JPH02110926A - Temperature control of specimen and device thereof - Google Patents

Temperature control of specimen and device thereof

Info

Publication number
JPH02110926A
JPH02110926A JP24915189A JP24915189A JPH02110926A JP H02110926 A JPH02110926 A JP H02110926A JP 24915189 A JP24915189 A JP 24915189A JP 24915189 A JP24915189 A JP 24915189A JP H02110926 A JPH02110926 A JP H02110926A
Authority
JP
Japan
Prior art keywords
sample
insulating material
specimen
substrate
electrical insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24915189A
Other languages
Japanese (ja)
Other versions
JPH0670985B2 (en
Inventor
Yutaka Kakehi
掛樋 豊
Norio Nakazato
仲里 則男
Yoshimasa Fukushima
福島 喜正
Yukiya Hiratsuka
平塚 幸哉
Fumio Shibata
柴田 史雄
Noriaki Yamamoto
山本 則明
Tsunehiko Tsubone
恒彦 坪根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1249151A priority Critical patent/JPH0670985B2/en
Publication of JPH02110926A publication Critical patent/JPH02110926A/en
Publication of JPH0670985B2 publication Critical patent/JPH0670985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To effectively control the temperature of a specimen to be vacuum-processed thereby lessening the effect of thermal conductive gas on the process by a method wherein the specimen is arranged on a specimen base provided with electric insulating material on the almost whole specimen arranging surface and then the specimen is electrostatically suction-held on the specimen base to feed the thermal conductive gas to the gap between the rear side of the specimen and the electric insulating material. CONSTITUTION:A specimen to be vacuum processed is arranged on a specimen base 20 provided with electric insulating material 60 on the almost whole specimen arranging surface through the intermediary of the said material 60; the arranged specimen is electrostatically suction-held on the specimen base 20; and then a thermal conductive gas is fed to a gap between the rear side of the suction-held specimen and the said electric insulating material 60. For example, He gas as the said thermal conductive gas is dispertion-fed to the gap between the rear side of the suction-held specimen and the electric insulating material 60 by dispersion grooves 21a, 21b provided on the said electric insulating material 60. Through these procedures, the gap amount between the rear side of the specimen and the specimen base 20 can be restrained from increasing thus enabling the specimen temperature to be effectively controlled simultaneously restraining the thermal conductive gas from running into the vacuum processing chamber to lessen the effect of the thermal conductive gas on the process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料の温度制御方法及び装置に係り。[Detailed description of the invention] [Industrial application field] The present invention relates to a method and apparatus for controlling the temperature of a sample.

特に基板の温度を制御するものに好適な試料の温度制御
方法及び装置に関するものである。
The present invention relates to a sample temperature control method and apparatus particularly suitable for controlling the temperature of a substrate.

〔従来の技術〕[Conventional technology]

試料を真空処理、例えば、プラズマ利用して処理(以下
、プラズマ処理と略)する′JArli、例えば。
JArli, for example, processes a sample using vacuum processing, for example, plasma (hereinafter abbreviated as plasma processing).

ドライエツチング装置の重要な用途の一つに半導体集積
回路等の微小固体素子の製造における微細パターンの形
成がある。この微細パターンの形成は、通常、試料であ
る半導体基板(以下、基板と略)の上に塗布したレジス
トと呼ばれる高分子材料に紫外線を露光、現像して描い
たパターンをマスクとしてドライエツチングにより基板
に転写することで行われている。
One of the important uses of dry etching equipment is the formation of fine patterns in the manufacture of minute solid-state devices such as semiconductor integrated circuits. The formation of this fine pattern is usually done by exposing a polymeric material called a resist to ultraviolet rays and developing it on a semiconductor substrate (hereinafter referred to as the substrate), which is the sample, and dry etching the substrate using the pattern as a mask. This is done by transcribing it into .

このような基板のドライエツチング時には、プラズマと
の化学反応熱やプラズマ中のイオンまたは電子などの衝
撃入射エネルギによりマスク及び基板が加熱される。従
って、十分な放熱が得られない場合、即ち、基板の温度
が良好に制御されない場合は、マスクが変形、変質し正
しいパターンが形成されなくなったり、ドライエツチン
グ後の基板からのマスクの除去が困難となってしまうと
いった不都合を生じる。そこで、これら不都合を排除す
るため、次のような技術が従来より種々慣用・提案され
ている。以下、これら従来の技術について説明する。
During such dry etching of a substrate, the mask and substrate are heated by the heat of chemical reaction with the plasma and the impact energy of ions or electrons in the plasma. Therefore, if sufficient heat dissipation is not obtained, that is, if the temperature of the substrate is not well controlled, the mask may become deformed or deteriorated, making it impossible to form a correct pattern, or making it difficult to remove the mask from the substrate after dry etching. This causes an inconvenience such as. Therefore, in order to eliminate these inconveniences, the following techniques have been conventionally used and proposed. These conventional techniques will be explained below.

従来技術の第1例としては、例えば、特公昭56−53
853号公報に示されているように、高周波電源の出力
が印加される試料台を水冷し、該試料台上に被加工物質
を誘電体膜を介して載置し。
A first example of the prior art is, for example, Japanese Patent Publication No. 56-53
As shown in Japanese Patent No. 853, a sample stage to which the output of a high-frequency power source is applied is water-cooled, and a material to be processed is placed on the sample stage via a dielectric film.

試料台に直流電圧を印加することでプラズマを介して誘
電体膜に電位差を与え、これにより生じる静電吸着力に
よって被加工物質を試料台に吸着させ、被加工物質と試
料台との間の熱抵抗を減少させて被加工物質を効果的に
冷却するものがある。
By applying a DC voltage to the sample stage, a potential difference is applied to the dielectric film via plasma, and the resulting electrostatic adsorption force causes the material to be processed to be attracted to the sample stage, creating a bond between the material to be processed and the sample stage. Some reduce thermal resistance and effectively cool the workpiece.

従来技術の第2例としては、例えば、特開昭57−14
.5321号公報に示されているように。
As a second example of the prior art, for example, Japanese Patent Application Laid-Open No. 57-14
.. As shown in Publication No. 5321.

ウェーハの裏面より気体ガスを吹き付けて、ウェーハを
気体ガスにより直接冷却するものがある。
Some methods cool the wafer directly by blowing gas from the back side of the wafer.

従来技術の第3例としては、例えば、E、J。As a third example of the prior art, for example, E, J.

Egerton他、 5olid 5tate Tec
hnology、 Vow、 25 。
Egerton et al., 5solid 5tate Tec
hnology, Vow, 25.

