JPH021106B2 - - Google Patents

Info

Publication number
JPH021106B2
JPH021106B2 JP9628080A JP9628080A JPH021106B2 JP H021106 B2 JPH021106 B2 JP H021106B2 JP 9628080 A JP9628080 A JP 9628080A JP 9628080 A JP9628080 A JP 9628080A JP H021106 B2 JPH021106 B2 JP H021106B2
Authority
JP
Japan
Prior art keywords
wood
weight
cement
parts
coal ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9628080A
Other languages
Japanese (ja)
Other versions
JPS5722154A (en
Inventor
Hirofumi Tanaka
Katsuhiro Suzuki
Yoshibumi Fujimori
Masaru Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP9628080A priority Critical patent/JPS5722154A/en
Publication of JPS5722154A publication Critical patent/JPS5722154A/en
Publication of JPH021106B2 publication Critical patent/JPH021106B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、新規な木質系複合板に関するもので
ある。 従来、木質系複合板としては木片と接着剤を用
いたパーテイクルボード、木材その他の植物繊維
と接着剤を用いたフアイバーボード及び木毛とセ
メントを用いた木毛セメント板、木片とセメント
を用いた木片セメント板、パルプとセメントを用
いたパルプセメント板、木繊とセメントを用いた
木繊セメント板等が製造されている。 これらの木質系複合板のうち、パーテイクルボ
ードやフアイバーボードは接着剤として少量の有
機質バインダーを用い加圧成形させるため、強度
特性、軽量性、加工性等の物性は木材に近い物性
を有する反面、難燃性の面で劣ることから、内
装、外装建材として使用するには防火性能の点で
問題がある。 一方、木毛セメント板、木片セメント板、パル
プセメント板、木繊セメント板等は、接着剤とし
て多量の無機質のポルトランドセメントを用い成
形されるため、強度特性、軽量性、加工性等の物
性はパーテイクルボード、フアイバーボードに比
して劣るものが多いが、難燃性、耐候性等の性能
において優れているため、内装、外装建材として
の用途は広い。 しかるに、木毛セメント板、木片セメント板、
パルプセメント板、木繊セメント板等の木質セメ
ント複合材料は、バインダーにポルトランドセメ
ントを使用するため、樹種によつて木材中にある
種の水溶性成分によるセメントの硬化阻害が生じ
る。木質セメント板を内、外装材として用いる場
合に要求される基本的性能は、基材としての高い
強度であり、この木質セメント板の結合強度は、
木材の形状、表面性状、木材の化学成分等、主に
木材側に起因する問題とセメントの種類、添加薬
剤、養生条件等、主にセメント側に起因する問題
の二つに大別することができる。 木材の主要成分はセルロース、リグニン、ヘミ
セルロースであり、その他、従属的成分を5〜10
%含んでいる。従来、木質セメント複合材料の製
造に際して、針葉樹ではカラマツ、赤味スギ、ベ
ニマツが、また広葉樹ではかえで、しろらわん、
はんのきが、そして全般的に樹皮などもセメント
の硬化不良をひき起すことが知られている。その
ため、ひどい場合には、セメントの硬化をはなは
だしく阻害して型枠や養生室の使用回数を低下さ
せたり製品にならない場合もある。樹種によつて
セメントが硬化不良を起す理由は、木材中の水ま
たはアルカリによつて抽出される成分の中、セメ
ントに悪影響を及ぼすフミン酸、糖分質、リグニ
ン等の有害成分がセメント粒子の周囲に被膜を形
成し、セメントの水和を阻害するためとされてい
る。 このため木質セメント複合材料の製造にあたつ
て、使用樹種が限定され、その対策として、木質
原料に水、アルカリ浸漬処理を施したり、加熱処
理やパラホルムアルデヒド処理を施すか、塩化カ
ルシウムあるいは塩化マグネシウム等の硬化促進
剤を添加することが行なわれているが、効果及び
コストの面に問題があり、使用樹種を選定せねば
ならないため近年の木材、廃材の価格高騰と相ま
つて製造原価をおし上げる要因となつている。 さらに、ポルトランドセメントをバインダーと
する木質セメント複合板は、製造に際して、硬化
が遅いため木質原料のスプリングバツグ現象(圧
締め後解圧した際に成形体がゆるみ、強度特性そ
の他に悪影響を及ぼす現象)が起る。このため、
従来から木質セメント複合板の製造に際しては、
加圧圧締めしたまま2昼夜以上の期間養生せねば
ならないとされているが、木質セメント板業界で
はボードの製造時間を短縮するために成形、圧締
終了後直ちに人工乾燥して製品としてしまうこと
が多く、その場合には、その時点からセメントの
強度増進がほぼ停止してしまうことは避けられな
い。また、木質セメント複合板は加圧養生終了後
に乾燥する必要があり、加圧養生と加熱乾燥を同
時に行なうことは不可能であつた。これはバイン
ダーがポルトランドセメントであるため、養生工
程で乾燥するとポルトランドセメントの水和が進
行せず、硬化現象が停止してしまうためである。 今一つ木質セメント複合板の欠点としては、バ
インダーがポルトランドセメントであるため成形
体がアルカリ性を示し、このために木質の腐蝕に
心配があり、耐朽性を向上させるべく木質原料に
薬剤処理を施すのが普通である。このように成形
体がアルカリ性であることにより、木質セメント
複合板の表面を塗装する場合は塗料に耐アルカリ
性が要求され、塗料にも自ずと制約を生じている
のが現状である。 以上に述べた従来の木質系複合板の諸欠陥を改
良し、木材と無機質バインダーの両方の特徴を生
かした複合材料をいかにして生み出すか種々研究
を重ねた結果、本発明者は遂に木質原料と新規組
成を有する新しい無機質バインダーから成る木質
複合板の製造方法を発明するに到つた。 すなわち本発明は、木削材料5〜50重量部に対
して、石炭火力発電所等より発生する石炭灰(フ
ライアツシユ、炉底灰を含む)と燐酸またはその
塩の水溶液の配合がP2O5/石炭灰の重量比で0.05
〜0.5の組成からなる無機質バインダーを95〜50
重量部加え、混合、成形することを特徴とする木
質系複合板の製造法である。 本発明による無機質バインダーは、ポルトラン
ドセメントとは全く異質なもので、石炭灰と燐酸
またはその塩の水溶液から成る。燐酸としてはオ
ルト燐酸のほかメタ燐酸、ピロ燐酸、次燐酸、亜
燐酸、次亜燐酸が用いられる。なお、必要に応じ
石炭灰の1〜20重量%を、マグネシウム、カルシ
ウム、アルミニウム、鉄及びけい素の酸化物又は
水酸化物、石綿から選ばれた少なくとも1種で置
き換えることができる。これらは燐酸と化合する
ことによつて、アモルフアスなゲル状の含水燐酸
化合物を生じ、それが極めて強固な接着性を発揮
すると共に、木質部に浸透し、建材として重要な
物性である難燃性を付与することになる。本発明
者らは木質複合板の製造に際して、この新規無機
バインダーを使用すれば、木材中の水溶性成分に
よる硬化不良現象が全く起らず、且つ硬化時間が
早いために加圧圧締及び養生期間を大幅に短縮す
ることができ、又必要とあれば本無機質バインダ
ーの熱硬化特性を活かして、圧締と加熱養生を同
時に行ない、硬化と乾燥を一度に行なうことがで
きる。 この理由は明確ではないが、本無機質バインダ
ーの硬化機構が、ポルトランドセメントの硬化機
構の如く、飽和石灰液性下におけるけい酸カルシ
ウム水和物の生成に基ずくものではなく、石炭灰
の主要成分である活性化されたAl2O3、SiO2
Fe2O3、CaO、MgO等の複数の成分が、各種の
燐酸や燐酸塩水溶液のような燐酸含有液性下にお
いて、粘着性成分を生成し硬化に到るためと考え
られる。 本発明において、木削材料と無機質バインダー
の原料配合比率を、木削材料5〜50重量部、無機
質バインダー95〜50重量部と限定した理由は、木
削材料が5重量部より少ない場合、木質系複合板
の軽量性、加工性が損なわれ、50重量部より多い
場合、強度特性及び破燃性が損なわれるためであ
る。また無機質バインダーの組成をP2O5/石炭
灰の重量比で0.05〜0.5と限定した理由は、0.05未
満では、P2O5不足で硬化体の強度が著しく低下
し、0.5を越えるとP2O5が過剰となつて耐水性な
どの物性が損われるためである。前述の石炭灰と
置き替える無機物質の量を石炭灰の重量に対して
1〜20重量部と限定した理由は、1重量部未満で
