JPH02110304A - Apparatus for measuring displacement of tunnel cross-section - Google Patents

Apparatus for measuring displacement of tunnel cross-section

Info

Publication number
JPH02110304A
JPH02110304A JP26297688A JP26297688A JPH02110304A JP H02110304 A JPH02110304 A JP H02110304A JP 26297688 A JP26297688 A JP 26297688A JP 26297688 A JP26297688 A JP 26297688A JP H02110304 A JPH02110304 A JP H02110304A
Authority
JP
Japan
Prior art keywords
light
line sensor
displacement
displacement measuring
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26297688A
Other languages
Japanese (ja)
Other versions
JPH0672774B2 (en
Inventor
Kazuo Kagawa
香川 和夫
Tetsuo Goto
哲夫 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP26297688A priority Critical patent/JPH0672774B2/en
Publication of JPH02110304A publication Critical patent/JPH02110304A/en
Publication of JPH0672774B2 publication Critical patent/JPH0672774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/06Tracing profiles of cavities, e.g. tunnels

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable quick and accurate measurement of the displacement of the cross-section of a tunnel by applying a light beam to a displacement measuring rod having a line sensor mounted thereon from a light-emitting device provided on the entrance side of the tunnel and by inputting to a computer a luminous intensity detection electric signal transmitted from the line sensor. CONSTITUTION:When a line sensor 3 of a displacement measuring rod A is irradiated by a light-emitting device C, an electric signal corresponding to the degree of a sensed light is send to a converter E and converted thereby into a data signal, which is inputted to a microcomputer F. The microcomputer F processes arithmetically a difference between a light wave axis of the line sensor and an initial light wave axis and detects the amount of displacement of the excavated natural ground B. Then, it gives an instruction to a control device G to stop a driving device 5 making a light-sensing device C rotate horizontally and executes measurement of the displacement measuring rod A being in process of sensing the light. Measurement of each displacement measuring rod A is executed while the above-stated operation is repeated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はトンネル掘削工事において、掘削時の事故防止
や、掘削断面の寸法検査用として掘削地山の計測管理を
行なうためのトンネル断面変位測定装置に係るものであ
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention is used to measure tunnel cross-sectional displacement in tunnel excavation work to prevent accidents during excavation and to measure and manage excavated ground for dimension inspection of the excavated cross-section. It is related to the device.

(従来の技術) トンネル掘削工事において、掘削時の地山の崩落等によ
る事故防止や掘削断面の寸法が許容値以内にあるか否か
の検査等のために、他山変位の計測管理は極め・て重要
である。
(Conventional technology) During tunnel excavation work, measurement and management of displacement of other mountains is extremely important in order to prevent accidents such as collapse of the ground during excavation and to inspect whether the dimensions of the excavated cross section are within tolerance values.・It is important.

本出願人は塁に特開昭59−95411号公報(特願昭
57−204488号)において、トンネル内に配設さ
れ、トンネル掘削断面に沿って回動自在に駆動される超
音波式距離センサーで、超音波発生器より発信された超
音波のトンネル掘削面からの反射波を検知し、この検知
信号及び、前記超音波発生器の発信信号を制御器に入力
し、同制御器によって前記センサーとトンネル掘削面と
の間の距離を演算するように構成されたトンネル断面計
測装置を提案した。
In Japanese Patent Application Laid-open No. 59-95411 (Japanese Patent Application No. 57-204488), the present applicant discloses an ultrasonic distance sensor that is disposed inside a tunnel and is rotatably driven along the tunnel excavation cross section. , detects the reflected wave of the ultrasonic waves emitted from the ultrasonic generator from the tunnel excavation surface, inputs this detection signal and the emission signal of the ultrasonic generator to a controller, and the controller controls the sensor. proposed a tunnel cross-section measuring device configured to calculate the distance between the tunnel excavation surface and the tunnel excavation surface.

(発明が解決しようとする課題) しかしながらこのように超音波を利用する装置において
は、トンネル地山の硬軟性、他山面の流水、その他の影
響によって測定値に誤差を生じ、信頼性の高いデータが
得られなかった。
(Problem to be Solved by the Invention) However, in devices that use ultrasonic waves, errors occur in the measured values due to the hardness and softness of the tunnel ground, running water on other mountain surfaces, and other influences, making it difficult to maintain high reliability. No data was obtained.