No、8.P84〜87 (1982−8)に示されて
いるように、水冷された試料台である電極と該電極に載
置され機械的クランプ手段で外周辺を電極に押圧されて
固定された基板との間に、圧力が6 Torr程度のG
Heを流通させて、電極と基板との間の熱抵抗を減少さ
せ、これにより基板を効果的に冷却するものがある。
No, 8. As shown in pages 84 to 87 (1982-8), an electrode, which is a water-cooled sample stage, and a substrate placed on the electrode and fixed by pressing the outer periphery to the electrode using mechanical clamping means. During this period, G with a pressure of about 6 Torr
Some devices allow He to flow to reduce the thermal resistance between the electrode and the substrate, thereby effectively cooling the substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、L記これらの従来技術は、試料の効果的
な冷却、及び基板裏面に流すガスのプロセスに与える影
響等の点において、充分配慮されておらず、以下のよう
な問題があった。
However, these prior art techniques do not give sufficient consideration to the effective cooling of the sample and the influence of the gas flowing on the backside of the substrate on the process, resulting in the following problems.

上記第1の従来技術では、上記のように行っても、まだ
、被加工物質と試料台との間の接触部分は少なく、微視
的にみればわずかな隙間を有している。また、この隙間
には、プロセスガスが入り込み、このガスは、熱抵抗と
なる。一般のドライエツチング装置では1通常0.1T
orr程度のプロセスガス圧によって被加工物質をエツ
チング処理しており、被加工物質と誘電体膜との間の隙
間はプロセスガスの平均自由行路長より小さくなるため
、静電吸着力による隙間の減少は、熱抵抗の点からはほ
とんど変わらず、接触面積が増加した分だけ効果が上が
ることになる。したがって、被加工物質と試料台との間
の熱抵抗を減少させ被加工物質をより効果的に冷却する
ためには、大きな静電吸着力を必要とする。このため、
このような技術では、次のような問題があった。
In the first conventional technique, even if the process is carried out as described above, the contact area between the material to be processed and the sample stage is still small, and there is a small gap when viewed microscopically. Further, a process gas enters this gap, and this gas acts as a thermal resistance. In general dry etching equipment, 1 usually 0.1T.
The material to be processed is etched using a process gas pressure of about 100 yen or more, and the gap between the material to be processed and the dielectric film is smaller than the mean free path length of the process gas, so the gap is reduced due to electrostatic adsorption force. There is almost no difference in terms of thermal resistance, and the effect increases as the contact area increases. Therefore, in order to reduce the thermal resistance between the material to be processed and the sample stage and cool the material to be processed more effectively, a large electrostatic adsorption force is required. For this reason,
Such technology has the following problems.

(1)被加工物質が試料台から離脱しにくくなるため、
エツチング処理が終了した被加工物質の搬送に時間を要
したり、被加工物質をいためたりする。
(1) The material to be processed becomes difficult to separate from the sample stage.
It takes time to transport the material to be processed after the etching process, and the material to be processed may be damaged.

(2)大きな静電吸着力を生じるためには、誘電体膜と
被加工物質との間に大きな電位差を与える必要があるが
、しかし、この電位差が大きくなれば、被加工物質、す
なわち、基板内の素子に対するダメージが大きくなるた
め、歩留まりが悪くなり、集積回路の集積度が高まるに
つれて要求が高まっている薄いゲート膜の微細加工では
、更に歩留まりが悪くなる。
(2) In order to generate a large electrostatic attraction force, it is necessary to provide a large potential difference between the dielectric film and the material to be processed. However, if this potential difference becomes large, the material to be processed, that is, the substrate This increases damage to the internal elements, resulting in poor yields, and the yield becomes even worse in microfabrication of thin gate films, which is becoming more demanding as the degree of integration of integrated circuits increases.

上記第2の従来技術では、ヘリウムガス(以下、G)I
eと略)のように熱伝導性の優れた気体ガスを用いるこ
とで、ウェーハの冷却効率を向上させることができる。
In the second conventional technology, helium gas (hereinafter referred to as G) I
By using a gas having excellent thermal conductivity such as (abbreviated as "e"), the cooling efficiency of the wafer can be improved.

しかしながら、このような技術では1次のような問題が
あった。
However, such a technique has a first-order problem.

(1)気体ガスがウェーハの冷却面側にとどまらずエツ
チング室内に多量に流れ込むため、G11eのように不
活性ガスでもプロセスに与える影響は大きく、したがっ
て、すべてのプロセスに使用することができない。
(1) Since a large amount of gas flows into the etching chamber rather than remaining on the cooling surface side of the wafer, even an inert gas like G11e has a large effect on the process, and therefore cannot be used in all processes.

上記第3の従来技術では、基板の外周辺をクランプによ
って固定しても、Gleeの真空処理室内への流出は避
けらけず、したがって上記した第2の従来技術での問題
点と同様の問題を有し、更に次のような問題をも有して
いる。
In the third conventional technique described above, even if the outer periphery of the substrate is fixed with a clamp, leakage of Glee into the vacuum processing chamber is unavoidable, and therefore a problem similar to that in the second conventional technique described above is caused. Moreover, it also has the following problems.

(1)機械的クランプ手段により基板の外周辺を押圧し
て、基板を電極に固定するため、基板は、流通するGH
eのガス圧により周辺支持状態で中高で凸状に変形する
。このため、基板の裏面と電極との間の隙間量が大きく
なり、これに伴って基板と電極との熱伝導特性が悪化す
る。このため、基板の冷却を充分効果的に行うことがで
きない。
(1) Since the outer periphery of the substrate is pressed by mechanical clamping means and the substrate is fixed to the electrode, the substrate is fixed to the circulating GH.
Due to the gas pressure e, it deforms into a convex shape with a middle height in a peripherally supported state. Therefore, the amount of gap between the back surface of the substrate and the electrode becomes large, and the heat conduction characteristics between the substrate and the electrode deteriorate accordingly. For this reason, the substrate cannot be cooled sufficiently effectively.

(2)電極に基板の外周辺を押圧して固定する機械的ク
ランプ手段が設けられているため、基板内の素子製作面
積が減少すると共に、プラズマの均一性が阻害され、ま
た1機械的クランプ手段の動作時に、機械的クランプ手
段に付着した反応生成物が機械的クランプ手段から脱落
して。
(2) Since the electrode is provided with a mechanical clamp that presses and fixes the outer periphery of the substrate, the device fabrication area within the substrate is reduced, plasma uniformity is inhibited, and one mechanical clamp During operation of the means, reaction products adhering to the mechanical clamping means fall off from the mechanical clamping means.

塵埃の発生する危険性があり、更に、基板搬送が極めて
複雑となり、その結果、装置が大型化すると共に信頼性
が低下する。
There is a risk of dust generation and, furthermore, substrate transport becomes extremely complicated, resulting in an increased size and reduced reliability of the device.

