JPH0211001B2 - - Google Patents

Info

Publication number
JPH0211001B2
JPH0211001B2 JP21867382A JP21867382A JPH0211001B2 JP H0211001 B2 JPH0211001 B2 JP H0211001B2 JP 21867382 A JP21867382 A JP 21867382A JP 21867382 A JP21867382 A JP 21867382A JP H0211001 B2 JPH0211001 B2 JP H0211001B2
Authority
JP
Japan
Prior art keywords
current
metal
melting point
low
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21867382A
Other languages
Japanese (ja)
Other versions
JPS59108302A (en
Inventor
Susumu Matsumura
Tsuyotoshi Takemura
Hisao Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Kansai Denryoku KK filed Critical Mitsubishi Electric Corp
Priority to JP21867382A priority Critical patent/JPS59108302A/en
Publication of JPS59108302A publication Critical patent/JPS59108302A/en
Publication of JPH0211001B2 publication Critical patent/JPH0211001B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 この発明は通電体に過大な電流が流れたとき、
その温度上昇による周辺への悪影響を防止するよ
うにした電気装置に関する。
[Detailed Description of the Invention] This invention provides a method for when an excessive current flows through a current-carrying body.
The present invention relates to an electrical device that prevents the adverse effects of temperature rise on the surrounding area.

一般に、サイリスタを使用した高電圧の電力変
換装置においては、通常の動作電圧を考慮して素
子の直列個数が決定される。そして、散発的に印
加される雷インパルスや、開閉サージ等はアレス
タで所定の電圧に制限している。
Generally, in a high-voltage power converter using a thyristor, the number of elements connected in series is determined in consideration of the normal operating voltage. Sporadically applied lightning impulses, switching surges, etc. are limited to a predetermined voltage by arresters.

従来のものは第1図に示すように、各サイリス
タ素子T1,T2,T3にアレスタA1,A2,A3及び
スナバ回路S1,S2,S3が並列に接続されている。
この場合、各サイリスタ素子T1,T2,T3には外
部から雷インパルス等の過電圧が印加された場合
も、並列に接続されたアレスターA1,A2,A3
びスナバ回路S1,S2,S3により、制限された電圧
VMしか印加しないため、各サイリスタ素子T1
T2,T3は保護される。
In the conventional system, as shown in Figure 1, arresters A 1 , A 2 , A 3 and snubber circuits S 1 , S 2 , S 3 are connected in parallel to each thyristor element T 1 , T 2 , T 3 . There is.
In this case, even if an overvoltage such as a lightning impulse is applied from the outside to each thyristor element T 1 , T 2 , T 3 , the arresters A 1 , A 2 , A 3 and the snubber circuit S 1 , which are connected in parallel, Voltage limited by S 2 and S 3
Since only V M is applied, each thyristor element T 1 ,
T 2 and T 3 are protected.

しかし、各サイリスタT1,T2,T3に導通指令
が出たとき、点弧回路の故障によつて、サイリス
タ素子T1のみが導通しなかつたとすると、サイ
リスタ素子T1を残して他のサイリスタが導通し、
サイリスタ素子T1と並列に接続されたアレスタ
ーA1には外部回路条件で決まる負荷電流が強制
的に流れ、その端子電圧はアレスターA1の電圧
−電流特性によつて決まる値となる。
However, when a conduction command is issued to each thyristor T 1 , T 2 , T 3 , if only thyristor element T 1 fails to conduct due to a failure in the ignition circuit, all but thyristor element T 1 and the other The thyristor conducts,
A load current determined by external circuit conditions is forced to flow through the arrester A 1 connected in parallel with the thyristor element T 1 , and the terminal voltage thereof becomes a value determined by the voltage-current characteristics of the arrester A 1 .

