calcining synthesis method of ceramic raw material powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062055A (en) * 2000-08-18 2002-02-28 Aida Kagaku Kogyo Kk Temperature sensing method, method for manufacturing precious metal sintered product and method for manufacturing cloisonne ware
JP4659951B2 (en) * 2000-08-18 2011-03-30 相田化学工業株式会社 Temperature detection method, precious metal sintered product manufacturing method, and cloisonne product manufacturing method
WO2004057287A1 (en) * 2002-12-20 2004-07-08 Xiamen Quantum Star Technology Co.,Ltd A temperature-proofreading ring for monitoring and proofreading the burning process of the high-temperature furnace
JP2005274553A (en) * 2004-02-24 2005-10-06 Kyocera Corp Wiring board and manufacturing method therefor
JP4693381B2 (en) * 2004-02-24 2011-06-01 京セラ株式会社 Wiring board and manufacturing method thereof
JP2008064627A (en) * 2006-09-07 2008-03-21 Kyocera Corp Thermal history sensor
EP2026027A1 (en) * 2007-08-09 2009-02-18 Gary Childress Furnace temperature monitoring device and method
JP2011027300A (en) * 2009-07-23 2011-02-10 Murata Mfg Co Ltd Method of measuring furnace interior temperature, furnace interior temperature measuring device, heat treatment device and calcining synthesis method of ceramic raw material powder

Also Published As

Publication number Publication date
JP3510978B2 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
JP3749620B2 (en) Method for controlling firing shrinkage of ceramic molded body
CA2052210A1 (en) Method for reducing shrinkage during firing of ceramic bodies
US4272500A (en) Process for forming mullite
JPH03257040A (en) Crystallizable low dielectric loss composition of low dielectric constant
Li et al. Effect of CaO content on structure and properties of low temperature co-fired glass–ceramic in the Li 2 O–Al 2 O 3–SiO 2 system
Wang et al. Synthesis and characterization of low CTE value La2O3-B2O3-CaO-P2O5 glass/cordierite composites for LTCC application
JPH05119015A (en) Carbon dioxide gas detection element
JP2000136967A (en) Temperature-detecting element
CN108395102A (en) L TCC (TCC) substrate material with low thermal expansion coefficient and preparation method thereof
JPS61158863A (en) Zircon-cordierite composite ceramic
CN109293344A (en) A kind of high-precision NTC thermistor chip and preparation method thereof
Kim et al. Calcium Aluminoborosilicate‐Based Dielectrics Containing CaCu3Ti4O12 as a Filler
Walker et al. Low temperature co-fired ceramics; physical and electrical properties as a function of firing temperature
Kahn Multilayer ceramic capacitors-materials and manufacture
Chen et al. Investigation of Low‐Temperature Sintering Mechanism on BaO Nd2O3 TiO2 Dielectric Ceramics with Li2O B2O3‐SiO2 and BaO ZnO B2O3 Glasses
CN112088411B (en) Thermistor sintered compact and temperature sensor element
Li et al. Crystallization, microstructures and properties of low temperature co-fired CaO-Al 2 O 3-SiO 2 glass-ceramic
Bang et al. Densification kinetics of glass films constrained on rigid substrates
EP0141580A1 (en) Glass ceramic materials and the use thereof in thermal sensors
US4167550A (en) Methods of manufacture of beta-alumina
JPS6326522B2 (en)
JPS5895640A (en) Manufacture of ceramic product
RU2064700C1 (en) Thermistor manufacturing process
JP2002173367A (en) Low temperature firing porcelain composition, manufacturing method thereof and printed wiring board using the same
RU2804938C1 (en) Method for producing ceramic material based on bismuth-zinc-niobium oxides

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040105

LAPS Cancellation because of no payment of annual fees