また前記の装置においては計測の度毎に、超音波式距離
センサーをセットする必要があり、計測作業が面倒であ
った。
Furthermore, in the above-mentioned apparatus, it was necessary to set the ultrasonic distance sensor each time a measurement was made, which made the measurement work troublesome.

本発明は前記従来技術の有する問題点に鑑みて提案され
たもので、その目的とする処は、トンネル断面の迅速且
つ正確な変位の計測を可能ならしめる信頼性の高いトン
ネル断面変位測定装置を提供する点にある。
The present invention has been proposed in view of the problems of the prior art, and an object of the present invention is to provide a highly reliable tunnel cross-sectional displacement measurement device that enables rapid and accurate displacement measurement of tunnel cross-sections. It is in the point of providing.

(課題を解決するための手段) 前記の目的を達成するため、本発明に係るトンネル断面
変位測定装置は、掘削他山の変位測定個所に設置され、
且つラインセンサーが装架された変位測定棒と、トンネ
ル入口側に設置され、前記ラインセンサーに光線を照射
する発光器と、前記ラインセンサーから発信された光度
検知電気信号をデータ信号に交換する変換器と、同変換
器からの信号を入力してトンネル断面変位量を演算処理
するマイクロコンピュータ−とより構成されている。
(Means for Solving the Problems) In order to achieve the above-mentioned object, a tunnel cross-sectional displacement measuring device according to the present invention is installed at a displacement measurement point of an excavation or other mountain,
In addition, a displacement measuring rod equipped with a line sensor, a light emitter installed at the tunnel entrance side and irradiating the line sensor with a light beam, and a converter that exchanges the light intensity detection electric signal transmitted from the line sensor into a data signal. The converter consists of a microcomputer that inputs signals from the converter and processes the amount of tunnel cross-sectional displacement.

前記掘削地山の各変位測定個所の測定を自動的に順次行
なうことができるように、前記発光器は°水平架台上に
搭載され、同架台を水平回転及び上下移動させる駆動装
置と前記マイクロコンピュータ−の指令を受けて発光器
の光線を掘削地山に設置された複数の前記ラインセンサ
ーに順次照射できるように前記駆動装置を制御する制御
装置とを具えている。
In order to automatically and sequentially measure each displacement measurement point of the excavated ground, the light emitting device is mounted on a horizontal pedestal, and a drive device for horizontally rotating and vertically moving the pedestal and the microcomputer are mounted on the horizontal pedestal. - a control device that controls the driving device so that the light beam of the light emitting device can be sequentially irradiated to the plurality of line sensors installed in the excavated ground in response to a command.

(作用) 本発明は前記したように構成されているので、掘削他山
の変位測定個所に設置された変位測定棒のラインセンサ
ーが、トンネル入口側に設置された発光器からの光を受
けると、受光感度に即応した電気信号を出し、この信号
は変換器に送られ、同変換器によって電気的信号データ
信号に変換されてマイクロコンピュータ−に入力され、
同マイクロコンピュータ−によってトンネル断面変位f
fiが演算処理される。
(Function) Since the present invention is configured as described above, when the line sensor of the displacement measuring rod installed at the displacement measuring point of the excavated mountain receives light from the light emitting device installed on the tunnel entrance side. , outputs an electrical signal immediately responsive to the light-receiving sensitivity, and this signal is sent to a converter, which converts it into an electrical signal data signal and inputs it to a microcomputer.
The tunnel cross-sectional displacement f is determined by the same microcomputer.
fi is processed.

また前記マイクロコンピュータ−によりて、前記発光器
を搭載した架台を水平回転及び上下移動する駆動装置を
制御することによって、前記掘削地山に設置された複数
のラインセンサーを順次照射し、多数の計測点を自動的
に計測するものである。
The microcomputer controls a drive device that horizontally rotates and moves up and down the pedestal on which the light emitting device is mounted, so that a plurality of line sensors installed in the excavated ground are sequentially irradiated and a large number of measurements are performed. It measures points automatically.

