JPH02111494A - Filter made by using ion exchange fiber - Google Patents

Filter made by using ion exchange fiber

Info

Publication number
JPH02111494A
JPH02111494A JP26139288A JP26139288A JPH02111494A JP H02111494 A JPH02111494 A JP H02111494A JP 26139288 A JP26139288 A JP 26139288A JP 26139288 A JP26139288 A JP 26139288A JP H02111494 A JPH02111494 A JP H02111494A
Authority
JP
Japan
Prior art keywords
ion exchange
fibers
powdered
filter
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26139288A
Other languages
Japanese (ja)
Inventor
Shinsaku Maruyama
丸山 真策
Takao Ino
隆夫 猪野
Shigeki Ariyoshi
有吉 繁樹
Hiroshi Nagai
弘 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP26139288A priority Critical patent/JPH02111494A/en
Publication of JPH02111494A publication Critical patent/JPH02111494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To prolong the life of water collection without impairing the water quality in the outlet of the filter by replacing a part of ion exchange resin powder with polystyrene based ion exchange fibers. CONSTITUTION:The mixture composed of the anion exchange resin powder, the cation exchange resin powder, and the cation exchange fibers or the mixture composed of the cation exchange resin powder, the anion exchange resin powder and the anion exchange fibers is used as the precoating material of the filter. The ratio of the cation exchanger is specified to 50 to 95% by the dry weight of the total precoating weight. The compounding ratio of the ion exchange fiber is specified it 20 to 40% by the dry weight of the total precoating weight. The polystyrene based fibers are used as the ion exchange fibers in this case. This filter has the outlet water quality equal to the case of using the resin powder alone and can prolong the life of water collection.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉末イオン交換樹脂をプリコートした濾過器
、特に原子力発電所で用いられる粉末イオン交換樹脂を
プリコートした濾過器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a filter precoated with a powdered ion exchange resin, and particularly to a filter precoated with a powdered ion exchange resin used in nuclear power plants.

〔従来の技術〕[Conventional technology]

原子力発電所等における復水f過脱塩器、廃H濾過器等
のプリコートタイプの濾過器においてプリコート材とし
て粉末イオン交換樹脂が用いられているが、これらは通
水時差圧が規定値例えば1.5〜2に910r?に達し
た時点で逆洗を行っている。そして、多くのフィルタで
は濾過器がイオン的に飽和に達する以前に規定差圧に達
するため、事実上逆洗時点は差圧律速であるとみてよい
Powdered ion exchange resin is used as a precoat material in precoat type filters such as condensate F per-demineralizers and waste H filters in nuclear power plants, etc., but these have a differential pressure when water is flowing to a specified value, e.g. 910r for .5-2? Backwashing is carried out when this is reached. In many filters, the specified differential pressure is reached before the filter reaches ionic saturation, so it can be considered that the differential pressure is actually rate-limiting at the time of backwashing.

しかし、逆洗回収したプリコート材自身も二次廃采物と
して蓄積されるため、プリコート後逆洗に至るまでの期
間(採水寿命)をできるだけ長くし、放射性廃棄物の発
生量をできる限シ少なくすることが廃棄物低減対策上好
ましい。
However, since the precoat material itself that is backwashed and collected is accumulated as secondary waste, the period from precoating to backwashing (water sampling life) should be made as long as possible to reduce the amount of radioactive waste generated. It is preferable to reduce the amount in terms of waste reduction measures.

新たにグリコートしたフィルタを用いて復水等f遇する
場合には、通水初期から成る時期までは、懸濁物質はプ
リコート層内部にも捕捉されるいわゆる体積濾過が支配
するので差圧上昇は極めて少ないが、その後懸濁物質が
プリコートN表面のみに付着していく、いわゆる表面濾
過に移行すると、プリコート層の圧密現象とプリコート
層表面に沈積付着した懸濁物質層自身の濾過抵抗の増大
作用が相俟って、濾過器の差圧上昇特性を示す第1図に
示されるように、フィルタの差圧は急速に上昇する傾向
を示す。
When using a newly glycated filter to treat condensate, etc., during the early stages of water flow, so-called volumetric filtration in which suspended solids are also trapped inside the precoat layer dominates, so the differential pressure does not increase. Although the amount of suspended matter is extremely small, if the suspended matter subsequently adheres only to the surface of the precoat N, so-called surface filtration, a consolidation phenomenon of the precoat layer and an increase in the filtration resistance of the suspended matter layer itself deposited and attached to the surface of the precoat layer occur. As a result, the differential pressure of the filter tends to increase rapidly, as shown in FIG. 1, which shows the increase characteristic of the differential pressure of the filter.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このようなことから、プリコート材に要求てれる寿命を
延長させる丸めの能力としては、1、 体積濾過の期間
を長くできること、λ 表面濾過時にプリコート層自身
の圧警化が少ないこと の2つの能力が要求される。
Based on this, the rounding ability required for precoat materials to extend the lifespan is as follows: 1) The ability to lengthen the period of volumetric filtration, and λ) The ability to reduce pressure buildup of the precoat layer itself during surface filtration. is required.