本発明の目的は、真空処理される試料の温度を効果的に
制御でき、プロセスに与える伝熱ガスの影響を少なくで
きる試料の温度制御方法及び装置を提供することにある
An object of the present invention is to provide a method and apparatus for controlling the temperature of a sample that can effectively control the temperature of a sample to be vacuum processed and reduce the influence of heat transfer gas on the process.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、真空処理される試料の配置面の略全面に電気
絶縁材を設けた試料台と、試料台に電気絶縁材を介して
配置された試料を試料台に静電吸着保持させる吸着手段
と、吸着手段により吸着保。
The present invention provides a sample stand in which an electrical insulating material is provided on substantially the entire surface of the placement surface of a sample to be vacuum processed, and a suction means for electrostatically holding the sample placed on the sample stand via the electrical insulating material. And, it is held by suction by suction means.

持された試料の裏面と電気絶縁材との間隙に伝熱ガスを
供給するガス供給手段とを具備した装置とし、真空処理
される試料の配置面の略全面に電気絶縁材を設けた試料
台に、電気絶縁材を介して試料を配置し、配置された試
料を試料台に静電吸着保持させ、吸着保持された試料の
裏面と電気絶縁材との間隙に伝熱ガスを供給する方法と
することにより、達成できる。
A sample stage equipped with a gas supply means for supplying heat transfer gas to the gap between the back surface of the sample being held and the electrical insulating material, and the electrical insulating material is provided on substantially the entire surface of the surface on which the sample to be vacuum-treated is placed. The second method involves placing a sample through an electrically insulating material, holding the sample on a sample stage by electrostatic adsorption, and supplying heat transfer gas to the gap between the back surface of the sample and the electrically insulating material. This can be achieved by doing so.

〔作  用〕[For production]

真空処理される試料の配置面の略全面に電気絶縁材を設
けた試料台に、電気絶縁材を介して試料を配置し、配置
された試料を吸着手段により試料台に静電吸着保持させ
、吸着保持された試料の裏面と電気絶縁材との間隙にガ
ス供給手段により伝熱ガスを供給することにより、伝熱
ガスのガス圧による試料の変形を防止して吸着保持され
た試料の裏面と試料台との間の隙間量の増大が抑制され
、真空処理される試料の温度を効果的に制御できると共
に、伝熱ガスの真空処理室内への流出が抑制され、プロ
セスに与える伝熱ガスの影響を少なくできる。
The sample is placed on a sample stand with an electric insulating material provided on substantially the entire surface of the placement surface of the sample to be vacuum processed, with the sample placed through the electric insulating material, and the placed sample is electrostatically attracted and held on the sample stand by an adsorption means. By supplying heat transfer gas by the gas supply means to the gap between the back surface of the sample held by suction and the electrical insulating material, deformation of the sample due to the gas pressure of the heat transfer gas is prevented, and the back surface of the sample held by suction and This suppresses the increase in the gap between the sample stage and the sample stage, effectively controlling the temperature of the sample to be vacuum processed, as well as suppressing the flow of heat transfer gas into the vacuum processing chamber, thereby reducing the amount of heat transfer gas imparted to the process. The impact can be reduced.

〔実施例〕〔Example〕

試料を真空処理、例えば、プラズマ処理する装置として
は、ドライエツチング装@、プラズマCVD装置、スパ
ッタ装置等があるが、ここでは、ドライエツチング装置
を例にとり本発明の詳細な説明する。
Apparatus for vacuum processing, for example plasma processing, a sample include a dry etching apparatus, a plasma CVD apparatus, a sputtering apparatus, etc. Here, the present invention will be explained in detail by taking the dry etching apparatus as an example.

以下、本発明の一実施例を第1図ないし第3図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図にドライエツチング装置の概略構成を示す。真空
処理室IOの、この場合、底壁には、絶縁体11を介し
て試料台である下部電極20が電気絶縁されて気密に設
けられている。真空処理室10には、放電空間30を有
し下部電極20と上下方向に対向して上部電極40が内
設されている。
FIG. 1 shows the schematic structure of the dry etching apparatus. In this case, a lower electrode 20 serving as a sample stage is electrically insulated and airtightly provided on the bottom wall of the vacuum processing chamber IO via an insulator 11. The vacuum processing chamber 10 includes a discharge space 30 and an upper electrode 40 vertically opposed to the lower electrode 20.

試料である基板50の裏面に対応する下部電極20の表
面には、電気絶縁材である絶縁物60が埋設されている
。また、下部電極2oには、伝熱ガスの供給路を形成す
る溝21が形成されている。I@縁物60と溝21につ
いては、第2図および第3図を用いて詳細に後述する。
An insulator 60, which is an electrical insulating material, is embedded in the surface of the lower electrode 20, which corresponds to the back surface of the substrate 50, which is a sample. Furthermore, a groove 21 is formed in the lower electrode 2o to form a supply path for heat transfer gas. The I@edge 60 and the groove 21 will be described in detail later with reference to FIGS. 2 and 3.

下部電極20には、溝21と連通してガス供給路23a
とガス排出路23bとが形成されている。また、下部電
極20内には、冷媒流路22が形成されている。下部電
極20には、冷媒流路22と連通して冷媒供給路24a
と冷媒排出路24bとが形成されている。
The lower electrode 20 has a gas supply path 23a communicating with the groove 21.
and a gas exhaust path 23b are formed. Furthermore, a coolant flow path 22 is formed within the lower electrode 20 . The lower electrode 20 has a refrigerant supply path 24a communicating with the refrigerant flow path 22.
and a refrigerant discharge path 24b are formed.

ガス供給路23aには、ガス源(図示省略)に連結され
た導管70aが連結され、ガス排出路23bには、4管
70bの一端が連結されている。導管70aには、マス
フローコントローラ(以下、M F Cとl118)7
Iが設けられ、導管70bには調整バルブ72が設けら
れている。導管70bの他端は、真空処理室10と真空
ポンプ80とを連結する排気用の導管12に合流連結さ
れている。冷媒供給路24aには、冷媒源(図示省略)
に連結された導管9011が連結され、冷媒排出路24
bには、冷媒排出用の導管90bが連結されている。
A conduit 70a connected to a gas source (not shown) is connected to the gas supply path 23a, and one end of a four-pipe 70b is connected to the gas discharge path 23b. The conduit 70a includes a mass flow controller (hereinafter referred to as MFC and l118) 7.
A regulating valve 72 is provided in the conduit 70b. The other end of the conduit 70b is connected to a conduit 12 for exhaust that connects the vacuum processing chamber 10 and the vacuum pump 80. The refrigerant supply path 24a includes a refrigerant source (not shown).
A conduit 9011 connected to the refrigerant discharge path 24 is connected to the refrigerant discharge path 24.
b is connected to a refrigerant discharge conduit 90b.