は、無機質バインダーの強度特性の改善や硬化速
度の短縮に効果が少なく、20重量部を越える量添
加しても、無機質バインダーの強度の増進や硬化
速度の短縮に対する効果が高まらないためであ
る。また、成形に際しプレス圧を1〜100Kg/cm2
加熱温度を20〜200℃と限定した理由は、1Kg/
cm2未満では成形体の強度が著しく低く実用に堪え
ず、100Kg/cm2を越しても嵩比重が大きくなり軽
量性・加工性に問題を生じるためであり、加熱温
度については、20℃より低いと常温における硬化
時間と大差なく、養生期間を短縮する目的が果せ
なくなり、200℃を越えると木削材料が一部炭化
する危険性があるためである。 本発明によれば、硬化体のPHが弱酸性ないし中
性であること及び燐化合物が木材の防腐効果を有
するため、木質系複合板の耐朽性の向上と表面塗
装の際の塗料の制約排除に効果を発揮する。 また、本発明によれば、前述の各種の燐酸、燐
酸塩の水溶液の濃度または石炭灰に対する添加量
を加減することによつて、硬化速度ならびに強度
特性を調節することが可能であり、必要に応じて
各種添加剤を併用するか、加熱操作を採用するこ
とによつて硬化時間の短縮ならびに強度の増大を
図ることが可能であり、木質系複合板の生産性の
向上、軽量化、価格低減等が期待できる。 次に実施例によつて本発明を更に具体的に説明
する。以下の実施例において使用した石炭灰の化
学成分を第1表に示す。
The present invention relates to a novel wood-based composite board. Traditionally, wood-based composite boards include particle board using wood chips and adhesive, fiber board using wood or other plant fibers and adhesive, wood wool cement board using wood wool and cement, and wood cement board using wood chips and cement. The following products are manufactured: cement boards made from wood chips, pulp cement boards made from pulp and cement, and wood fiber cement boards made from wood fibers and cement. Among these wood-based composite boards, particle board and fiber board are pressure-formed using a small amount of organic binder as an adhesive, so they have physical properties such as strength, lightness, and workability that are close to those of wood. However, since it is inferior in flame retardancy, there are problems in terms of fire retardant performance when used as interior and exterior building materials. On the other hand, wood wool cement boards, wood chip cement boards, pulp cement boards, wood fiber cement boards, etc. are molded using a large amount of inorganic Portland cement as an adhesive, so their physical properties such as strength, lightness, and workability are poor. Although it is often inferior to particle board and fiber board, it has excellent performance such as flame retardancy and weather resistance, so it has a wide range of uses as an interior and exterior building material. However, wood wool cement board, wood chip cement board,
Wood-cement composite materials such as pulp cement boards and wood fiber cement boards use Portland cement as a binder, so depending on the tree species, certain water-soluble components in the wood may inhibit hardening of the cement. The basic performance required when using wood cement boards as interior and exterior materials is high strength as a base material, and the bonding strength of this wood cement board is:
Problems can be broadly divided into two types: problems mainly caused by the wood, such as the shape of the wood, surface properties, and chemical components of the wood, and problems mainly caused by the cement, such as the type of cement, additives, curing conditions, etc. can. The main components of wood are cellulose, lignin, and hemicellulose, with 5 to 10 other subordinate components.
Contains %. Conventionally, in the production of wood-cement composite materials, coniferous trees such as larch, red cedar, and russet pine were used, and hardwoods such as maple, white pine, and pine were used.
Haywood, and bark in general, is also known to cause poor cement hardening. Therefore, in severe cases, the hardening of the cement may be significantly inhibited, reducing the number of times the formwork or curing chamber can be used, or the product may fail. The reason why cement hardens poorly depending on the tree species is that among the components extracted by water or alkali in the wood, harmful components such as humic acid, sugar, and lignin, which have a negative effect on cement, are present around the cement particles. It is said that this is because it forms a film on the cement and inhibits the hydration of the cement. For this reason, the types of trees used in the production of wood-cement composite materials are limited, and as a countermeasure, the wood raw materials are soaked in water or alkali, heat treated, treated with paraformaldehyde, or treated with calcium chloride or magnesium chloride. Adding hardening accelerators such as This is a contributing factor to the increase. Furthermore, wood-cement composite boards using Portland cement as a binder have a slow hardening process during manufacture, resulting in the spring-bagging phenomenon of the wood raw material (a phenomenon in which the molded product loosens when it is decompressed after compaction, which adversely affects strength properties and other properties). happens. For this reason,
