JPH02111197A - Diaphragm for speaker - Google Patents

Diaphragm for speaker

Info

Publication number
JPH02111197A
JPH02111197A JP26334588A JP26334588A JPH02111197A JP H02111197 A JPH02111197 A JP H02111197A JP 26334588 A JP26334588 A JP 26334588A JP 26334588 A JP26334588 A JP 26334588A JP H02111197 A JPH02111197 A JP H02111197A
Authority
JP
Japan
Prior art keywords
diaphragm
resin
speaker
strength
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26334588A
Other languages
Japanese (ja)
Inventor
Yukio Asano
幸雄 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arisawa Mfg Co Ltd
Toyobo Co Ltd
Original Assignee
Arisawa Mfg Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arisawa Mfg Co Ltd, Toyobo Co Ltd filed Critical Arisawa Mfg Co Ltd
Priority to JP26334588A priority Critical patent/JPH02111197A/en
Publication of JPH02111197A publication Critical patent/JPH02111197A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a diaphragm for speaker having a large bending rigidity and an inter-layer shearing strength by reinforcing a textile comprising high strength and high elastic modulus polyethylene fibers and glass fibers with a resin. CONSTITUTION:As threads constituting textile 1, blended yarns which are made by mixed spinning high strength and high elastic modulus polyethylene fibers and E glass fibers are used to weave a plane weave fabric whose weave density is 13 threads/inch for both weft and warp, a vinylester resin is subjected to prepleg processing, being heat press molded under the condition of 120 deg.C, 5 minutes and 5kg/cm<2> (face pressure) for one ply to obtain a cone diaphragm 3 for a 10 inch speaker. Thus, the bending rigidity is improved, resulting that the cone molding with as large as 10 inches is attained without causing deformation at the mold releasing. Moreover, an ideal piston motion is obtained up to a high frequency band in the acoustic characteristic and the sound quality at the high sound frequency range is excellent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスピーカ用振動板に関する乙のである。[Detailed description of the invention] [Industrial application field] The present invention relates to a diaphragm for a speaker.

〔従来の技術〕[Conventional technology]

従来この種のスピーカ用振動板として実開昭51−98
535号公報、特公昭59−、イア52゜号公報の如く
、織物で樹脂を強化してなるらのが知られている。
Conventionally, the diaphragm for this type of speaker was developed in 1987-1998.
As disclosed in Japanese Patent Publication No. 535, Japanese Patent Publication No. 59-198, and Japanese Patent Publication No. 52-52, it is known that the resin is reinforced with woven fabric.

ずなわら、織物に樹脂を含浸してプリプレグ化し、加圧
加熱してスピーカ用振動板を得ている。
Naturally, woven fabrics are impregnated with resin to form prepregs, which are then heated under pressure to obtain speaker diaphragms.

ところでスピーカ用振動板に要求される性能としては音
速V−(E/ρ)’(E:弾性率、ρ;密度)かなるべ
く速く、かつ適度の内部損失tanδを存し、さら1こ
はdflげ陣1性および層111j剪断強度I L S
 Sが大きいことが挙げられる。
By the way, the performance required of a speaker diaphragm is to have the speed of sound V-(E/ρ)' (E: modulus of elasticity, ρ: density) as fast as possible, and an appropriate internal loss tan δ, and one more thing is dfl. layer 1 property and layer 111j shear strength IL S
One example is that S is large.

最近繊維スピーカ用振動板に代わる乙のとして高強度、
高弾性率ポリエチレン繊i:(n 、たとえば東洋紡株
式会社製商品名ダイニーマS K −60や三井石浦化
学工業株式会社製商品名テクミロンが検討され始めた。
High-strength, recently replaced diaphragms for fiber speakers,
High elastic modulus polyethylene fibers i:(n), for example, Dyneema SK-60 (trade name, manufactured by Toyobo Co., Ltd.) and Techmilon (trade name, manufactured by Mitsui Ishiura Chemical Industries, Ltd.) have begun to be considered.