下部電極20には、マツチングボックス100を介して
高周波電源101 が接続されると共に、高周波遮断回
路102を介して直流電源103が接続されている。な
お、真空処理室10.高周波電源101および直流電源
103はそれぞれ接地されている。
A high frequency power source 101 is connected to the lower electrode 20 through a matching box 100, and a DC power source 103 is connected through a high frequency cutoff circuit 102. Note that the vacuum processing chamber 10. High frequency power supply 101 and DC power supply 103 are each grounded.

また、上部電極40には、放電空間30に開口する処理
ガス放出孔(図示省略)と該処理ガス放出孔に連通ずる
処理ガス流路(図示省略)とが形成されている。処理ガ
ス流路には、処理ガス供給装置(図示省略)に連結され
た導管(図示省略)が連結されている。
Further, the upper electrode 40 is formed with a processing gas discharge hole (not shown) that opens into the discharge space 30 and a processing gas flow path (not shown) that communicates with the processing gas discharge hole. A conduit (not shown) connected to a processing gas supply device (not shown) is connected to the processing gas flow path.

次に、第1図の下部電極20の詳細構造例を第2図、第
3図により説明する。
Next, a detailed structural example of the lower electrode 20 shown in FIG. 1 will be explained with reference to FIGS. 2 and 3.

第2図、第3図で、第1図に示したガス供給路23aは
、この場合、導管25aで形成され、導管25aは、こ
の場合、下部電極20の基板載置位置中心を軸心として
上下動可能に設けられている。導管25aの外側には、
第1図に示したガス排出路23bを形成して導管25b
が配設されている。導管25bの外側には、第1図に示
した冷媒供給j@24aを形成して導管25cが配設さ
れている。導管25cの外側に、は、第1図に示した冷
媒排出路24bを形成して導管25dが配設されている
。導管25bの上端は′正極上板26につながり、導管
25dの」二端は電極」二級26の下方の電極上仮受2
7につながっている。導管25bの上端部には、電極上
板26と電極−F仮受27と導管25bとで空室28が
形成されている。空室28には分割板29が冷媒流路2
2を形成して内設され、導管25cの上端は分割板29
につながっている。
In FIGS. 2 and 3, the gas supply path 23a shown in FIG. It is installed so that it can move up and down. On the outside of the conduit 25a,
The gas discharge path 23b shown in FIG. 1 is formed to form the conduit 25b.
is installed. A conduit 25c is disposed outside the conduit 25b, forming the refrigerant supply j@24a shown in FIG. A conduit 25d is disposed outside the conduit 25c, forming a refrigerant discharge path 24b shown in FIG. The upper end of the conduit 25b is connected to the positive electrode upper plate 26, and the second end of the conduit 25d is the electrode temporary support 2 below the second class 26.
It is connected to 7. A cavity 28 is formed at the upper end of the conduit 25b by the electrode upper plate 26, the electrode-F temporary holder 27, and the conduit 25b. In the empty chamber 28, a dividing plate 29 is provided with a refrigerant flow path 2.
The upper end of the conduit 25c forms a dividing plate 29.
connected to.

基板(図示省略)がpl、画される’11!極上板26
の表面には、この場合、放射状の伝熱ガス分散用のi7
,721aと円周状の伝熱ガス分散用の溝21bとが複
数条形成されている。伝熱ガス分散用のi:Hla 、
 21bは、導管25a 、 25bと連結している。
The board (not shown) is drawn '11! Top plate 26
In this case, i7 for radial heat transfer gas distribution
, 721a and a plurality of circumferential heat transfer gas dispersion grooves 21b are formed. i:Hla for heat transfer gas dispersion,
21b is connected to conduits 25a and 25b.

また、基板が載置される電極上板26の表面(基板の配
置面の略全而)には、絶縁物60が設けられている。こ
の場合は、絶縁膜がコーティングされている。
Further, an insulator 60 is provided on the surface of the electrode upper plate 26 on which the substrate is placed (substantially the entire surface on which the substrate is placed). In this case, an insulating film is coated.

なお、第2図、第3図で、110は基板が載置されない
部分の電極上板26の表面を保護する電極カバーで、1
11は下部電極20の電極上板26の表面以外を保護す
る絶縁カバー、112はシールド板である。また、導管
25aの上端には、電極上板26への基板の載置時並び
に電極上板26からの基板の離脱時に基板を裏面側から
支持するピン113が、この場合、120度間隔で3本
配設されている。
In addition, in FIGS. 2 and 3, 110 is an electrode cover that protects the surface of the electrode upper plate 26 in the part where the substrate is not placed;
11 is an insulating cover that protects the lower electrode 20 other than the surface of the electrode upper plate 26, and 112 is a shield plate. Further, at the upper end of the conduit 25a, there are pins 113 that support the substrate from the back surface side when the substrate is placed on the electrode upper plate 26 and when the substrate is removed from the electrode upper plate 26. Books are provided.

また、溝21a 、 21bの深さは、基板吸着時の基
板の裏面と溝21a 、 21bの底部との間の隙間(
以下、溝部隙間と略)が伝熱ガスの平均自由行路長以上
になれば、伝熱ガスの伝熱効果が低下するようになるた
め、該溝部隙間が、好ましくは、伝熱ガスの平均自由行
路長以下となるように溝21a。
Further, the depth of the grooves 21a and 21b is determined by the gap between the back surface of the substrate and the bottom of the grooves 21a and 21b when the substrate is attracted
If the groove gap (hereinafter abbreviated as "groove gap") exceeds the mean free path length of the heat transfer gas, the heat transfer effect of the heat transfer gas will decrease. Groove 21a so as to be equal to or less than the path length.

21bの深さを選定するのが良い。It is better to select the depth of 21b.

また、基板の裏面で絶縁膜に静電吸着により実質的に密
着される部分(以下、吸着部と略)の面積は、伝熱ガス
のガス圧と真空処理室10の圧力との差圧による基板の
下部電極20からの浮上りを防止するために、伝熱ガス
のガス圧と真空処理室10の圧力との差圧により決まる
必要静電吸着力により選定する。例えば、伝熱ガスの圧
力がI Torrで真空処理室10の圧力が0.ITo
rrの場合、基板の下部電極20からの浮上りを防止す
るための必要静電吸着力は約1.3g/a+?であり、
従って、これより吸着部の面積は、基板の裏面面積の約
115に選定される。なお、本例は一例であり、吸着部
の面積を基板裏面のほぼ全面まで大きくとすれば、それ
に応じて静電吸着力を小さくできることは言うまでもな
い。
In addition, the area of the part (hereinafter referred to as adsorption part) that is substantially in close contact with the insulating film by electrostatic adsorption on the back surface of the substrate is determined by the differential pressure between the gas pressure of the heat transfer gas and the pressure in the vacuum processing chamber 10. In order to prevent the substrate from floating up from the lower electrode 20, it is selected based on the required electrostatic adsorption force determined by the differential pressure between the gas pressure of the heat transfer gas and the pressure of the vacuum processing chamber 10. For example, the pressure of the heat transfer gas is I Torr and the pressure of the vacuum processing chamber 10 is 0.0 Torr. ITo
In the case of rr, the required electrostatic attraction force to prevent the substrate from floating from the lower electrode 20 is approximately 1.3 g/a+? and
Therefore, the area of the suction portion is selected to be approximately 115 times the area of the back surface of the substrate. It should be noted that this example is just an example, and it goes without saying that if the area of the attraction portion is increased to cover almost the entire back surface of the substrate, the electrostatic attraction force can be reduced accordingly.