Traditionally, when manufacturing wood-cement composite boards,
It is said that the board must be cured for two days and nights while being pressurized, but in the wood cement board industry, in order to shorten board manufacturing time, the product is artificially dried immediately after forming and pressing. In many cases, it is inevitable that the cement's strength increase will almost stop from that point on. Furthermore, the wood-cement composite board needs to be dried after pressure curing, and it has been impossible to perform pressure curing and heat drying at the same time. This is because the binder is Portland cement, so if it dries during the curing process, the hydration of the Portland cement will not proceed and the hardening phenomenon will stop. Another disadvantage of wood-cement composite boards is that the binder is Portland cement, so the molded product exhibits alkalinity.Therefore, there is a concern about corrosion of the wood, and it is necessary to treat the wood raw material with chemicals to improve its decay resistance. It's normal. Due to the fact that the molded body is alkaline as described above, when painting the surface of a wood-cement composite board, the paint is required to have alkali resistance, which naturally places restrictions on the paint. As a result of various researches on how to improve the various defects of the conventional wood-based composite boards mentioned above and create a composite material that takes advantage of the characteristics of both wood and inorganic binder, the present inventor has finally found a way to improve the various defects of the conventional wood-based composite boards. We have now invented a method for manufacturing wood composite boards made of a new inorganic binder with a new composition. That is, in the present invention, the combination of coal ash (including fly ash and hearth bottom ash) generated from coal-fired power plants, etc. and an aqueous solution of phosphoric acid or its salt to 5 to 50 parts by weight of the wood cutting material is P 2 O 5 . /0.05 by weight ratio of coal ash
An inorganic binder with a composition of ~0.5 to 95 to 50
This is a method for manufacturing a wood-based composite board characterized by adding parts by weight, mixing, and forming. The inorganic binder according to the present invention is completely different from Portland cement and consists of an aqueous solution of coal ash and phosphoric acid or its salt. As the phosphoric acid, in addition to orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, hypophosphoric acid, phosphorous acid, and hypophosphorous acid are used. Note that, if necessary, 1 to 20% by weight of the coal ash can be replaced with at least one member selected from oxides or hydroxides of magnesium, calcium, aluminum, iron and silicon, and asbestos. By combining with phosphoric acid, these produce an amorphous gel-like hydrous phosphoric acid compound, which exhibits extremely strong adhesive properties and penetrates into wood, providing flame retardancy, which is an important physical property for building materials. will be granted. The present inventors believe that if this new inorganic binder is used in the production of wood composite boards, curing failure due to water-soluble components in the wood will not occur at all, and the curing time will be quick, so the pressure compaction and curing period will be reduced. Furthermore, if necessary, the thermosetting properties of this inorganic binder can be used to perform pressing and heat curing at the same time, allowing hardening and drying to be performed at the same time. The reason for this is not clear, but the hardening mechanism of this inorganic binder is not based on the formation of calcium silicate hydrate under saturated lime liquid conditions, like the hardening mechanism of Portland cement, but rather is based on the formation of calcium silicate hydrate, which is the main component of coal ash. activated Al 2 O 3 , SiO 2 ,