この高強度、高弾性率ポリエヂレン繊維は第−表の如く
比重が小さく、且つ弾性率が高いことからカーボン繊維
に匹敵する音速を示ず−f:i、:tanδがカーボン
繊イイtに比べて著しく大きく高周波数領域での音質が
非常に和らかいという特徴をH1−る。
As shown in Table 1, this high-strength, high-modulus polyethylene fiber has a low specific gravity and high elastic modulus, so it does not exhibit a sound velocity comparable to that of carbon fiber. H1- has a characteristic that the sound quality in the high frequency range is extremely soft.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらこの高強度、高弾性率ポリエチレン繊維の
みの織物で樹脂、たとえばエポキシ樹脂やビニールエス
テル樹脂を強化してなるスピーカ用振動板の場合、ポリ
エチレンが原料であることから樹脂との接着性が悪く、
織物と樹脂との複合材料としての一体性が悪く、このた
め一つには曲げ剛性が低いために成形離型時変形を起こ
しやすく、特に口径の大きいスピーカ用振動板の成形は
国難であり、また得られた振動板も剛性不足が原因で高
周波領域で分割振動を起こしやすく、音響特性に問題を
生じさせ、さらには層間剪断強度(■■、SS)が低い
ため1こ特にニブライ振動板にあっては振動変形で繊維
と樹脂が分離し音響特性の耐久性か低下するおそれがあ
るという不都合を有している。
However, in the case of a speaker diaphragm made by reinforcing a resin such as epoxy resin or vinyl ester resin with a fabric made only of high-strength, high-modulus polyethylene fibers, since polyethylene is the raw material, it has poor adhesion to the resin.
The fabric and resin have poor integrity as a composite material, and as a result, they have low bending rigidity, which makes them susceptible to deformation during mold release, making molding especially large-diameter speaker diaphragms a national problem. In addition, the obtained diaphragm also tends to cause split vibration in the high frequency range due to lack of rigidity, causing problems in acoustic characteristics.Furthermore, the interlaminar shear strength (■■, SS) is low, so it is particularly difficult to use the NIBLY diaphragm. However, there is a disadvantage that the fiber and resin may separate due to vibration deformation, resulting in a decrease in the durability of the acoustic properties.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれらの不都合を解決することを目的とするも
ので、その要旨は、織物で樹脂を強化してなるものであ
って、前記織物は高強度、高弾性率ポリエチレン繊維と
ガラス繊維とからなる織物であることを特徴とするスピ
ーカ用振動板にある。
The purpose of the present invention is to solve these disadvantages, and the gist of the present invention is to strengthen a resin with a woven fabric, and the woven fabric is made of high-strength, high-modulus polyethylene fibers and glass fibers. A speaker diaphragm characterized by being made of a woven fabric.

〔実施例〕〔Example〕

第1図は本発明のスピーカ用振動板の実施例であって、
織物Iで樹脂2を強化してスピーカ用振動板3を得てお
り、織物1は高強度、高弾性率ポリエチレン繊維上ガラ
ス繊維とからなる織物を用いる。
FIG. 1 shows an embodiment of the speaker diaphragm of the present invention,
The speaker diaphragm 3 is obtained by reinforcing the resin 2 with the fabric I, and the fabric 1 is a fabric made of high-strength, high-modulus polyethylene fiber and glass fiber.

このスピーカ用振動板は、ポリエチレン繊維の織物で樹
脂を強化してなるスピーカ用振動板に比べ、曲げ剛性が
改善される結果成形離型時形状歪みを起こすこともなく
10インチという大口径のコーン成形が可能となった。
This speaker diaphragm has improved bending rigidity compared to speaker diaphragms made by reinforcing resin with polyethylene fiber fabric, and as a result does not cause shape distortion during mold release, and has a large diameter cone of 10 inches. Molding became possible.

また、音響特性においても高周波領域まで理想的なピス
トン運動を示し、高音域での音質か良好である。
In addition, the acoustic characteristics show ideal piston movement up to the high frequency range, and the sound quality in the high range is good.