(実施例) 以下本発明を図示の実施例について説明する。(Example) The present invention will be described below with reference to the illustrated embodiments.

(A)は掘削他山(B)の変位測定個所に設置される変
位測定棒で、他山に固定される長ボルト(1)の先端に
羽子板状に固着された取付板(2)に、微小長さの受光
チップによって構成されたラインセンサー(3)が支持
され、同センサー(3)は光を受けると各受光チップが
受光感度電気信号を発するように構成されている。
(A) is a displacement measuring rod installed at the displacement measurement point of the excavation mountain (B), and is attached to a mounting plate (2) fixed in a battledore shape to the tip of a long bolt (1) fixed to the other mountain. A line sensor (3) constituted by light-receiving chips of minute length is supported, and the sensor (3) is configured such that each light-receiving chip emits a light-receiving sensitivity electrical signal when it receives light.

(C)は前記ラインセンサー(3)に光を照射するため
に、同センサー(3)とほぼ同一レベルになるように、
トンネル入口側の既設覆工部(D)に設置された光波距
離計、赤外線発信器、或いはレーザ発振器等よりなる発
光器である。
(C) in order to irradiate the line sensor (3) with light, so that the level is almost the same as that of the line sensor (3).
This is a light emitting device consisting of a light wave distance meter, an infrared transmitter, a laser oscillator, etc. installed in the existing lining section (D) on the tunnel entrance side.

(E)は前記ラインセンサー(3)から送られてくる受
光感度の電気信号を、データ信号に変換する変換器、(
F)は同変換器(E)を介して入力されたデータ信号を
演算処理するデイスプレー、フロッピーデスク、プリン
ター等を含むマイクロコンピュータ−である。
(E) is a converter that converts the electric signal of light reception sensitivity sent from the line sensor (3) into a data signal;
F) is a microcomputer including a display, a floppy desk, a printer, etc., which processes data signals inputted through the converter (E).

第5図は前記発光器(C)の駆動装置付架台を示し、下
部架台(4)上の軸受(5a)に上部架台間より垂設さ
れた螺桿(5b)が回転自在に支持され、且つ前記架台
(4)上の水平回転駆動装W(5)の駆動螺軸(5c)
と噛合し、同装置(5)を作動することによって前記架
台(6)が水平に回転するようになっている。
FIG. 5 shows a pedestal with a driving device for the light emitting device (C), in which a screw rod (5b) hanging vertically from between the upper pedestals is rotatably supported by a bearing (5a) on a lower pedestal (4). Drive screw shaft (5c) of the horizontal rotation drive unit W (5) on the pedestal (4)
By engaging with the device (5) and operating the device (5), the pedestal (6) is rotated horizontally.

上部架台(6)は発光器(C)の支持架台(7)と連結
部材(8)を介して連結され、前記架台(6)上に軸受
(9a)を介して螺桿0(Dが立設され、前記支持架台
(7)上における前記連結部材(8)の取付部を頂点と
する二等辺三角形の残りの2つの頂点部に位置する透孔
aωに遊挿されている。
The upper pedestal (6) is connected to the support pedestal (7) of the light emitting device (C) via a connecting member (8), and a screw rod 0 (D) is erected on the pedestal (6) via a bearing (9a). and is loosely inserted into through-holes aω located at the remaining two vertices of an isosceles triangle whose vertices are the attachment portion of the connection member (8) on the support frame (7).

前記架台(力には前記各螺桿(9b)に噛合する駆動螺
軸(9c)を有する一双の上下動駆動装置(9)が配設
され、同駆動装置(9)を作動することによって支持架
台(刀が昇降するように構成されている。更に前記下部
架台(4)には、マイクロコンピュータ−(F)からの
指示を受けて前記各駆動装置(5)(7)を制御する制
御装置(G)が装架されている。
A pair of vertical drive devices (9) each having a drive screw shaft (9c) that meshes with each of the screw rods (9b) is disposed on the pedestal, and by operating the drive device (9), the support pedestal is moved. (The sword is configured to move up and down. Furthermore, on the lower pedestal (4), there is a control device ( G) is installed.