This is thought to be because a plurality of components such as Fe 2 O 3 , CaO, and MgO generate adhesive components and lead to hardening in the presence of phosphoric acid-containing liquids such as various phosphoric acids and phosphate aqueous solutions. In the present invention, the reason why the mixing ratio of the wood cutting material and the inorganic binder is limited to 5 to 50 parts by weight of the wood cutting material and 95 to 50 parts by weight of the inorganic binder is that when the wood cutting material is less than 5 parts by weight, the wood This is because the lightness and workability of the composite board are impaired, and if the amount exceeds 50 parts by weight, the strength characteristics and flammability are impaired. The reason why the composition of the inorganic binder was limited to 0.05 to 0.5 in terms of P 2 O 5 /coal ash weight ratio is that if it is less than 0.05, the strength of the cured product will decrease significantly due to insufficient P 2 O 5 , and if it exceeds 0.5, P This is because excess 2 O 5 impairs physical properties such as water resistance. The reason for limiting the amount of inorganic material to replace the coal ash mentioned above to 1 to 20 parts by weight based on the weight of coal ash is that less than 1 part by weight is effective in improving the strength characteristics of the inorganic binder and shortening the hardening speed. This is because the amount of the inorganic binder is small, and even if it is added in an amount exceeding 20 parts by weight, the effect of increasing the strength of the inorganic binder and shortening the curing speed will not be enhanced. In addition, during molding, press pressure should be set at 1 to 100 kg/cm 2 ,
The reason why we limited the heating temperature to 20 to 200℃ is that 1Kg/
If it is less than 100 kg/cm 2 , the strength of the molded product is extremely low and cannot be put to practical use, and if it exceeds 100 kg/cm 2 , the bulk specific gravity will increase, causing problems with lightness and workability. This is because if the temperature is too low, the curing time will not be much different from the curing time at room temperature, and the purpose of shortening the curing period will no longer be achieved, and if it exceeds 200°C, there is a risk that some of the wood cutting material will char. According to the present invention, the pH of the cured product is weakly acidic to neutral, and the phosphorus compound has a wood preservative effect, which improves the decay resistance of wood-based composite boards and eliminates restrictions on paints when painting the surface. It is effective. Furthermore, according to the present invention, by adjusting the concentration of the various phosphoric acids and phosphate aqueous solutions mentioned above or the amount added to coal ash, it is possible to adjust the curing speed and strength characteristics. Depending on the situation, it is possible to shorten the curing time and increase the strength by using various additives in combination or by employing heating operations, which improves the productivity, reduces weight, and reduces the price of wood-based composite boards. etc. can be expected. Next, the present invention will be explained in more detail with reference to Examples. The chemical composition of the coal ash used in the following examples is shown in Table 1.