通常、アレスタは負荷電流のような過大な電流
を長時間流す能力をもつていないので、過熱して
周辺に熱的な悪影響を及ぼすことになる。さら
に、過熱して機械的な破壊を起こすと、飛散した
破片で周辺を損傷することがあるので、第2図で
示すように、アレスタに過大な電流が流れたら、
アレスタの両端を電気的に接続するように構成さ
れたものが提案されている。
Usually, arresters do not have the ability to carry an excessive current such as the load current for a long period of time, so they overheat and have an adverse thermal effect on the surrounding area. Furthermore, if the arrester overheats and mechanically breaks down, flying debris may damage the surrounding area, so as shown in Figure 2, if an excessive current flows through the arrester,
Arresters configured to electrically connect both ends of the arrester have been proposed.

すなわち、第2図では、酸化亜鉛形アレスタな
どの過電圧制限要素3に半田などの低融点金属4
を当接させ、一対の電極1,2間に過電圧制限要
素3と低融点金属4とを電気的に直列接続し、低
融点金属4と密着された導電性のプレート9を介
してばね10で一方の電極1に押圧し、他方の電
極2とはシヤント11で接続し、溶融した低融点
金属4で両通電部1a,2aが電気的に接続され
るように、対向した両通電部1a,2aが低融点
金属4の下部に配置してある。
That is, in FIG. 2, a low melting point metal 4 such as solder is connected to an overvoltage limiting element 3 such as a zinc oxide type arrester.
The overvoltage limiting element 3 and the low melting point metal 4 are electrically connected in series between the pair of electrodes 1 and 2, and the spring 10 is connected through the conductive plate 9 that is in close contact with the low melting point metal 4. Both current-carrying parts 1a, 2a facing each other are pressed against one electrode 1 and connected to the other electrode 2 by a shunt 11, so that both current-carrying parts 1a, 2a are electrically connected by the molten low-melting point metal 4. 2a is placed below the low melting point metal 4.

上記構成において、過電圧制限要素3に過大な
電流が流れる場合、電極1→過電圧制限要素3→
低融点金属4→シヤント11→電極2の回路を通
る。これによつて、過電圧制限要素3の温度が上
昇するので、低融点金属4が溶融して両通電部1
a,2a間に落下し、両電極1,2間が電気的に
接続される。したがつて、過電圧制限要素3に流
れていた電流は、両通電部1a,2a間に落下し
た低融点金属4を経由して流れるので、過電圧制
限要素3の過熱が抑制できる。
In the above configuration, when excessive current flows through the overvoltage limiting element 3, electrode 1 → overvoltage limiting element 3 →
It passes through a circuit of low melting point metal 4 → shunt 11 → electrode 2. As a result, the temperature of the overvoltage limiting element 3 increases, and the low melting point metal 4 melts, causing both current-carrying parts 1 to rise.
It falls between electrodes 1 and 2a, and both electrodes 1 and 2 are electrically connected. Therefore, the current flowing through the overvoltage limiting element 3 flows through the low melting point metal 4 that has fallen between the current carrying parts 1a and 2a, so that overheating of the overvoltage limiting element 3 can be suppressed.

しかし、過電圧制限要素の一部が電気的に破壊
してそこに過大な電流が集中した場合には、その
近傍の低融点金属は瞬時に溶融して落下するが、
電流が集中した個所によつて低融点金属の溶融量
が異なるので、両通電部の接続が不安定であると
いう欠点があつた。
However, if a part of the overvoltage limiting element electrically breaks down and excessive current concentrates there, the low melting point metal in the vicinity will instantly melt and fall.
Since the amount of melting of the low-melting point metal differs depending on the location where the current is concentrated, there is a drawback that the connection between the two current-carrying parts is unstable.

この発明は、上記欠点を解消するためになされ
たもので、低融点金属に電極と過電圧制限要素な
どの通電体との間に所定の間隔を保持する間隔部
材を埋設し、所定の比抵抗及び融点を有する無機
質繊維を所定の大きさの目に編んだ囲繞部材で包
み多量の溶融した低融点金属を電極間に落下させ
るようにした電気装置を提供する。
This invention was made to eliminate the above-mentioned drawbacks, and includes a spacing member that maintains a predetermined distance between an electrode and a current-carrying body such as an overvoltage limiting element embedded in a low-melting point metal, and a predetermined resistivity and a predetermined resistivity. To provide an electric device in which a large amount of molten low-melting point metal is made to fall between electrodes by wrapping inorganic fibers having a melting point in a surrounding member made of woven mesh of a predetermined size.