上記のように構成された第1図ないし第3図のドライエ
ツチング装置で、基板50は、公知の搬送装置(図示省
略)により真空処理室10に搬入された後に、その裏面
外周辺部を絶縁物60と対応させて下部電極20に載置
される。下部電極20への基板50の載置完了後、処理
ガス供給装置から導管を経てガス流通路に供給された処
理ガスは、ガス流通路を流通した後に上部電極40のガ
ス放出孔より放電空間30に放出される。真空処理室1
0内の圧力調整後、下部電極20には高周波電源101
より高周波電力が印加され、下部電極20と上部fQ極
40との間にグロー放電が生じる。このグロー放電によ
り放電空間30にある処理ガスはプラズマ化され、この
プラズマにより基板50のエツチング処理が開始される
。また、これと共に下部電極20には、直流電源103
より直流電圧が印加される。基板50のプラズマによる
エツチング処理の開始により、このプラズマ処理プロセ
スによって生じるセルフバイアス電圧と直流電源103
によって下部電極20に印加される直流電圧とにより、
基板50は下部電極20に静電吸着されて実質的に密着
し、固定される。その後、溝21a 、 21bには、
ガス源よりM F C71及びガス供給路23aを順次
介して伝熱ガス、例えば。
In the dry etching apparatus of FIGS. 1 to 3 configured as described above, the substrate 50 is transported into the vacuum processing chamber 10 by a known transport device (not shown), and then the outer periphery of the back surface is insulated. It is placed on the lower electrode 20 in correspondence with the object 60. After the substrate 50 has been placed on the lower electrode 20 , the processing gas supplied from the processing gas supply device to the gas flow path via the conduit passes through the gas flow path and then flows into the discharge space 30 from the gas discharge hole of the upper electrode 40 . is released. Vacuum processing chamber 1
After adjusting the pressure within 0, a high frequency power source 101 is connected to the lower electrode 20.
Higher frequency power is applied, and a glow discharge occurs between the lower electrode 20 and the upper fQ pole 40. The processing gas in the discharge space 30 is turned into plasma by this glow discharge, and the etching process of the substrate 50 is started by this plasma. In addition, the lower electrode 20 also includes a DC power source 103.
DC voltage is applied. By starting the plasma etching process of the substrate 50, the self-bias voltage and DC power supply 103 generated by this plasma processing process are reduced.
With the DC voltage applied to the lower electrode 20 by
The substrate 50 is electrostatically attracted to the lower electrode 20 and is substantially closely attached and fixed. After that, in the grooves 21a and 21b,
A heat transfer gas, for example, is supplied from the gas source sequentially through the MFC 71 and the gas supply path 23a.

G11eが供給される。これにより、実質的に密着して
いる基板裏面と下部電極20との微小な間隙の全域にわ
たってに、溝21a 、 21bからG1−1eが供給
される。このとき、GHeは、MFC71と調整バルブ
72との操作によりガス量を制御されて供給され。
G11e is supplied. As a result, G1-1e is supplied from the grooves 21a and 21b over the entire small gap between the back surface of the substrate and the lower electrode 20, which are in substantially close contact with each other. At this time, GHe is supplied with the gas amount controlled by operating the MFC 71 and the adjustment valve 72.

場合によっては、基板裏面と下部電極20、詳しくは絶
縁物60との間隙にGHeを封じ込めた使用も可能であ
る。これにより、冷媒流路22を流通する冷媒1例えば
、水や低温液化ガス等で冷却されている下部電極20と
基板50との熱抵抗は、基板裏面の全域にわたって均一
に減少させられ、基板50は効果的、すなわち、均一に
且つ効率良く冷却される。
Depending on the case, it is also possible to use GHe confined in the gap between the back surface of the substrate and the lower electrode 20, specifically, the insulator 60. As a result, the thermal resistance between the substrate 50 and the lower electrode 20, which is cooled by the refrigerant 1 flowing through the refrigerant flow path 22, such as water or low-temperature liquefied gas, is uniformly reduced over the entire back surface of the substrate, and is effectively cooled, ie, uniformly and efficiently.

言い替えれば、基板裏面の略全面が吸着保持されること
により効果的に基板の冷却が行なえる。その後、エツチ
ングの終了に近づくと、溝21a 、 21bへのG)
leの供給は停止され、エツチングの終了に伴って、放
電空間30への処理ガスの供給と、下部電極20への直
流電圧および高周波電力の印加が停止される。その後、
引続き基板50に生じている静電吸着力は解除、この場
合、電気的に電極上板26と同電位に保たれたピン11
3が基板50に当接することによって静電気の除去が行
われ、ピン113の作動により基板50は下部電極20
上より除去される。その後、基板50は、公知の搬送装
置により真空処理室10外へ搬出される。また、静電気
の除去については、直流電圧の印加を停止した後に、高
周波電力の印加を停止することによっても行うことがで
きる。
In other words, the substrate can be effectively cooled by suctioning and holding substantially the entire back surface of the substrate. After that, as the etching approaches the end, G) is applied to the grooves 21a and 21b.
The supply of le is stopped, and upon completion of etching, the supply of processing gas to the discharge space 30 and the application of DC voltage and high frequency power to the lower electrode 20 are stopped. after that,
Subsequently, the electrostatic attraction force generated on the substrate 50 is released, and in this case, the pin 11, which is electrically maintained at the same potential as the electrode upper plate 26, is released.
3 comes into contact with the substrate 50, static electricity is removed, and the operation of the pin 113 causes the substrate 50 to contact the lower electrode 20.
removed from above. Thereafter, the substrate 50 is transported out of the vacuum processing chamber 10 by a known transport device. Further, static electricity can also be removed by stopping the application of the high-frequency power after stopping the application of the DC voltage.

以上、本実施例によれば、次のような効果が得られる。As described above, according to this embodiment, the following effects can be obtained.