【表】 また、これらの実施例において使用した木質材
料について説明する。 一般に木毛、木片セメント板などの製造におい
て、ポルトランドセメントの硬化不良をひき起す
代表的樹脂としてシベリア産カラマツ(全乾比重
0.57)を、硬化不良をひき起さない樹種としてシ
ベリア産エゾマツ(全乾比重0.40)を使用した。 一般にセメントの硬化不良をひき起す原因は、
主として木材中に含まれる水溶性成分であるとい
われ、JIS P8004−1959に準じて求めた冷水抽出
成分量を第2表に示す。
[Table] Also, the wood materials used in these examples will be explained. In general, in the production of wood wool, wood chip cement boards, etc., Siberian larch (total dry specific gravity
0.57), and Siberian Scots pine (total dry specific gravity 0.40) was used as a tree species that does not cause poor curing. Generally, the causes of poor hardening of cement are:
It is said to be a water-soluble component mainly contained in wood, and the amount of cold water extractable components determined according to JIS P8004-1959 is shown in Table 2.

【表】 使用した木質材料の形状は、木片の場合、パー
ルマンフレーカーを用いて製造した削片を節分け
し、5〜20メツシユの寸法のものを十分に気乾状
態としたものであり、木毛の場合は、長さ6cm、
幅4mm、厚さ0.4mmで十分に気乾状態としたもの
である。 ボードの製造および試験の方法は、木質原料と
無機質バインダーを混合し、15cm×20cmのボード
成形用型枠の中にフオーミングした後、所定のプ
レス圧に加圧圧締めした。所定時間、加圧圧締め
したものを、解圧脱型し、所定の期間養生した
後、嵩比重の測定及び中央集中荷重の曲げ強度試
験を実施した。なお、曲げ強度試験はJIS A1408
「建築用ボード類の曲げ試験方法」に準じ、長さ
20cm、幅15cm、スパン15cmとし、荷重速度5mm/
minとして中央集中荷重にて測定した。 実施例 1 水浸漬処理を施さないカラマツ木片30重量部に
石炭灰70重量部を加え、混合した後、湿式燐酸製
造で得られる粗燐酸液(P2O5換算30.5%濃度)40
重量部を加えて混練し、型枠の中にフオーミング
した。これをプレス圧20Kg/cm2で24時間圧締めし
た後、解圧脱型し7日間常温にて気乾養生したも
のについて、嵩比重、曲げ強度を測定した。また
比較のためカラマツ木片30重量部に普通ポルトラ
ンドセメント70重量部を加え混合した後、水を40
重量部加えて混練し、型枠の中にフオーミングし
プレス圧10Kg/cm2で72時間圧締めした後、解圧脱
型し14日間養生したものについても試験を行なつ
た。結果は第3表のようであつた。
[Table] In the case of wood chips, the shape of the wood material used was obtained by dividing the wood chips produced using a Perlman flaker and thoroughly air-drying the pieces with a size of 5 to 20 mesh. For hair, the length is 6 cm,
It has a width of 4 mm and a thickness of 0.4 mm and has been thoroughly air-dried. The board was manufactured and tested by mixing wood raw materials and an inorganic binder, forming the mixture into a 15 cm x 20 cm board molding frame, and then pressing it to a predetermined press pressure. After being pressure-tightened for a predetermined period of time, it was depressurized and demolded, and after curing for a predetermined period of time, bulk specific gravity was measured and a bending strength test under central concentrated load was conducted. The bending strength test is based on JIS A1408.
Length according to "Bending test method for architectural boards"
20cm, width 15cm, span 15cm, loading speed 5mm/
It was measured with a centrally concentrated load as min. Example 1 70 parts by weight of coal ash was added to 30 parts by weight of larch wood chips that had not been soaked in water, and after mixing, a crude phosphoric acid solution (concentration of 30.5% in terms of P 2 O 5 ) obtained by wet phosphoric acid production was obtained.
Parts by weight were added, kneaded, and formed into a mold. This was pressed at a press pressure of 20 kg/cm 2 for 24 hours, then decompressed and air-dried at room temperature for 7 days, and its bulk specific gravity and bending strength were measured. For comparison, 70 parts by weight of ordinary Portland cement was added to 30 parts by weight of larch wood chips, mixed, and 40 parts by weight of water was added.
Tests were also carried out on products that were added in parts by weight, kneaded, formed into a mold, compressed at a press pressure of 10 kg/cm 2 for 72 hours, released from the mold, and cured for 14 days. The results were as shown in Table 3.