さらに層間剪断強度ら向上するため特にニブライ振動板
の成形も可能となり機種の選定に融通性が出た。
Furthermore, since the interlaminar shear strength has been improved, it has become possible to mold NIBLY diaphragms, allowing for greater flexibility in model selection.

ここで、高強度、高弾性率ポリエチレン繊維は、少なく
とも209/d、好ましくは30g/d以上の引張強l
i′、u、少なくとら5009/d以上の引張弾性率を
打するものが推奨される。
Here, the high strength, high modulus polyethylene fiber has a tensile strength l of at least 209/d, preferably 30 g/d or more.
It is recommended that i', u have a tensile modulus of at least 5009/d or more.

また、高強度、高弾性率ポリエチレン繊惟の単繊:<M
デニールについては特に限定はないが、好ましくは0.
2d〜20d、更に好遇しくは0.5d〜0 (Iとす
るのが良い。
In addition, single fiber of high strength, high modulus polyethylene fiber: <M
There is no particular limitation on the denier, but it is preferably 0.
2d to 20d, more preferably 0.5d to 0 (I is preferable).

さらに高強度、高弾性率ポリエチレン繊維のト−タルデ
ニールは300d〜+600dの範囲が好ま1.いが、
得られた振動板の曲げ剛性からすればHood〜1GQ
Odか更?こ望ましい。
Furthermore, the total denier of the high-strength, high-modulus polyethylene fiber is preferably in the range of 300d to +600d.1. Yes, but
According to the bending rigidity of the obtained diaphragm, Hood ~ 1GQ
Od or Sara? This is desirable.

また、繊維組織については平織、朱子織等特に制限はな
いが、外観装飾性からすると手織構造が良い。
Further, the fiber structure is not particularly limited, such as plain weave, satin weave, etc., but a hand-woven structure is preferable from the viewpoint of decorative appearance.

ガラス繊維に関してはFRP用ガラス繊推として1号ガ
ラス、Sガラス等があるか特に限定するものではない。
Regarding glass fibers, there are No. 1 glass, S glass, etc. as glass fibers for FRP, but there is no particular limitation.

高強度、高弾性率ポリエチレン繊維とガラス繊イ(tと
の混合割合は該ポリエチレン繊1(tが30〜70重量
パーセントの範囲が好ましい。
The mixing ratio of high-strength, high-modulus polyethylene fibers and glass fibers (1) is preferably in the range of 30 to 70 weight percent.

ここで30%以下であると該ポリエチレンn K(ff
の特徴である高い音速及び軽さが損なイっれ好ましくな
い。
Here, if it is 30% or less, the polyethylene n K(ff
This is undesirable because it detracts from the high sound speed and lightness that are the characteristics of .

一方70%を越えろと曲げ剛性及び層間剪断強度の改善
効率が低くなり目的が達成されない。
On the other hand, if it exceeds 70%, the efficiency of improving bending rigidity and interlaminar shear strength will be low and the objective will not be achieved.

また、混合方式は特に制限はないがポリエチレン繊維と
ガラス繊維との混繊糸、又は引揃糸を織物の経糸および
緯糸に用いる方法、又は両繊維を各々経糸及び緯糸に混
繊する方法いずれでら良い。
The mixing method is not particularly limited, but it may be a method of using a mixed yarn of polyethylene fiber and glass fiber, or a method of using a drawn yarn for the warp and weft of the fabric, or a method of mixing both fibers for the warp and weft, respectively. Good.

更に混合割合は経糸と緯糸とも等しくすることが望まし
い。
Furthermore, it is desirable that the mixing ratio be equal for both the warp and the weft.

本発明に用いるマトリックス樹脂としては熱硬化性樹脂
、熱可塑性樹脂のいずれら用い得るが織物の含浸させる
都合上液状であるか、または溶液状であることが望まし
い。
The matrix resin used in the present invention can be either a thermosetting resin or a thermoplastic resin, but it is preferably in the form of a liquid or a solution in order to impregnate the fabric.