(1)従来のように基板を外周辺だけ下部電極に押圧し
て固定するのでなく、広い面積(基板の配置面の略全面
)にわたって静電吸着により実質的に密着固定できるた
め、伝熱ガスであるGHeのガス圧による基板の変形を
防止でき、下部電極に固定された基板の裏面と下部電極
との間隙量の増大を抑制できる。従って、基板と下部電
極との間の熱伝導特性の悪化を防止でき、基板を効果的
に冷却できる。
(1) Instead of pressing and fixing only the outer periphery of the substrate to the lower electrode as in the past, the substrate can be fixed in close contact with the lower electrode over a wide area (almost the entire surface on which the substrate is placed) by electrostatic adsorption. It is possible to prevent deformation of the substrate due to the gas pressure of GHe, and to suppress an increase in the amount of gap between the back surface of the substrate fixed to the lower electrode and the lower electrode. Therefore, it is possible to prevent deterioration of heat conduction characteristics between the substrate and the lower electrode, and to effectively cool the substrate.

(2)少なくとも基板の裏面の外周辺を吸着しているの
で、伝熱ガスであるGa1eは吸着部で真空処理室内へ
の流出を抑制させるため、GHeのプロセスに与える影
響は少なくなり、全てのプロセスに使用することができ
る。
(2) Since at least the outer periphery of the back surface of the substrate is adsorbed, Ga1e, which is a heat transfer gas, is suppressed from flowing into the vacuum processing chamber at the adsorption part, so the influence of GHe on the process is reduced, and all Can be used for processes.

(3)静電吸着によって基板と下部電極との接触面積を
増加させて熱抵抗を減少させる従来の技術と比較すると
、本実施例では、静電吸着力の大きさはG1−18の圧
力と真空処理室内の圧力との圧力差による基板の浮上り
を防止するのに必要な大きさで良<、GHeの圧力とプ
ラズマの圧力との差圧を、基板の裏面と下部電極との間
の熱抵抗の許す範囲で小さくすることにより静電吸着力
を小さくしても基板冷却の効果が十分得られる。
(3) Compared to the conventional technology that uses electrostatic adsorption to increase the contact area between the substrate and the lower electrode to reduce thermal resistance, in this example, the magnitude of the electrostatic adsorption force is equal to the pressure of G1-18. The pressure difference between the GHe pressure and the plasma pressure can be controlled by the pressure difference between the back surface of the substrate and the lower electrode. By making it as small as the thermal resistance allows, a sufficient substrate cooling effect can be obtained even if the electrostatic adsorption force is made small.

(4)D電吸着力が小さいため、基板の下部電極からの
離脱が容易となり、エツチング処理が終了した基板の搬
送時間を短縮できると共に、基板の損傷を防止できる。
(4) Since the D electric adsorption force is small, the substrate can be easily separated from the lower electrode, and the time for transporting the substrate after etching can be shortened, and damage to the substrate can be prevented.

(5)静電吸着力が小さくてよいため、基板に与えられ
る電位差は小さく基板内の素子に対するダメージを小さ
くできる。したがって、薄いゲート膜の微細加工でも歩
留まりを悪化させる心配がない。
(5) Since the electrostatic adsorption force may be small, the potential difference applied to the substrate is small and damage to elements within the substrate can be reduced. Therefore, there is no concern that the yield will deteriorate even in fine processing of a thin gate film.

(6)基板を機械的クランプ手段によらず静電吸着力に
よって下部電極に固定しているため、基板内の素子製作
面積の減少を防止できると共に、プラズマの均一性を良
好に保持でき、また、下部電極への基板の載置時並びに
下部電極からの基板の除去時に塵埃が発生する危険性が
なく、更に、基板搬送を容易化でき、その結果、装置の
大型化を抑制できると共に信頼性を向上できる。
(6) Since the substrate is fixed to the lower electrode by electrostatic adsorption force without using mechanical clamping means, it is possible to prevent a reduction in the element fabrication area within the substrate, maintain good plasma uniformity, and , there is no risk of dust being generated when placing the substrate on the lower electrode or removing the substrate from the lower electrode, and furthermore, it is possible to easily transport the substrate, and as a result, it is possible to suppress the size of the device and improve reliability. can be improved.

第4図は1本発明を実施したドライエツチング装置の他
の例を示すもので、真空処理室10の頂壁と上部電極4
0には、真空処理室10外部と放電空間30とを連通し
て光路120が形成されている。光路120の真空処理
室10外部側には、透光窓121が気密に設けられてい
る。透光窓121と対応する真空処理室10外部には、
温度計測手段、例えば、赤外線温度計122が設けられ
ている。赤外a温度計122の出力はアンプ123を介
してプロセス制御用コンピュータ124に入力され、プ
ロセス制御用コンピュータ124により演算された指令
信号がMFC71に入力されるようになっている。なお
、その他、第1図と同−装置等は、同一符号で示し説明
を省略する。
FIG. 4 shows another example of a dry etching apparatus embodying the present invention, in which the top wall of the vacuum processing chamber 10 and the upper electrode 4
0, an optical path 120 is formed to communicate the outside of the vacuum processing chamber 10 and the discharge space 30. A light-transmitting window 121 is airtightly provided on the outside of the vacuum processing chamber 10 in the optical path 120 . Outside the vacuum processing chamber 10 corresponding to the transparent window 121,
Temperature measuring means, for example an infrared thermometer 122, is provided. The output of the infrared a thermometer 122 is input to the process control computer 124 via the amplifier 123, and a command signal calculated by the process control computer 124 is input to the MFC 71. In addition, the same devices and the like as in FIG. 1 are indicated by the same reference numerals, and the description thereof will be omitted.

本実施例によれば、更に次のような効果が得られる。According to this embodiment, the following effects can also be obtained.

(1)基板の温度を計測しなからG11eの供給量を調
整、すなわち、Ga1eを供給するMFCをプロセス制
御コンピュータと結合し、あらかじめ求めた基板の温度
とG11eの供給量との間の関係からG11eの供給量
を制御することにより、基板の温度を一定の温度に保持
できる。このような制御は、AQ−Cu−8i材のドラ
イエツチングの際に特に有効であり、ホトレジストがダ
メージを受けない範囲の高い温度に制御して被エツチン
グ材の残渣を減少させることができる。
(1) Adjust the supply amount of G11e without measuring the temperature of the substrate. In other words, connect the MFC that supplies Ga1e to the process control computer, and calculate the relationship between the substrate temperature and the supply amount of G11e determined in advance. By controlling the supply amount of G11e, the temperature of the substrate can be maintained at a constant temperature. Such control is particularly effective when dry etching the AQ-Cu-8i material, and can reduce the residue of the etched material by controlling the temperature to a high temperature within a range that does not damage the photoresist.