【表】 実施例 2 水浸漬処理を24時間施し、木材中の水溶性成分
を除いたカラマツ木片を使用し、実施例1と全く
同様の比較試験を行なつた。結果は第4表のよう
であつた。
[Table] Example 2 A comparative test was conducted in exactly the same manner as in Example 1 using larch wood chips that had been soaked in water for 24 hours to remove the water-soluble components in the wood. The results were as shown in Table 4.

【表】 実施例 3 水浸漬処理を施さないカラマツ木片30重量部に
石炭灰67重量部と水酸化アルミニウム3重量部を
加え、混合した後、粗燐酸(P2O5換算30.5%濃
度)30重量部を加えて混練し、型枠の中にフオー
ミングした。これをプレス圧20Kg/cm2で、6時間
圧締めした後、解圧脱型し、7日間常温にて気乾
養生したものと、プレス圧20Kg/cm2、加熱温度80
℃で6時間圧締めし、加圧養生と加熱乾燥を同時
に行つたものにつき嵩比重、曲げ強度の測定をし
た。結果は第5表のようであつた。
[Table] Example 3 67 parts by weight of coal ash and 3 parts by weight of aluminum hydroxide were added to 30 parts by weight of larch wood chips that had not been soaked in water, and after mixing, crude phosphoric acid (30.5% concentration in terms of P 2 O 5 ) was added. Parts by weight were added, kneaded, and formed into a mold. This was pressed at a press pressure of 20 kg/cm 2 for 6 hours, then decompressed and molded , and air-dried at room temperature for 7 days.
The bulk specific gravity and bending strength of the pieces that were pressed for 6 hours at ℃ and subjected to pressure curing and heat drying at the same time were measured. The results were as shown in Table 5.