この観点よりエポキシ樹脂、ビニールエステル樹脂、不
飽和ポリエチレン樹脂が良く用いられろ。
From this point of view, epoxy resins, vinyl ester resins, and unsaturated polyethylene resins are often used.

上記した構成を具体例に従って説明する。The above configuration will be explained according to a specific example.

実施例1 上記織物1を構成する糸として高強度、高弾性率ポリエ
チレン繊維(東洋紡績株式会社商品名;ダイニーマS)
ぐ−60,1200デニール/1170フイラメントと
、Eガラス繊Mt、  ECG 751 / 0 )と
を混繊することにより重量比でポリエヂレン繊tイLを
約67%含有する糸か得られた。
Example 1 High-strength, high-modulus polyethylene fiber (Toyobo Co., Ltd. trade name: Dyneema S) was used as the yarn constituting the textile 1.
A yarn containing about 67% by weight of polyethylene fiber (T-L) was obtained by blending E-glass fiber (Mt, ECG 751/0) with G-60,1200 denier/1170 filament.

該混繊糸を用いて織密度、経、偉13本/インヂの平織
物を製織した。
A plain woven fabric with a weave density of 13 threads/inch was woven using the mixed yarn.

この織物にビニールエステル樹脂をブリブレク加工し、
Iブライで120℃×5分間、面下5 ky/cm’で
加熱加圧成形することにより10インチ用のコーン型振
動板3を得lこ。
This fabric is processed with vinyl ester resin,
A 10-inch cone-shaped diaphragm 3 was obtained by heat-pressing molding at 5 ky/cm' below the surface for 5 minutes at 120° C. in an I-Bryer.

コーンの形状・歪みは全くなかった。There was no shape or distortion of the cone.

振動板の物性を第2表に示す。Table 2 shows the physical properties of the diaphragm.

実施例2 実進例1の上記ポリエチレン繊<& I 200デニー
ル/+170フイラメントとEガラス繊維ECG371
10を経、偉とらI/I交互に織密度12本/インチで
混繊し、平織物を得た。
Example 2 The above polyethylene fiber of Practical Example 1 <&I 200 denier/+170 filament and E glass fiber ECG371
A plain woven fabric was obtained by alternately mixing I/I fibers at a weave density of 12 fibers/inch.

レン繊維の含汀率は約50重量%であった。The content of the ren fiber was about 50% by weight.

この織物を用いて実施例1に準じて10インチ用のコー
ン型振動板を得た。
Using this fabric, a 10-inch cone-shaped diaphragm was obtained according to Example 1.

コーン形状の歪みは全くなかった。There was no distortion of the cone shape at all.

振〃」仮の物性を第2表に示す。Table 2 shows the tentative physical properties of the sample.

比較例1 実施例1の上記ポリエチレン繊<tl l 200デニ
ール/1170フィラメントを用いて織密度経、偉とも
15本/インチの平織物を製織した。
Comparative Example 1 Using the polyethylene fiber <tl l 200 denier/1170 filament of Example 1, a plain woven fabric with a weave density of at most 15 threads/inch was woven.

この織物を用いて実施例1に準じて10インチ用のコー
ン型振動板を得た。
Using this fabric, a 10-inch cone-shaped diaphragm was obtained according to Example 1.

この場合、コーンは成形離型時、熱変形し、凹凸状の歪
みを示した。
In this case, the cone was thermally deformed during mold release, and exhibited uneven distortion.

振動板の物性を第2表に示す。Table 2 shows the physical properties of the diaphragm.

尚、実施例、比較例の評価は下記の条件により実IJ恒
した。
The evaluation of Examples and Comparative Examples was conducted under the following conditions.

〔密度〕 密度勾配管法により求めた。[Density] Determined by density gradient tube method.