(2)プラズマの圧力が高い場合には、エツチング速度
が基板の温度上昇に伴って増加するプロセスもあり、こ
のような場合には、基板の温度があらかじめ設定した一
定温度を超えた場合に、G11eを流して冷却効果を上
げホトレジストのダメージを防止しながらエツチング時
間の短縮を図ることができる。
(2) When the plasma pressure is high, there are processes in which the etching rate increases as the substrate temperature rises; in such cases, if the substrate temperature exceeds a preset constant temperature, By flowing G11e, the etching time can be shortened while increasing the cooling effect and preventing damage to the photoresist.

以上説明した実施例では、基板の吸着に静電吸着力を用
いているが、プラズマガスの圧力が高いプロセスにおい
ては真空吸着力を用いることも可能である。また、絶縁
物下面に正極と負極とを交互に並べて配置し静電吸着力
を基板に付与するようにしても良い。また、下地の材料
が露出し始めてから更にオーバーエツチングを行うよう
な場合。
In the embodiments described above, electrostatic adsorption force is used to adsorb the substrate, but vacuum adsorption force can also be used in processes where the pressure of plasma gas is high. Alternatively, positive electrodes and negative electrodes may be arranged alternately on the lower surface of the insulator to apply electrostatic adsorption force to the substrate. Also, when over-etching is performed after the underlying material begins to be exposed.

は、下地の材料が露出し始めた時点でGHeの供給を停
止し下部電極に直流電圧を逆印加するようにする。この
ようにすれば、エツチング終了時点での基板に残留する
静電力を更に減少させることができるため、基板搬出時
に基板を損傷させることがなく、基板搬出に要する時間
を短縮することができる。但し、この場合は、エツチン
グ中の基板の温度をオーバーエツチング時の温度上昇分
だけ下げておくよう制御してやる必要がある。また、伝
熱ガスとしてGHeの他に水素ガス、ネオンガス等の熱
伝導性の良いガスを用いても良い。
When the underlying material begins to be exposed, the supply of GHe is stopped and a DC voltage is reversely applied to the lower electrode. In this way, the electrostatic force remaining on the substrate at the end of etching can be further reduced, so that the substrate is not damaged during unloading, and the time required for unloading the substrate can be shortened. However, in this case, it is necessary to control the temperature of the substrate during etching to be lowered by the amount of temperature rise during over-etching. In addition to GHe, a gas with good thermal conductivity such as hydrogen gas or neon gas may be used as the heat transfer gas.

なお1本発明は、その他の冷却される基板台に配置保持
されて真空処理される試料の温度を制御するのに同様の
効果を有する。
Note that the present invention has a similar effect in controlling the temperature of a sample placed and held on a substrate stand to be cooled and subjected to vacuum processing.

〔発明の効果〕〔Effect of the invention〕

本発明は5以上説明したように、真空処理される試料の
配置面の略全面に電気絶縁材を設けた試斜台に、電気絶
縁材を介して試料を配置し、配置された試料を吸着手段
により試料台に静電吸着保持させ、吸着保持された試料
の裏面と電気絶縁材との間隙にガス供給手段により伝熱
ガスを供給することにより、伝熱ガスのガス圧による試
料の変形を防止して吸着保持された試料の裏面と試料台
との間隙量の増大を抑制でき、真空処理される試料の温
度を効果的に制御できると共に、伝熱ガスの真空処理室
内への流出を抑制でき、プロセスに与える伝熱ガスの影
響を少なくできるという効果がある。
As explained in Section 5 above, in the present invention, a sample is placed on a test ramp in which an electrical insulating material is provided on almost the entire surface of the placement surface of the sample to be vacuum-treated, and the placed sample is adsorbed. By electrostatically adsorbing and holding the sample on the sample stage using a gas supply means and supplying heat transfer gas to the gap between the back surface of the sample held by adsorption and the electrical insulating material, deformation of the sample due to the gas pressure of the heat transfer gas is prevented. It is possible to suppress the increase in the amount of gap between the back side of the sample and the sample stage, which is held by adsorption, effectively controlling the temperature of the sample being vacuum processed, and suppressing the outflow of heat transfer gas into the vacuum processing chamber. This has the effect of reducing the influence of heat transfer gas on the process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施したドライエツチング装置の一例
を示す構成図、第2図は第1図の下部電極の詳細平面図
、第3図は第2図のA−A視断面図、第4図は本発明を
実施したドライエツチング装置の他の例を示す構成図で
ある。 10・・・・真空処理室、20・・・・下部電極、21
.21a。 才1図 才4図
FIG. 1 is a configuration diagram showing an example of a dry etching apparatus embodying the present invention, FIG. 2 is a detailed plan view of the lower electrode in FIG. 1, and FIG. 3 is a sectional view taken along line AA in FIG. FIG. 4 is a block diagram showing another example of a dry etching apparatus embodying the present invention. 10... Vacuum processing chamber, 20... Lower electrode, 21
.. 21a. 1 figure, 4 figures

Claims (1)

【特許請求の範囲】 1、真空処理される試料の配置面の略全面に電気絶縁材
を設けた試料台に、前記電気絶縁材を介して前記試料を
配置し、該配置された試料を前記試料台に静電吸着保持
させ、該吸着保持された試料の裏面と前記電気絶縁材と
の間隙に伝熱ガスを供給することを特徴とする試料の温
度制御方法。 2、前記伝熱ガスは、前記電気絶縁材に設けられる分散
溝により、前記吸着保持された前記試料の裏面と前記電
気絶縁材との間隙に分散供給される特許請求の範囲第1
項記載の試料の温度制御方法。 3、真空処理される試料の配置面の略全面に電気絶縁材
を設けた試料台と、該試料台に前記電気絶縁材を介して
配置された前記試料を前記試料台に静電吸着保持させる
吸着手段と、該吸着手段により吸着保持された前記試料
の裏面と前記電気絶縁材との間隙に伝熱ガスを供給する
ガス供給手段とを具備したことを特徴とする試料の温度
制御装置。 4、前記密着保持手段を、前記試料台が接続された直流
電源と前記真空処理時にプラズマを生成する手段とで構
成し、前記伝熱ガス供給手段が、前記試料台並びに電気
絶縁材を貫通し、かつ、前記試料の裏面に向かって開口
する前記伝熱ガスの供給路を有した特許請求の範囲第3
項記載の試料の温度制御装置。 5、前記電気絶縁材は、前記伝熱ガスの分散用溝を有す
る特許請求の範囲第3項記載の試料の温度制御装置。 6、前記分散用溝の深さは、前記伝熱ガスの平均自由行
路長以下とする特許請求の範囲第5項記載の試料の温度
制御装置。 7、前記電気絶縁材は、前記試料台の金属面に絶縁膜を
コーティングして成る特許請求の範囲第3項記載の試料
の温度制御装置。
[Scope of Claims] 1. Place the sample on a sample stage with an electrical insulating material provided on substantially the entire surface of the sample placement surface to be vacuum-treated, with the sample placed through the electrical insulating material, and A method for controlling the temperature of a sample, comprising holding the sample by electrostatic adsorption on a sample stage, and supplying a heat transfer gas to a gap between the back surface of the sample held by adsorption and the electrical insulating material. 2. The heat transfer gas is distributed and supplied to the gap between the back surface of the sample held by suction and the electrical insulating material through dispersion grooves provided in the electrical insulating material.
Sample temperature control method described in Section 1. 3. A sample stand provided with an electrical insulating material on substantially the entire surface of the placement surface of the sample to be vacuum processed, and the sample placed on the sample stand via the electrical insulating material is electrostatically held on the sample stand. A sample temperature control device comprising an adsorption means and a gas supply means for supplying a heat transfer gas to a gap between the electrical insulating material and the back surface of the sample held by the adsorption means. 4. The close contact holding means is composed of a DC power source connected to the sample stage and a means for generating plasma during the vacuum processing, and the heat transfer gas supply means penetrates the sample stage and an electrical insulating material. and a supply path for the heat transfer gas that opens toward the back surface of the sample.
Sample temperature control device as described in Section 3. 5. The sample temperature control device according to claim 3, wherein the electrical insulating material has grooves for dispersing the heat transfer gas. 6. The sample temperature control device according to claim 5, wherein the depth of the dispersion groove is equal to or less than the mean free path length of the heat transfer gas. 7. The sample temperature control device according to claim 3, wherein the electrical insulating material is formed by coating the metal surface of the sample stage with an insulating film.
JP1249151A 1989-09-27 1989-09-27 Sample temperature control method and apparatus Expired - Lifetime JPH0670985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1249151A JPH0670985B2 (en) 1989-09-27 1989-09-27 Sample temperature control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1249151A JPH0670985B2 (en) 1989-09-27 1989-09-27 Sample temperature control method and apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58222046A Division JPH0622213B2 (en) 1983-11-28 1983-11-28 Sample temperature control method and apparatus