【表】 実施例 4 水浸漬処理を施さないエゾマツ木片を使用して
実施例1と全く同様の比較試験を行なつた。結果
は第6表のようであつた。
[Table] Example 4 A comparative test was conducted in exactly the same manner as in Example 1 using pieces of Scots spruce that had not been subjected to water immersion treatment. The results were as shown in Table 6.

【表】 実施例 5 水浸漬処理を施さないエゾマツ木片30重量部に
石炭灰67重量部と酸化マグネシウム3重量部を加
え混合したもの及びエゾマツ木片30重量部に石炭
灰67重量部と石綿3重量部を加え混合したものに
対して、それぞれ粗燐酸(P2O5換算30.5濃度)40
重量部を加えて混練し、型枠の中にフオーミング
した。これらをプレス圧20Kg/cm2で12時間圧締せ
しめた後、解圧脱型し、7日間常温にて気乾養生
したものについて、嵩比重、曲げ強度を測定し
た。結果は第7表のようであつた。
[Table] Example 5 67 parts by weight of coal ash and 3 parts by weight of magnesium oxide were added to and mixed with 30 parts by weight of Scots spruce wood chips that had not been soaked in water, and 67 parts by weight of coal ash and 3 parts by weight of asbestos were added to 30 parts by weight of Scots pine wood chips. 40 parts of crude phosphoric acid (30.5 concentration calculated as P 2 O 5 )
Parts by weight were added, kneaded, and formed into a mold. After pressing these at a press pressure of 20 kg/cm 2 for 12 hours, the molds were released and air-dried for 7 days at room temperature, and their bulk specific gravity and bending strength were measured. The results were as shown in Table 7.

【表】 実施例 6 水浸漬処理を施さないカラマツ木毛とエゾマツ
木毛を用いて木毛40重量部に石炭灰60重量部を加
えて混合した後粗燐酸(P2O5換算30.5%濃度)40
重量部を加えて混練し、型枠の中にフオーミング
した。これをプレス圧6Kg/cm2で24時間圧締めし
た後解圧脱型し、7日間常温にて気乾養生した。
また比較のため、これらの木毛を用いて木毛40重
量部に普通ポルトランドセメント60重量部を加え
混合した後、水を60重量部加えて混練し、型枠の
中にフオーミングしプレス圧2Kg/cm2で72時間圧
締めした後、解圧脱型し14日間養生した。これら
の木毛板について嵩比重、曲げ強度試験を行つ
た。結果は第8表のようであつた。
[Table] Example 6 Using larch wood wool and Scots pine wool that have not been soaked in water, 40 parts by weight of the wood wool was mixed with 60 parts by weight of coal ash, and then crude phosphoric acid (concentration of 30.5% in terms of P 2 O 5) was added. ) 40
Parts by weight were added, kneaded, and formed into a mold. This was pressed at a press pressure of 6 kg/cm 2 for 24 hours, then depressurized and demolded, and air-dried and cured at room temperature for 7 days.
For comparison, these wood wools were mixed by adding 60 parts by weight of ordinary Portland cement to 40 parts by weight of the wood wool, then adding 60 parts by weight of water, kneading, forming into a formwork, and pressing at a pressure of 2 kg. /cm 2 for 72 hours, the mold was released and cured for 14 days. Bulk specific gravity and bending strength tests were conducted on these wood wool boards. The results were as shown in Table 8.