〔モノユラス)  FRP平板(Iブライ)を用いて振
動リード法により求めた。
[Monoulus] It was determined by the vibration reed method using an FRP flat plate (I-Bly).

[tanδ] モジュラスの測定法に準じた。[tan δ] According to the method for measuring modulus.

〔音速〕 密度(δ)とモジュラス(E)より下記式に
基づいて計算した。
[Sound velocity] Calculated based on the following formula from density (δ) and modulus (E).

V=(E/δ)■ (z、sl  厚み251mのF’ RP [を成形し
、シーJ−トビーム法により(!/h=4の条件で剪断
応力を求め下記式に 基ついて計算した。
V=(E/δ)■ (z, sl F' RP with a thickness of 251 m was molded, and the shear stress was determined by the sheet J-beam method under the condition of (!/h=4) and calculated based on the following formula.

〔曲げ剛性〕[Bending rigidity]

ここで P:剪断応力(&g) A;試験片断面積(mu’) a:支点間拒理(m、v) h:試験片P7−み(zu) 1ブライのFRP仮を成形し三点 支持法により曲げ試験を行い、下 記式に基づいて曲げ弾性率を求め た。 Here, P: shear stress (&g) A: Cross-sectional area of test piece (mu’) a: Rejection between fulcrums (m, v) h: Test piece P7-mi (zu) 1 piece of FRP temporary molded and 3 pieces A bending test was performed using the support method, and Find the flexural modulus based on the formula Ta.

ここで aコ支点間拒理(xx) W:試験片中(am) h:試験片厚み(!1M) F/Y:lxx曲げ変位にお ける曲げ応力実測 1直 (&l/πm) 尚、曲げ条件は先端半径(R) l■ の加圧子を用い、支点間距離(0 をl0mmとした。Here, a rejection between the fulcrums (xx) W: Medium test piece (am) h: Test piece thickness (!1M) F/Y: lxx bending displacement Actual measurement of bending stress 1st shift (&l/πm) The bending conditions are tip radius (R) l■ Using a pressurizer, the distance between the fulcrums (0 was set to 10 mm.

第  2  表 本発明に基づく振動板は、第2表から明らかなように従
来品に比べて音速は若干低くなる乙ののtanδは従来
品の高さをほぼ保持すると共に曲げ剛性が改仰されたこ
とによりコーン形状の歪みは全くなく且つ分割振動を起
こすことなく高周波数領域での音質が安定していた。
Table 2 As is clear from Table 2, the sound velocity of the diaphragm based on the present invention is slightly lower than that of the conventional product.The tan δ of the diaphragm maintains almost the same height as the conventional product, and the bending rigidity has been improved. As a result, there was no distortion of the cone shape, and the sound quality in the high frequency range was stable without causing split vibration.

また、接着性(ILSS)が大巾に改善された。In addition, adhesion (ILSS) was greatly improved.

〔発明の効果〕〔Effect of the invention〕

本発明は上述の如く、高強度、高弾性率ポリエチレン繊
維のみの織物で樹脂を強化してなるスピーカ用振動板に
比べ、大きな曲げ剛性および層間剪断強度をもつスピー
カ用振動板を得ることができ、このため分割振動お上り
振動による繊維と樹脂との分離を抑制でき、音響特性や
耐久性を著しく向上でき、さらに音速及び内部損失の適
度なものが得られ、また低コストなものを得ることかで
きる。
As described above, the present invention makes it possible to obtain a speaker diaphragm with greater bending rigidity and interlaminar shear strength than a speaker diaphragm made of a resin reinforced with a fabric made only of high-strength, high-modulus polyethylene fibers. Therefore, it is possible to suppress the separation of the fiber and resin due to the rising vibration of splitting vibrations, significantly improve the acoustic characteristics and durability, and also obtain a material with appropriate sound velocity and internal loss, and also obtain a product at a low cost. I can do it.

以上、所期の目的を充分達成することができる。As described above, the intended purpose can be fully achieved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図は平面図
である。 菫・・・織物、2・・・樹脂。
The drawings show one embodiment of the present invention, and FIG. 1 is a plan view. Violet...fabric, 2...resin.