そこで、本発明はイオン交換樹脂をプリコート材として
用いるf1過器において、上記の要求を満足し、濾過水
質を何等悪化することなく1過寿命の長いプリコートタ
イプの濾過器を提供することを目的とするものでるる。
Therefore, an object of the present invention is to provide a pre-coat type filter that satisfies the above requirements and has a long one-pass life without any deterioration of the filtered water quality in an f1 filter using an ion exchange resin as a pre-coat material. There's something to do.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、イオン交換繊維と粉末状イオン交換樹脂との
混合スラリをプリコート材としてプリコートしてなる濾
過器において、プリコート材として粉末陰イオン交換樹
H「、粉末陽イオン交換樹脂及び陽イオン交換繊維の混
合物又は粉末陽イオン交換樹脂、粉末陰イオン交換樹脂
及び陰イオン交換繊維の混合物を用い、且つ、全プリコ
ート量に対し乾燥重量基準で陽イオン交換体(粉末陽イ
オン交換樹脂及び陽イオン交換繊維)の割合を50〜9
5%とし、イオン交換繊維の割合を同様に全プリコート
量に対して乾燥重量基準で20〜40うとすると共に、
イオン交換繊維の繊維としてポリスチレン系積維を用い
たことを特徴とする濾過器である。
The present invention provides a filter in which a mixed slurry of ion exchange fibers and powdered ion exchange resin is precoated as a precoat material, and the precoat material includes powdered anion exchange resin H", powdered cation exchange resin, and cation exchange fiber. or a mixture of powdered cation-exchange resin, powdered anion-exchange resin, and anion-exchange fiber, and the amount of cation exchanger (powdered cation-exchange resin and cation-exchange fiber ) ratio of 50 to 9
5%, and the proportion of ion exchange fibers is similarly set to 20 to 40% on a dry weight basis with respect to the total precoat amount, and
This filter is characterized by using polystyrene fibers as the ion exchange fibers.

本発明者らは、粉末イオン交換樹脂をプリコート層た濾
過器において、粉末イオン交換樹脂の一部をポリスチレ
ン系イオン交換繊維と置きかえることによシ出ロ水質を
損なりことなく採水寿命を延ばすことが出来ることを見
いだし本発明をなすにいたった。
The present inventors have proposed a method of extending the water sampling life of a filter pre-coated with powdered ion-exchange resin by replacing part of the powdered ion-exchange resin with polystyrene-based ion-exchange fibers without impairing the quality of the discharged water. We have discovered that this can be done and have come up with the present invention.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

イオン交換繊維の比率をろまシ増やすと出口水質が悪化
するので、イオン交換繊維の量をいたずらに多くするこ
とはできず、また少なすぎると寿命をあまシ延ばすこと
はできない。
If the ratio of ion exchange fibers is increased, the quality of the outlet water deteriorates, so the amount of ion exchange fibers cannot be increased unnecessarily, and if it is too small, the life cannot be extended much.

川口水の水質及び採用寿命の両者を満足するポリスチレ
ン系イオン交換繊維の配合比率は全プリコート量に対し
乾燥重量基準で20〜4゜囁の範囲内の量で用いるのが
好ましい。
The blending ratio of polystyrene ion exchange fibers that satisfies both the water quality of river mouth water and the service life is preferably within the range of 20 to 4 degrees on a dry weight basis with respect to the total precoat amount.

イオン交換fλ維を用いる濾過脱塩方法としては特開昭
58−84087号明細書に記載されているが、本発明
は特にポリスチレン系繊維を用い、且つ繊維の比率、繊
維の長さの特定のものを用いることによシ出ロ水質を損
なうことなく採水寿命を延ばすことができたものでめる
A filtration desalting method using ion-exchanged fλ fibers is described in JP-A-58-84087, but the present invention particularly uses polystyrene fibers and has specific fiber ratios and fiber lengths. The lifespan of water sampling can be extended without impairing the quality of the water being extracted.