【表】【table】

Claims (1)

【特許請求の範囲】 1 木削材料5〜50重量部に対して、石炭火力発
電所等より発生する石炭灰(フライアツシユ、炉
底灰を含む)と燐酸またはその塩の水溶液の配合
がP2O5/石炭灰の重量比で0.05〜0.5の組成から
なる無機質バインダーを95〜50重量部加え、混
合、成形することを特徴とする木質系複合板の製
造法。 2 石炭灰がその1〜20重量%を、マグネシウ
ム、カルシウム、アルミニウム、鉄及びけい素の
酸化物又は水酸化物、石綿から選ばれた少なくと
も1種で置き換えたものである特許請求の範囲第
1項記載の方法。 3 成形条件が1〜100Kg/cm2に加圧又は/及び
20〜200℃に加熱する特許請求の範囲第1項また
は第2項記載の方法。
[Claims] 1. A mixture of coal ash (including fly ash and hearth bottom ash) generated from coal-fired power plants, etc. and an aqueous solution of phosphoric acid or its salt to 5 to 50 parts by weight of wood cutting material is P 2 A method for producing a wood-based composite board, which comprises adding 95 to 50 parts by weight of an inorganic binder having a composition of 0.05 to 0.5 in terms of O 5 /coal ash weight ratio, mixing and forming. 2. Claim 1, in which 1 to 20% by weight of the coal ash is replaced with at least one member selected from magnesium, calcium, aluminum, iron and silicon oxides or hydroxides, and asbestos. The method described in section. 3 Molding conditions are pressurized to 1-100Kg/ cm2 and/or
The method according to claim 1 or 2, wherein the method is heated to 20 to 200°C.
JP9628080A 1980-07-16 1980-07-16 Manufacture of wooden composite board Granted JPS5722154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9628080A JPS5722154A (en) 1980-07-16 1980-07-16 Manufacture of wooden composite board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9628080A JPS5722154A (en) 1980-07-16 1980-07-16 Manufacture of wooden composite board

Publications (2)

Publication Number Publication Date
JPS5722154A JPS5722154A (en) 1982-02-05
JPH021106B2 true JPH021106B2 (en) 1990-01-10

Family

ID=14160701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9628080A Granted JPS5722154A (en) 1980-07-16 1980-07-16 Manufacture of wooden composite board

Country Status (1)

Country Link
JP (1) JPS5722154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460207U (en) * 1990-09-28 1992-05-22

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58203593A (en) * 1982-05-20 1983-11-28 シャープ株式会社 Centralized gas monitor system
JPS6154599A (en) * 1984-08-25 1986-03-18 松下電工株式会社 Disaster prevention system
WO2011100288A2 (en) * 2010-02-09 2011-08-18 Latitude 18, Inc. Phosphate bonded composites and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460207U (en) * 1990-09-28 1992-05-22

Also Published As

Publication number Publication date
JPS5722154A (en) 1982-02-05

Similar Documents

Publication Publication Date Title
JP5782462B2 (en) Phosphate bonded composites and methods
US4597928A (en) Method for fiberboard manufacture
US4339405A (en) Method of adhering mineral deposit in wood fragment surfaces
USRE32329E (en) Method of adhering mineral deposit in wood fragment surfaces
Simatupang et al. Inorganic binder for wood composites: feasibility and limitations
US4479912A (en) Fiber board composition
CN1947967A (en) Method for producing fire-proof ply wood
US2786008A (en) Acidic ammonium-base sulfite waste liquor-phenol-aldehyde resins, their production and application
CN107572951B (en) High-density calcium silicate board and preparation method thereof
EP1525264A1 (en) Method for the production of fire-resistant moulded wood fibre pieces
Blankenhorn et al. Compressive strength of hardwood-cement composites
JPH10231161A (en) Heat-curing type cement composition and production of wood-based cement board using the same composition
JPH021106B2 (en)
US2687556A (en) Method of preparing products comprising compressed lignocellulosic materials and chemically combined soluble silicates
ALPAR et al. Advanced wood cement compatibility with nano mineral
CA2256398A1 (en) Fireproofing agent for particle or fibre boards
DE2410746A1 (en) METHOD AND MEANS FOR BINDING LIGNOCULLULOSE MATERIAL
JPH06279087A (en) Fiber-containing gypsum plate and its production
SU1165697A1 (en) Pressed compound for manufacturing fire-proof-chip wood board
Amiandamhen et al. Paper I
SU946973A1 (en) Method of producing particle-board panels
Musokotwane Particle moisture content effects on the physical and mechanical properties of magnesite cement-bonded particleboard
DE927537C (en) Process for the production of solid or profiled building panels or bodies
WO1986002292A1 (en) Fiber board composition
CA1216691A (en) Fiber board composition