Claims (1)

【特許請求の範囲】[Claims] 織物で樹脂を強化してなるものであって、前記織物は高
強度、高弾性率ポリエチレン繊維とガラス繊維とからな
る織物であることを特徴とするスピーカ用振動板。
1. A speaker diaphragm made by reinforcing a resin with a woven fabric, the woven fabric being a woven fabric made of high-strength, high-modulus polyethylene fibers and glass fibers.
JP26334588A 1988-10-19 1988-10-19 Diaphragm for speaker Pending JPH02111197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26334588A JPH02111197A (en) 1988-10-19 1988-10-19 Diaphragm for speaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26334588A JPH02111197A (en) 1988-10-19 1988-10-19 Diaphragm for speaker

Publications (1)

Publication Number Publication Date
JPH02111197A true JPH02111197A (en) 1990-04-24

Family

ID=17388183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26334588A Pending JPH02111197A (en) 1988-10-19 1988-10-19 Diaphragm for speaker

Country Status (1)

Country Link
JP (1) JPH02111197A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826292B2 (en) * 1978-05-02 1983-06-02 スタ−農機株式会社 A device that rolls hay into bales along the ground
JPS6052613A (en) * 1983-08-30 1985-03-25 Toyobo Co Ltd High-tensile and high-modulus polyethylene fiber
JPS62149928A (en) * 1985-12-19 1987-07-03 東洋紡績株式会社 Composite fiber material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826292B2 (en) * 1978-05-02 1983-06-02 スタ−農機株式会社 A device that rolls hay into bales along the ground
JPS6052613A (en) * 1983-08-30 1985-03-25 Toyobo Co Ltd High-tensile and high-modulus polyethylene fiber
JPS62149928A (en) * 1985-12-19 1987-07-03 東洋紡績株式会社 Composite fiber material

Similar Documents

Publication Publication Date Title
US4320160A (en) Fabric structure for fiber reinforced plastics
JP3648743B2 (en) &#34;Resin composition for fiber reinforced composite material and its manufacturing method, prepreg, fiber reinforced composite material, honeycomb structure&#34;
EP0322587B1 (en) Speaker diaphragm
JP5736560B2 (en) Laminated molded body
JPS627737A (en) Hybrid fiber-reinforced plastic composite material
WO2011040602A1 (en) Manufacturing method for fibre-reinforced composite material, heat resistant material using said composite material, and heat resistant structural material using said composite material
JP2000343476A (en) Carrying member
JP2006515809A (en) Three-dimensional knitted spacer woven sandwich composite
Paglicawan et al. Loofah fiber as reinforcement material for composite
Wang Mechanical properties of stitched multiaxial fabric reinforced composites from mannual layup process
JP3529009B2 (en) Carbon fiber reinforced composite
JP5138506B2 (en) Epoxy resin composition and prepreg
JPH02111197A (en) Diaphragm for speaker
JP2000245880A (en) Golf club shaft
JP3279048B2 (en) Reinforced fabric and FRP using it
JP2554821B2 (en) Carbon fiber reinforced resin composite material and method for producing the same
JP4173949B2 (en) Fiber reinforced plastic molded article having a three-layer structure and method for producing the same
JPH01111040A (en) Blended fabric and molded article thereof
JPH05105773A (en) Plate-like fiber-reinforced composite molded product
JPS63289034A (en) Thermoplastic resin composition and its production
JP2021055202A (en) Reinforcement-fiber stitch base material, preform member, and fiber-reinforced composite material, and method of fabricating them
JP2005002514A (en) Three-dimensional woven or knitted fabric or braid for composite material and method for producing the same and three-dimensional preform
JPH0538021Y2 (en)
JP2004300222A (en) Vapor grown carbon fiber-containing prepreg and method for producing the same
JP2005313346A (en) Manufacturing method of fiber reinforced resin composite material and multiple fabric