図示の実施例は前記したように構成されているので、前
記発光器(C)より所要の変位測定棒(A)におけるラ
インセンサー(3)を照射する。このようにラインセン
サー(3)が受光器(C)の光を受けると、受光感度に
対応する電気信号が変換器([りに送られ、ここでデー
タ信号に変換されてマイクロコンピュータ−(F)に入
力される。
Since the illustrated embodiment is constructed as described above, the light emitting device (C) irradiates the line sensor (3) in the required displacement measuring rod (A). When the line sensor (3) receives light from the light receiver (C) in this way, an electrical signal corresponding to the light receiving sensitivity is sent to the converter ([ri], where it is converted into a data signal and is converted into a data signal by the microcomputer (F). ) is entered.

同マイクロコンピュータ−(F)は入力されたデータか
ら直ちに前記ラインセンサー(3)の光波軸とイニシア
ルの光波軸との差を演算処理し、掘削他山(B)の変位
量として検出する。
The microcomputer (F) immediately calculates the difference between the light wave axis of the line sensor (3) and the initial light wave axis from the input data, and detects it as the amount of displacement of the excavation pile (B).

このため掘削他山(B)の変位量が正確、且つ迅速に検
出される。
Therefore, the amount of displacement of the excavation pile (B) can be detected accurately and quickly.

マイクロコンピュータ−(F)はこのようにラインセン
サー(3)からの受光信号を受けると前記制御装置 (
G)に指令を出して、受光器(C)を水平回転させてい
る駆動装置(5)を停止して、受光中の変位測定棒(^
)の計測を行なう。
When the microcomputer (F) receives the light reception signal from the line sensor (3) in this way, it controls the control device (
G), stop the drive device (5) that horizontally rotates the light receiver (C), and move the displacement measuring rod (^) while it is receiving light.
).

なお昇降駆動装置(9)は最初に設置された変位測定棒
(^)と受光器(C)とのレベル@調整時に使用され、
計測時は駆動装置(5)のみが作動する。
Note that the lifting drive device (9) is used when adjusting the level between the displacement measuring rod (^) and the light receiver (C) that were first installed.
Only the drive device (5) operates during measurement.

前記変位測定棒(A)の計測が終ると、マイクロコンピ
ュータ−(F)は次位の変位測定棒(A)の計測を行な
うために制御装置(G)に指令を出し、駆動装置(5)
を作動させて発光器(C)を水平回転させ、マイクロコ
ンピュータ−(F)はラインセンサー(3)からの受光
信号を受けると、制御装置(G)に指令を出して発光器
(C)を水平回転させている駆動装W(5)の作動を停
止させ、受光中の変位測定棒(^)の計測を行なう。
When the measurement of the displacement measuring rod (A) is completed, the microcomputer (F) issues a command to the control device (G) to measure the next displacement measuring rod (A), and the drive device (5)
When the microcomputer (F) receives the light reception signal from the line sensor (3), it issues a command to the control device (G) to rotate the light emitter (C) horizontally. The operation of the horizontally rotating drive unit W (5) is stopped, and the displacement measurement rod (^) that is receiving light is measured.

以上の操作を繰返しながら、第4図に示す如く順次(I
)点、(II)点、(T[[)点、(rV)点−・の各
変位測定棒(^)の計測を行なう。
While repeating the above operations, as shown in Figure 4,
) point, (II) point, (T[[) point, (rV) point -... Measure the displacement measurement rod (^).

かくして多数の計測点の測定が自動的に簡単に行なわれ
る。
In this way, measurements at a large number of measuring points can be carried out automatically and easily.