以下図について説明する。第3図において、1
は第1の通電部1aを有する第1の電極、2は第
1の通電部1aと所定の間隔をあけて対向した第
2の通電部2aを有する第2の電極、3は酸化亜
鉛素子などの過電圧制限要素などからなる通電
体、4は第2の電極2と通電体3間に配置された
はんだなどの低融点金属、5は低融点金属4に埋
設され第2の電極2と通電体3との間隔を維持す
る間隔部材、6は両端がそれぞれ第2の電極2と
通電体3とに固着され低融点金属3を囲繞する部
材で、囲繞部材6はセラミツクスフアイバ等の高
融点、高抵抗の無機質繊維を所定の大きさの網目
に編んで構成されている。7は第1の電極1と通
電体3間に配置された通電可能なばね、8は通電
体3が収納される各電極1,2が保持された絶縁
筒で、両通電部1a,2aの下部と当接し溜り部
8aを構成している。このように構成されたもの
は、第1の電極1と第2の電極2間が電気的に接
続されている。
The figures will be explained below. In Figure 3, 1
2 is a first electrode having a first current-carrying part 1a, 2 is a second electrode having a second current-carrying part 2a facing the first current-carrying part 1a at a predetermined distance, 3 is a zinc oxide element, etc. 4 is a low melting point metal such as solder placed between the second electrode 2 and the current carrying body 3; 5 is a low melting point metal embedded in the low melting point metal 4, and the second electrode 2 and the current carrying body are connected to each other; A spacing member 6 is a member that surrounds the low melting point metal 3 and has both ends fixed to the second electrode 2 and the current carrying body 3, respectively. It is constructed by knitting resistive inorganic fibers into a mesh of a predetermined size. Reference numeral 7 denotes a current-carrying spring disposed between the first electrode 1 and the current-carrying body 3; 8 an insulating cylinder holding each electrode 1, 2 in which the current-carrying body 3 is housed; It contacts the lower part and forms a reservoir part 8a. In the device configured in this way, the first electrode 1 and the second electrode 2 are electrically connected.

つぎに動作を説明する。第3図において、通電
体3に過大な電流が流れ温度が上昇すると、低融
点金属4が通電体3と接触した側から順次溶融
し、表面張力の関係で囲繞部材6の網目によつて
短時間保持され、溶融量の増大による圧力の増加
で、液滴となつて網目から落下するので、溜り部
8aは多量の溶融した低融点金属4で充たされる
ため、両通電部1a,2a間の通電容量が確保さ
れる。
Next, the operation will be explained. In FIG. 3, when an excessive current flows through the current carrying body 3 and the temperature rises, the low melting point metal 4 sequentially melts from the side in contact with the current carrying body 3, and due to the surface tension, the mesh of the surrounding member 6 causes the metal 4 to melt and become short. As the pressure increases due to the increase in the amount of melted metal, the liquid droplets form and fall from the mesh, and the reservoir 8a is filled with a large amount of molten low-melting point metal 4. Current carrying capacity is ensured.

発明者は第3図のものを次のように構成して所
定の機能を発揮することを確認した。
The inventor has confirmed that the device shown in FIG. 3 is configured as follows and exhibits a predetermined function.

すなわち、通電体3に酸化亜鉛形バリスタ
(600Aで約7Ω)、低融点金属4にPb−Sn共晶はん
だ、囲繞部材6には市販のセラミツクスフアイバ
平織クロス0.45mm厚さから、適宜目を粗くしたも
の、あるいはフアイバー材を手編みしたもの等を
用いた。
In other words, the current carrying body 3 is a zinc oxide type varistor (approx. 7Ω at 600A), the low melting point metal 4 is Pb-Sn eutectic solder, and the surrounding member 6 is a commercially available ceramic fiber plain weave cloth with a thickness of 0.45 mm, with a rough weave as appropriate. or hand-knitted fiber material.