Publications (2)

Publication Number Publication Date
JPH02110926A true JPH02110926A (en) 1990-04-24
JPH0670985B2 JPH0670985B2 (en) 1994-09-07

Family

ID=17188667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1249151A Expired - Lifetime JPH0670985B2 (en) 1989-09-27 1989-09-27 Sample temperature control method and apparatus

Country Status (1)

Country Link
JP (1) JPH0670985B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469469A2 (en) * 1990-07-31 1992-02-05 Tokyo Electron Limited Processing method for manufacturing a semiconductor device
JPH0549904A (en) * 1990-07-02 1993-03-02 Hitachi Ltd Vacuum treatment and equipment therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115047U (en) * 1979-02-06 1980-08-13
JPS5653853A (en) * 1979-10-05 1981-05-13 Hitachi Ltd Production of sheet and its apparatus
JPS57145321A (en) * 1981-03-03 1982-09-08 Nec Corp Dry etching device
JPS5832410A (en) * 1981-08-06 1983-02-25 ザ・パ−キン−エルマ−・コ−ポレイシヨン Method and device for treating structure under gas reduced pressure environment
JPS5877043U (en) * 1981-11-20 1983-05-24 株式会社日立製作所 plasma processing equipment
JPS58185773A (en) * 1982-04-21 1983-10-29 Toshiba Corp Dry etching method
JPH0622213A (en) * 1992-07-03 1994-01-28 Nec Corp Moving picture filter
JPH0670984A (en) * 1992-08-28 1994-03-15 Olympus Optical Co Ltd Living body spreading tool
JPH0670986A (en) * 1992-08-26 1994-03-15 Asahi Optical Co Ltd Spraying tool for endoscope

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115047U (en) * 1979-02-06 1980-08-13
JPS5653853A (en) * 1979-10-05 1981-05-13 Hitachi Ltd Production of sheet and its apparatus
JPS57145321A (en) * 1981-03-03 1982-09-08 Nec Corp Dry etching device
JPS5832410A (en) * 1981-08-06 1983-02-25 ザ・パ−キン−エルマ−・コ−ポレイシヨン Method and device for treating structure under gas reduced pressure environment
JPS5877043U (en) * 1981-11-20 1983-05-24 株式会社日立製作所 plasma processing equipment
JPS58185773A (en) * 1982-04-21 1983-10-29 Toshiba Corp Dry etching method
JPH0622213A (en) * 1992-07-03 1994-01-28 Nec Corp Moving picture filter
JPH0670986A (en) * 1992-08-26 1994-03-15 Asahi Optical Co Ltd Spraying tool for endoscope
JPH0670984A (en) * 1992-08-28 1994-03-15 Olympus Optical Co Ltd Living body spreading tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549904A (en) * 1990-07-02 1993-03-02 Hitachi Ltd Vacuum treatment and equipment therefor
EP0469469A2 (en) * 1990-07-31 1992-02-05 Tokyo Electron Limited Processing method for manufacturing a semiconductor device
EP0469469A3 (en) * 1990-07-31 1994-09-14 Tokyo Electron Ltd Processing method for manufacturing a semiconductor device

Also Published As

Publication number Publication date
JPH0670985B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
KR101677239B1 (en) Plasma processing apparatus and plasma processing method
US20180166259A1 (en) Mounting table and plasma processing apparatus
US4565601A (en) Method and apparatus for controlling sample temperature
KR100757545B1 (en) Upper electrode and plasma processing apparatus
US4968374A (en) Plasma etching apparatus with dielectrically isolated electrodes
KR101812646B1 (en) Plasma processing apparatus and method of manufacturing semiconductor device
US6549393B2 (en) Semiconductor wafer processing apparatus and method
JP2002305238A (en) Gas cooling electrostatic pin chuck used in vacuum
JP2007067037A (en) Vacuum processing device
JPH0622213B2 (en) Sample temperature control method and apparatus
KR100188455B1 (en) Drying etching method
JP2002043404A (en) Tray for vacuum processing equipment and vacuum processing equipment
JP3225850B2 (en) Electrostatic attraction electrode and method of manufacturing the same
JPH11307513A (en) Plasma treating apparatus for insulator substrate
JPH02119131A (en) Temperature controlling method for sample and its equipment
JP2580791B2 (en) Vacuum processing equipment
JP3231202B2 (en) Plasma processing equipment
JP2000294543A (en) Etching method and apparatus thereof, and manufacture of semiconductor device
JPH02110926A (en) Temperature control of specimen and device thereof
JP2726410B2 (en) Electrostatic attraction electrode
JP2626618B2 (en) Sample holding method for vacuum processing equipment
JP2953688B2 (en) Sample temperature control method
JP2636781B2 (en) Vacuum processing method
JP4837189B2 (en) Substrate holding mechanism and substrate processing apparatus
JPH02110927A (en) Specimen holding device