(発明の効果) 本発明に係るトンネル断面変位測定装置は前記したよう
に、掘削他山に設置され、ラインセンサーが装架された
変位測定棒に、トンネル人口側に設置された発光器より
光線を照射し、この際前記ラインセンサーから発信され
た光度検知電気信号を変換器によってデータ信号に変え
てコンピューターに入力し、トンネル断面変位量を演算
処理するように構成したことによって、超音波を使用し
た場合のように、トンネル地山の硬軟性、地山面の流水
等の影響を受けることなく、信頼性の高いデータを得る
ことができる。
(Effects of the Invention) As described above, the tunnel cross-sectional displacement measuring device according to the present invention is installed at the excavation site, and a light beam is emitted from a light emitting device installed on the tunnel population side to a displacement measuring rod equipped with a line sensor. At this time, the light intensity detection electric signal sent from the line sensor is converted into a data signal by a converter and inputted to a computer to calculate the amount of tunnel cross-sectional displacement, thereby using ultrasonic waves. Highly reliable data can be obtained without being affected by the hardness or softness of the tunnel ground, running water on the ground surface, etc.

請求項2の発明は、前記発光装置を水平架台上に搭載す
るとともに、同架台を水平回転及び上下移動させる駆動
装置を設け、同駆動装置をマイクロコンピュータ−の指
令を受けた制御装置によって前記ラインセンサーを順次
照射できるように制御するように構成したことによって
、発光器を搭載した駆動装置付架台と制御装置とを最初
に設置しておけば、後はトンネル掘削に並行して所定の
位置に変位測定棒を設置するだけで、トンネル断面変位
量が自動的に簡単且つ迅速に、而も正確に計測されるも
のである。
In the invention of claim 2, the light emitting device is mounted on a horizontal pedestal, and a driving device for horizontally rotating and vertically moving the pedestal is provided, and the driving device is controlled by a control device receiving commands from a microcomputer to control the line. By controlling the sensors so that they can be irradiated sequentially, the pedestal with the driving device equipped with the light emitting device and the control device can be installed first, and then placed in the specified position in parallel with tunnel excavation. By simply installing a displacement measuring rod, the amount of tunnel cross-sectional displacement can be automatically, simply, quickly, and accurately measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るトンネル断面変位測定装置の一実
施例を示す縦断側面図、第2図はその縦断正面図、第3
図はその概要を示す装置の概要説明図、第4図は前記装
置による計測状況を示す横断平面図、第5図は受光器の
駆動装置及び制御装置付の架台を示す斜視図、第6図は
その側面図、第7図はその平面図、第8図は第6図の部
分■の拡大図、第9図は変位測定棒の斜視図である。 (八)・・・変位測定棒  (B)・−・掘削地山(C
) −発光器    (E)−・変換器(P) −マイ
クロコンピュータ− (G) −制御装置   (3)−・ラインセンサー(
4)−−一架台      (5)−水平回転駆動装置
(9)・・・上下動駆動装置
FIG. 1 is a vertical side view showing an embodiment of the tunnel cross-sectional displacement measuring device according to the present invention, FIG. 2 is a vertical front view thereof, and FIG.
4 is a cross-sectional plan view showing the measurement situation by the device, FIG. 5 is a perspective view showing a pedestal with a light receiver drive device and a control device, and FIG. 6 is a schematic explanatory diagram of the device. 7 is a side view thereof, FIG. 7 is a plan view thereof, FIG. 8 is an enlarged view of part (2) in FIG. 6, and FIG. 9 is a perspective view of the displacement measuring rod. (8) Displacement measuring rod (B) Excavation ground (C
) - Light emitter (E) - Converter (P) - Microcomputer - (G) - Control device (3) - Line sensor (
4)--One frame (5)-Horizontal rotation drive device (9)...Vertical movement drive device

Claims (2)