ポリスチレン系イオン交換繊維としては例えば東し製の
繊維状イオン交換体があるが、この繊維は物理的強度が
強く、粉末イオン交換樹脂とからみ合って安定した構造
体をつくる。
An example of polystyrene-based ion-exchange fibers is fibrous ion-exchanger made by Toshi.This fiber has strong physical strength and intertwines with powdered ion-exchange resin to form a stable structure.

ちなみに、外径約25mのエレメントに、f過面槓1 
m”当D 1 kg(乾燥型xi)のプリコート材をつ
けた場合、粉末イオン交換樹脂を単独で用いた場合プリ
コート完了時のプリコート層の厚さは約4.0mであっ
て、一方、例えばイオン交換繊維を30%混合した場合
には約4.5鱈になり、粉末樹脂単独よシグリコート層
が厚い。
By the way, for an element with an outer diameter of about 25 m,
m'' D 1 kg (dry type xi) of precoat material is applied, and when powdered ion exchange resin is used alone, the thickness of the precoat layer upon completion of precoating is approximately 4.0 m; When 30% of ion exchange fiber is mixed, it becomes about 4.5 cods, and the Siglicoat layer is thicker than that of powdered resin alone.

また、通水差圧が通水終点の1. y s kg/−と
なった場合のプリコート層の厚さは、前者が約2.7■
、後者が約53Iw1であシ後者の方が厚くなっている
Also, the water flow differential pressure is 1.0 at the water flow end point. The thickness of the precoat layer when y s kg/- is approximately 2.7■
, the latter is approximately 53Iw1 and is thicker.

従ってポリスチレン系イオン交換繊維を用いた場合のプ
リコート完了時のプリコート層は厚く、空隙率が大きく
なるにもかがわらず、不純物を濾過しても圧密しにくい
ことがわかる。
Therefore, it can be seen that when polystyrene-based ion exchange fibers are used, the precoat layer is thick and has a large porosity when the precoat is completed, but it is difficult to consolidate even if impurities are filtered out.

繊維状イオン交換体の構造は第2図に示すとおシ、ポリ
エチレンを補強用芯材1とし、ポリスチレン2によシそ
のまわりを包囲した構造であシ、ポリスチレンには通常
の粒状樹脂と同様にイオン交換基が導入されている。
The structure of the fibrous ion exchanger is shown in Figure 2.The reinforcing core material 1 is made of polyethylene and is surrounded by polystyrene 2. An ion exchange group is introduced.

〔実施例〕〔Example〕

以下に本発明の実施例を記載するが、本発明はこれらの
実施例に限定されるものではない。
Examples of the present invention are described below, but the present invention is not limited to these Examples.

実施例1 第3図に示す如き、径2511II11長さ1370m
、2濾過面積111 m”のf過エレメント16を有す
る1本エレメント試験装置によって濾過試験を行った。
Example 1 As shown in Fig. 3, diameter 2511 II 11 length 1370 m
The filtration test was carried out using a single-element test device having 16 f-filtration elements with two filtration areas of 111 m''.

本試験においては、カチオン交換体/アニオン交換体=
5/1とし、アニオン交換体としては全て粉末アニオン
交換樹脂を用い、カチオン交換体は粉末カチオン交換樹
脂と径45μm、長さCL5mmの繊維状イオン交換体
とを用い、前記三者を混合したプリコート材混合物をf
過面積1 m”当り1kg(乾燥重量)グリコートした
ものを用い且つ通水LV(通水流Ji(m”/時)をf
過面積(m2)で際した値)は7.8m/時として試験
を行った。
In this test, cation exchanger/anion exchanger =
5/1, powdered anion exchange resin was used as the anion exchanger, and a powdered cation exchange resin and a fibrous ion exchanger with a diameter of 45 μm and a length CL of 5 mm were used as the cation exchanger, and a precoat mixture of the above three was used. material mixture f
Glycoat 1 kg (dry weight) per 1 m" of excess area, and the water flow LV (water flow Ji (m"/hour) is f).
The test was carried out with an excess area (m2) of 7.8 m/hour.

試験の概要を説明すると次の通シである。The outline of the test is as follows.