このように構成したものに、600A、5.5msのパ
ルスを16.6ms毎に通電した場合、上記の動作に
よつて両通電部1a,2a間の通電容量が確保さ
れた。なお、囲繞部材6の編目は0.1〜0.5mmの目
の粗さとなるときに最も安定した閉路条件が得ら
れた。
When a pulse of 600 A and 5.5 ms was applied every 16.6 ms to the device configured as described above, the above-described operation ensured the current carrying capacity between the two current-carrying parts 1a and 2a. Note that the most stable closed circuit condition was obtained when the mesh of the surrounding member 6 had a roughness of 0.1 to 0.5 mm.

上記実施例では、低融点金属にpb−sn共晶は
んだを用いたが、Pb、Sn、Bi等の純金属、Pb−
Sn−Sb、Pb−Sn−Bi、その他ウツドメタル等の
合金を用いてもよく、セラミツクフアイバーの代
りに、グラスフアイバーやカーボンフアイバー
を、それぞれ容量に応じて必要とされる特性を有
するものから選んで用いても、上記実施例と同様
の効果を期待することができる。
In the above example, pb-sn eutectic solder was used as the low melting point metal, but pure metals such as Pb, Sn, Bi, etc.
Alloys such as Sn-Sb, Pb-Sn-Bi, and other wood metals may be used, and instead of ceramic fibers, glass fibers and carbon fibers may be selected from among those having the required characteristics depending on the capacity. Even if it is used, the same effects as in the above embodiment can be expected.

さらに、上記実施例においては、囲繞部材を無
機繊維で構成し、両端をそれぞれ通電体と第2の
電極とに固着した場合について説明したが、囲繞
部材の一端を低融点金属の側面に沿つて折曲げ、
通電体と当接可能にすることによつて、囲繞部材
を金属繊維で構成することができる。
Furthermore, in the above embodiment, the case where the surrounding member is made of inorganic fibers and both ends are fixed to the current carrying body and the second electrode, respectively, has been described. bending,
By allowing the surrounding member to come into contact with the current-carrying body, the surrounding member can be made of metal fibers.