【特許請求の範囲】[Claims] (1)掘削地山の変位測定個所に設置され、且つライン
センサーが装架された変位測定棒と、トンネル入口側に
設置され、前記ラインセンサーに光線を照射する発光器
と、前記ラインセンサーから発信された光度検知電気信
号をデータ信号に交換する変換器と、同変換器からの信
号を入力してトンネル断面変位量を演算処理するマイク
ロコンピューターとよりなることを特徴とするトンネル
断面変位測定装置。
(1) A displacement measuring rod installed at a displacement measurement point of the excavated ground and equipped with a line sensor; a light emitter installed at the tunnel entrance side that irradiates the line sensor; A tunnel cross-sectional displacement measuring device characterized by comprising a converter that exchanges the transmitted light intensity detection electric signal into a data signal, and a microcomputer that inputs the signal from the converter and processes the amount of tunnel cross-sectional displacement. .
(2)前記発光器は水平架台上に搭載され、同架台を水
平回転及び上下移動させる駆動装置と前記マイクロコン
ピューターの指令を受けて発光器の光線を掘削地山に設
置された複数の前記ラインセンサーに順次照射できるよ
うに前記駆動装置を制御する制御装置とを具えた請求項
1記載のトンネル断面変位測定装置。
(2) The light emitting device is mounted on a horizontal pedestal, and a drive device horizontally rotates and moves the pedestal up and down, and in response to instructions from the microcomputer, the light beam of the light emitting device is transmitted to the plurality of lines installed in the excavated ground. 2. The tunnel cross-sectional displacement measuring device according to claim 1, further comprising a control device for controlling said drive device so as to sequentially irradiate the sensors.
JP26297688A 1988-10-20 1988-10-20 Tunnel cross-section displacement measuring device Expired - Lifetime JPH0672774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26297688A JPH0672774B2 (en) 1988-10-20 1988-10-20 Tunnel cross-section displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26297688A JPH0672774B2 (en) 1988-10-20 1988-10-20 Tunnel cross-section displacement measuring device

Publications (2)

Publication Number Publication Date
JPH02110304A true JPH02110304A (en) 1990-04-23
JPH0672774B2 JPH0672774B2 (en) 1994-09-14

Family

ID=17383165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26297688A Expired - Lifetime JPH0672774B2 (en) 1988-10-20 1988-10-20 Tunnel cross-section displacement measuring device

Country Status (1)

Country Link
JP (1) JPH0672774B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493492A (en) * 1990-08-09 1992-03-26 Fujita Corp Excavated natural ground monitoring device in natm construction method
JP2015087312A (en) * 2013-10-31 2015-05-07 株式会社錢高組 Confirmation device for confirming displacement of wall and confirmation method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423940B (en) * 2015-12-25 2017-12-26 同济大学 A kind of subway tunnel structure cross section deformation device for fast detecting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493492A (en) * 1990-08-09 1992-03-26 Fujita Corp Excavated natural ground monitoring device in natm construction method
JP2015087312A (en) * 2013-10-31 2015-05-07 株式会社錢高組 Confirmation device for confirming displacement of wall and confirmation method of the same

Also Published As

Publication number Publication date
JPH0672774B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
JP5642813B2 (en) Method and apparatus for manufacturing trench wall elements
ZA200507982B (en) Method and apparatus for monitoring a load condition of a dragline or electric shovel
CN108663032A (en) Working surface hydraulic support posture and linearity testing apparatus based on robot and method
JPH0331715A (en) Automatic method and device for measuring displacement of measuring point
CN113340225B (en) Tunnel deformation monitoring system and monitoring method based on laser displacement detection device
EP0807801A1 (en) Apparatus for inspecting deformation of pipe
JPH02110304A (en) Apparatus for measuring displacement of tunnel cross-section
CN213329139U (en) Foundation pit support detection tool
CN116839536A (en) Laser sedimentation monitoring system device and monitoring method thereof
JPS5921836A (en) Finishing work of ground to given shape
JP2917751B2 (en) Column accuracy measurement system
JP2795159B2 (en) Bucket position measuring device
JPH08233547A (en) Three-dimensional shape measuring apparatus
KR930010452B1 (en) Method and device for inspecting duct
KR20150009676A (en) Measuring Device for Deflection of Crane Boom
JP2002174519A (en) Automatically measuring system for tunnel section
CN215910370U (en) Automatic device for multi-angle X-ray detection of weld defects
JP3595022B2 (en) Vertical beam measurement system using laser beam
JPS60141924A (en) Erecting device for structure embedded in ground
US12000689B2 (en) Environmental scanning and image reconstruction thereof
JPH08285581A (en) Laser type level-measuring apparatus
JPH06331353A (en) Method and device for measuring displacement of air section inside tunnel
JPH0748586Y2 (en) Reclaimer dead load detector
JPH08233517A (en) Three-dimensional shape measuring apparatus
JP2871842B2 (en) Furnace size measurement device