プリコート材を樹脂供給タンク5に入れ攪拌機11で攪
拌して混合する。ついで循環ポンプ8を起動し4→8→
5→4のラインに通水しながら駆動水ポンプ9を起動し
て樹脂供給タンク5中の混合したプリコート材をエダク
タを通して濾過器3に送りエレメント16にプリコート
する。プリコート完了後駆動水ポンプ9を停止し流量計
14で流量を所定流量に調節して通水状態とする。
The precoat material is placed in the resin supply tank 5 and stirred by the stirrer 11 to mix. Next, start the circulation pump 8 and proceed from 4→8→
The driving water pump 9 is started while water is being passed through the line 5→4, and the mixed precoat material in the resin supply tank 5 is sent to the filter 3 through the eductor and is precoated onto the element 16. After the precoating is completed, the drive water pump 9 is stopped, and the flow rate is adjusted to a predetermined flow rate using the flow meter 14 to allow water to flow.

ついでクラッドポンプ10を起動してクラッドタンク6
中のクラッドを濾過器5の入口から導入してP遇する。
Next, start the cladding pump 10 and open the cladding tank 6.
The cladding inside is introduced from the inlet of the filter 5 and treated.

この間入口水及び出口水をサンプリングしてクラッド濃
度を測定し、また差圧計15によって濾過差圧を測定す
る。濾過差圧がL 75 kg7cm”となった時点で
濾過テストを終了する。ついで循環ポンプ8及びクラッ
ドポンプ10を停止し、濾過器3の上部から加圧空気を
導入して使用済みのプリコート材を逆洗受タンク10中
に逆洗排出する。
During this time, the inlet water and outlet water are sampled to measure the crud concentration, and the filtration differential pressure is also measured by the differential pressure gauge 15. The filtration test is completed when the filtration differential pressure reaches L75 kg7cm.Then, the circulation pump 8 and cladding pump 10 are stopped, and pressurized air is introduced from the top of the filter 3 to remove the used precoat material. The backwash is discharged into the backwash receiving tank 10.

試験の結果を第4図、第5図に示す。The results of the test are shown in Figures 4 and 5.

なお、第4図はフィルタ出口水質の繊維比率依存性を示
し、第5図は入口クラッド濃度を同一条件とした場合に
おける採水寿命の繊維比率依存性を示す。
Note that FIG. 4 shows the dependence of the filter outlet water quality on the fiber ratio, and FIG. 5 shows the dependence of the water sampling life on the fiber ratio when the inlet cladding concentration is the same condition.

第4図より使用するイオン交換繊維の比率が40%以下
であればフィルタ出口水質は粉末イオン交換樹脂のみを
用いた場合とほとんど同程度に良好であることがわかる
It can be seen from FIG. 4 that if the ratio of ion exchange fiber used is 40% or less, the quality of the filter outlet water is almost as good as when only powdered ion exchange resin is used.

また、第5図よシイオン交換繊維の蛍を増加すると採水
寿命が延びることがわかる。
Furthermore, as shown in Figure 5, increasing the number of fireflies in the ion-exchanged fiber extends the water collection life.

更に、第4図及び第5図に示す結果から、イオン交換繊
維の混合比率を20〜40%とすることによシ出ロ水質
及び採水寿命の両面で十分な性能のプリコート材が得ら
れていることがわかる。例えば、イオン交換愼維の割合
を30%とすると出口水質は粉末樹脂単独の場合と同等
によく、採水寿命は粉末樹脂単独の場合よシ約50%延
びることがわかる。
Furthermore, from the results shown in Figures 4 and 5, by setting the mixing ratio of ion exchange fibers to 20 to 40%, a precoat material with sufficient performance in terms of both drainage water quality and water sampling life can be obtained. It can be seen that For example, it can be seen that when the proportion of ion exchange fibers is 30%, the quality of the outlet water is as good as when using powdered resin alone, and the water sampling life is approximately 50% longer than when using powdered resin alone.

一方通水差圧が通水終点のL 75 kg/−となシ使
用済みのプリコート材は逆洗によって濾過器から逆洗受
タンクへ排出され、逆洗廃液中の使用済みプリコート材
のスラッジは逆洗受タンク下部に沈積する。この逆洗ス
ラッジの沈降体積はイオン交換繊維を混合した場合には
粉末樹脂単独の場合より大きくなシ、例えばイオン交換
繊維を30%混合した場合には粉末樹脂単独の場合よシ
10チ増加する。
On the other hand, when the water flow differential pressure is L 75 kg/- at the water flow end point, the used precoat material is discharged from the filter to the backwash receiving tank by backwashing, and the sludge of the used precoat material in the backwash waste liquid is Deposits at the bottom of the backwash tank. The settling volume of this backwash sludge is larger when ion exchange fibers are mixed than when powdered resin is used alone; for example, when 30% ion exchange fibers are mixed, it increases by 10 times compared to when powdered resin is used alone. .