この発明によれば、過大な電流が流れたとき通
電体の発熱で溶融される低融点金属を、所定の繊
維を所定の大きさの目に編んだ囲繞部材で包み、
溶融された低融点金属を短時間保持するように構
成することによつて、多量の溶融した低融点金属
をほとんど同時に滴下するので、両電極間の通電
容量が十分確保される。
According to this invention, a low-melting point metal that is melted by heat generated by a current-carrying body when an excessive current flows is wrapped in a surrounding member made of predetermined fibers woven with a predetermined mesh size.
By holding the molten low-melting point metal for a short time, a large amount of the molten low-melting point metal is dropped almost simultaneously, thereby ensuring sufficient current carrying capacity between both electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電力変換装置の構成図、第2図は従来
の電気装置を示す断面図、第3図はこの発明の一
実施例を示す断面図である。図において、1は第
1の電極、2は第2の電極、3は通電体、4は低
融点金属、5は間隔部材、6は囲繞部材、8は絶
縁筒および8aは溜り部である。なお各図中同一
符号は同一又は相当部分を示す。
FIG. 1 is a block diagram of a power conversion device, FIG. 2 is a sectional view showing a conventional electric device, and FIG. 3 is a sectional view showing an embodiment of the present invention. In the figure, 1 is a first electrode, 2 is a second electrode, 3 is a current carrying body, 4 is a low melting point metal, 5 is a spacing member, 6 is a surrounding member, 8 is an insulating cylinder, and 8a is a reservoir. Note that the same reference numerals in each figure indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 所定の間隔をあけて対向した各通電部を有す
る一対の電極間に互いに密着された通電体と低融
点金属とを電気的に直列に接続して配置し、上記
各通電部と絶縁部材とで溶融した上記低融点金属
が貯溜できる溜り部を形成し、上記低融点金属が
上記溜り部の上部になるように構成されたものに
おいて、上記低融点金属は上記通電体と上記電極
との間を所定の間隔に保つ間隔部材が埋設され比
抵抗及び融点が低融点金属の比抵抗及び融点より
大きい繊維を所定の大きさの目に編んだ囲繞部材
で包まれていることを特徴とする電気装置。 2 低融点金属が327℃以下の凝固点又は液相線
温度を有する金属又は合金であることを特徴とす
る特許請求の範囲第1項記載の電気装置。 3 囲繞部材の編目が0.1〜0.5mmであることを特
徴とする特許請求の範囲第1項記載の電気装置。
[Scope of Claims] 1. A current-carrying body and a low-melting point metal that are in close contact with each other are electrically connected in series and arranged between a pair of electrodes having respective current-carrying parts facing each other at a predetermined interval. The current-carrying part and the insulating member form a reservoir in which the molten low-melting metal can be stored, and the low-melting metal is located above the reservoir, wherein the low-melting metal is connected to the current-carrying body. A spacing member is embedded to maintain a predetermined distance between the metal and the electrode, and the metal is surrounded by a surrounding member made of fibers having a predetermined mesh size, the resistivity and melting point of which are greater than those of the low melting point metal. An electrical device characterized by: 2. The electrical device according to claim 1, wherein the low melting point metal is a metal or alloy having a freezing point or liquidus temperature of 327° C. or lower. 3. The electrical device according to claim 1, wherein the mesh of the surrounding member is 0.1 to 0.5 mm.
JP21867382A 1982-12-14 1982-12-14 Electric device Granted JPS59108302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21867382A JPS59108302A (en) 1982-12-14 1982-12-14 Electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21867382A JPS59108302A (en) 1982-12-14 1982-12-14 Electric device

Publications (2)

Publication Number Publication Date
JPS59108302A JPS59108302A (en) 1984-06-22
JPH0211001B2 true JPH0211001B2 (en) 1990-03-12

Family

ID=16723623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21867382A Granted JPS59108302A (en) 1982-12-14 1982-12-14 Electric device

Country Status (1)

Country Link
JP (1) JPS59108302A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774503A (en) * 1993-09-03 1995-03-17 Matsushita Electric Ind Co Ltd Circularly polarized wave generator
JP2945839B2 (en) * 1994-09-12 1999-09-06 松下電器産業株式会社 Circular-linear polarization converter and its manufacturing method
JP3331839B2 (en) * 1995-11-13 2002-10-07 松下電器産業株式会社 Circularly polarized linearly polarized wave converter

Also Published As

Publication number Publication date
JPS59108302A (en) 1984-06-22

Similar Documents

Publication Publication Date Title
CA1212989A (en) Surge voltage arrester having an external short- circuit path
US5247273A (en) Surge absorber for protection of communication equipment connected to communication lines
JPS60258905A (en) Electric device
JPH0354844B2 (en)
JPH0211001B2 (en)
JPS60187002A (en) Surge absorber
EP0099093B1 (en) Overvoltage limiter
JPS5928596Y2 (en) electrical equipment
JP3853418B2 (en) Overvoltage / overcurrent protection device
KR960000839B1 (en) Surge absorber
JPH0210561B2 (en)
JPH0141005B2 (en)
JPS5966087A (en) Electric device
JPH0141008B2 (en)
JPH0141009B2 (en)
JPH0219602B2 (en)
JPH0141007B2 (en)
JPH0210562B2 (en)
JPS61112302A (en) Surge noise absorber
JPH058904U (en) Chip type varistor
JPS5937678A (en) Electric device
JP3149089U (en) Surge absorber
JPS5937682A (en) Electric device
JPS5937679A (en) Electric device
JPS5937680A (en) Electric device