しかしながら、第5図よシカチオン交換繊維を30%混
合した場合には、採水寿命が約5゜チ延びるので、発生
スラッジ量は(1−−)1.5 x t o o=s o%の減少に該当する。
However, as shown in Fig. 5, when 30% of sication exchange fiber is mixed, the water sampling life is extended by about 5 degrees, so the amount of sludge generated is (1--)1.5 x t o = so%. This corresponds to a decrease.

また、この試験の過程において、イオン交換愼維の長さ
は(L1〜1 、wm好ましくはα2〜05■とするの
がプリコート性の面から適当であることが明らかとなっ
た。
In addition, in the course of this test, it became clear that the length of the ion exchange fibers (L1-1, wm preferably α2-05) is appropriate from the viewpoint of precoatability.

長さをIW以上にすると整流機溝(穴部)へのからみつ
き等の幣害が現われ、また(L1w以下にするとイオン
交換繊維混入による初期差圧が少なくなるという特長を
発揮できない。尚、カチオン交換体/アニオン交換体=
571以外の場合でも陽イオン交換体(粉末陽イオン交
換樹脂及び陽イオン交換繊維の割合を50〜95うとし
、イオン交換繊維の割合が20〜40%の時は、粉末樹
脂単独の場合と比較して出口水質は同等で、採水寿命は
延ばすことができた。
If the length is greater than IW, damage such as entanglement with the rectifier groove (hole) will occur, and if the length is less than L1W, the advantage of reducing the initial pressure difference due to the inclusion of ion exchange fibers cannot be achieved. Exchanger/Anion exchanger=
Even in cases other than 571, when the ratio of cation exchanger (powder cation exchange resin and cation exchange fiber is 50 to 95%, and the ratio of ion exchange fiber is 20 to 40%, compared to the case of powder resin alone) The outlet water quality was the same, and the water sampling life was extended.

〔発明の効果〕〔Effect of the invention〕

粉末イオン交換樹脂にポリスチレン系イオン交換繊維を
混合したものをプリコート材として使用することにより
粉末イオン交換樹脂をプリコート材として使用した場合
に比し、出口水質は同様に保ちり\、採水寿命を延ばす
ことが可能となり、相対的にフィルタスラッジの発生量
の低減が可能となった。
By using a mixture of powdered ion-exchange resin and polystyrene ion-exchange fiber as a pre-coat material, the outlet water quality can be maintained at the same level as when powdered ion-exchange resin is used as a pre-coat material, and the water sampling life can be extended. This makes it possible to extend the length of the filter, making it possible to relatively reduce the amount of filter sludge generated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はプリコート濾過器の差圧上昇特性を示す図、第
2図はイオン交換繊維の一例の断面を示す図、第S図は
本発明の沢過器の試験方法を説明するためのフロー概略
図、第4図は濾過器出口水の繊維比率依存性を示す図、
第5図は採水寿命の繊維比率依存性を示す図である。 1・・・ポリエチレン芯材、2・・・ポリスチレン、3
・・・f過器、4・・・純水タンク、5・・・樹脂供給
タンク、6・・・クラッドタンク、7・・・逆洗受タン
ク、8・・・循環ポンプ、9・・・駆動水タンク、10
・・・クラッドポンプ、++、12・・・攪拌機、13
・・・エダクタ、14・・・流量計、15−・・差圧計
、16・・・エレメント 特許出願人 株式会社荏原製作所
Fig. 1 is a diagram showing the differential pressure increase characteristics of the precoat filter, Fig. 2 is a diagram showing a cross section of an example of ion exchange fiber, and Fig. Schematic diagram, Figure 4 is a diagram showing the fiber ratio dependence of filter outlet water,
FIG. 5 is a diagram showing the dependence of water sampling life on fiber ratio. 1... Polyethylene core material, 2... Polystyrene, 3
...F filter, 4...Pure water tank, 5...Resin supply tank, 6...Clad tank, 7...Backwash tank, 8...Circulation pump, 9... Drive water tank, 10
... Cladding pump, ++, 12 ... Stirrer, 13
...Eductor, 14--Flowmeter, 15--Differential pressure gauge, 16--Element patent applicant Ebara Corporation

Claims (1)

【特許請求の範囲】 1、イオン交換繊維と粉末状イオン交換樹脂との混合ス
ラリをプリコート材としてプリコートしてなる濾過器に
おいて、プリコート材として粉末陰イオン交換樹脂、粉
末陽イオン交換樹脂及び陽イオン交換繊維の混合物又は
粉末陽イオン交換樹脂、粉末陰イオン交換樹脂及び陰イ
オン交換繊維の混合物を用い、且つ、全プリコート量に
対し乾燥重量基準で陽イオン交換体(粉末陽イオン交換
樹脂及び陽イオン交換繊維)の割合を50〜95%とし
、イオン交換繊維の割合を同様に全プリコート量に対し
乾燥重量基準で20〜40%とすると共に、イオン交換
繊維の繊維としてポリスチレン系繊維を用いたことを特
徴とする濾過器。 2、太さが5〜50μm、長さ0.1〜1mm好ましく
は0.2〜0.5mmのイオン交換繊維を使用する請求
項1記載の濾過器。
[Scope of Claims] 1. A filter formed by precoating a mixed slurry of ion exchange fibers and powdered ion exchange resin as a precoating material, wherein the precoating material includes a powdered anion exchange resin, a powdered cation exchange resin, and a cation. Mixtures of exchange fibers or mixtures of powdered cation exchange resins, powdered anion exchange resins and anion exchange fibers are used, and cation exchangers (powdered cation exchange resins and cations) are used on a dry weight basis for the total precoat amount. The ratio of ion exchange fibers was 50 to 95%, and the ratio of ion exchange fibers was 20 to 40% on a dry weight basis with respect to the total precoat amount, and polystyrene fibers were used as the ion exchange fibers. A filter featuring: 2. The filter according to claim 1, which uses ion exchange fibers having a thickness of 5 to 50 μm and a length of 0.1 to 1 mm, preferably 0.2 to 0.5 mm.
JP26139288A 1988-10-19 1988-10-19 Filter made by using ion exchange fiber Pending JPH02111494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26139288A JPH02111494A (en) 1988-10-19 1988-10-19 Filter made by using ion exchange fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26139288A JPH02111494A (en) 1988-10-19 1988-10-19 Filter made by using ion exchange fiber

Publications (1)

Publication Number Publication Date
JPH02111494A true JPH02111494A (en) 1990-04-24

Family

ID=17361224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26139288A Pending JPH02111494A (en) 1988-10-19 1988-10-19 Filter made by using ion exchange fiber

Country Status (1)

Country Link
JP (1) JPH02111494A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567384A (en) * 1978-10-09 1980-05-21 Japan Organo Co Ltd Treatment of aqueous solution using ion exchange fiber and ion exchange resin fine particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567384A (en) * 1978-10-09 1980-05-21 Japan Organo Co Ltd Treatment of aqueous solution using ion exchange fiber and ion exchange resin fine particle

Similar Documents

Publication Publication Date Title
Camp Theory of water filtration
Adin et al. High‐rate contact flocculation—filtration with cationic polyelectrolytes
US4190532A (en) Charged filter aid material and ion exchange bed
US3062739A (en) Treatment of chemical wastes
US4162216A (en) Process for removal of suspended solids from liquid
JPH02111494A (en) Filter made by using ion exchange fiber
JP4278211B2 (en) Pre-coating method for pre-coating filtration desalination equipment
US5354476A (en) Method of treating water
EP0429661B1 (en) Method of water treatment
JPS6068092A (en) Desalter
JP2654051B2 (en) Pre-coating method of ion exchange resin in super desalination equipment
JPS5987092A (en) Treatment of condensed water
JPH03185A (en) Method for purifying water solution
JPS6111116A (en) Process for removing impurity from liquid
JPS5551478A (en) Treating nuclear power plant utility water or waste water by using ion exchange fiber
JPS6251126B2 (en)
JPH038405A (en) Method for precoat filtration in precoat filter
JPH051043B2 (en)
JPS6365924A (en) Precoating type filtration
AT156255B (en) Process for softening and desalination of water.
CA1116536A (en) Process for removal of suspended solids from liquid
JPS5874113A (en) Filtration system
JPH0747242A (en) Non-aid type filter
JPS6059013B2 (en) How to regenerate mixed ion exchange resin
JPH0427487A (en) Treatment of condensed water